N. H. Snow, Solid-phase micro-extraction of drugs from biological matrices, J. Chromatogr. A, vol.885, pp.445-455, 2000.

S. Ulrich, Solid-phase microextraction in biomedical analysis, J. Chromatogr. A, vol.902, pp.167-194, 2000.

W. Filipiak, A. Sponring, T. Mikoviny, C. Ager, J. Schubert et al., Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro, Cancer. Cell. Int, vol.8, p.17, 2008.

C. E. Garner, S. Smith, B. De-lacy-costello, P. White, R. Spencer et al., Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease, Faseb. J, vol.21, pp.1675-1688, 2007.

W. Filipiak, A. Sponring, A. Filipiak, C. Ager, J. Schubert et al., TD-GC-MS analysis of volatile metabolites of human lung cancer and normal cells in vitro, Cancer. Epidemiol. Biomark. Prev, vol.19, pp.182-195, 2010.

A. H. Neerincx, B. P. Geurts, J. Van-loon, V. Tiemes, J. J. Jansen et al., Detection of Staphylococcus aureus in cystic fibrosis patients using breath VOC profiles, J. Breath. Res, vol.10, p.46014, 2016.

M. Barker, M. Hengst, J. Schmid, H. Buers, B. Mittermaier et al., Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis, Eur. Respir. J, vol.27, pp.929-936, 2006.

N. Stoppacher, B. Kluger, S. Zeilinger, R. Krska, and R. Schuhmacher, Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS, J. Microbiol. Methods, vol.81, pp.187-193, 2010.

M. C. Lemfack, J. Nickel, M. Dunkel, R. Preissner, and B. Piechulla, mVOC: A database of microbial volatiles, Nucleic. Acids. Res, vol.42, pp.744-748, 2014.

C. L. Arthur and J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem, vol.62, pp.2145-2148, 1990.

F. M. Musteata, I. De-lannoy, B. Gien, and J. Pawliszyn, Blood sampling without blood draws for in vivo pharmacokinetic studies in rats, J. Pharm. Biomed. Anal, vol.47, pp.907-912, 2008.

B. Bojko, K. Gorynski, G. A. Gomez-rios, J. M. Knaak, T. Machuca et al., Low invasive in vivo tissue sampling for monitoring biomarkers and drugs during surgery, Lab. Invest, vol.94, pp.586-594, 2014.

J. Julák, E. Procházková-francisci, E. Stránská, and V. Rosová, Evaluation of exudates by solid phase microextraction-gas chromatography, J. Microbiol. Methods, vol.52, pp.115-122, 2003.

G. Preti, E. Thaler, C. W. Hanson, M. Troy, J. Eades et al., Volatile compounds characteristic of sinus-related bacteria and infected sinus mucus: Analysis by solid-phase microextraction and gas chromatography-mass spectrometry, J. Chromatogr. B, vol.877, 2009.

E. Tait, J. D. Perry, S. P. Stanforth, and J. R. Dean, Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS, J. Chromatogr. Sci, vol.52, pp.363-373, 2014.

J. Chen, J. Tang, H. Shi, C. Tang, and R. Zhang, Characteristics of volatile organic compounds produced from five pathogenic bacteria by headspace-solid phase micro-extraction/gas chromatography-mass spectrometry, J. Basic. Microbiol, vol.57, pp.228-237, 2017.

E. Baltussen, P. Sandra, F. David, and C. Cramers, Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles, J. Microcolumn, vol.11, pp.737-747, 1999.

K. Berrou, C. Dunyach-remy, J. Lavigne, B. Roig, and A. Cadiere, Multiple stir bar sorptive extraction combined with gas chromatography-mass spectrometry analysis for a tentative identification of bacterial volatile and/or semi-volatile metabolites, Talanta, vol.195, pp.245-250, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01934442

Y. Dong, K. Glaser, and C. P. Speer, New Threats from an Old Foe: Methicillin-Resistant Staphylococcus aureus Infections in Neonates, Neonatology, vol.114, pp.127-134, 2018.

E. L. Fisher, M. Otto, and G. Y. Cheung, Basis of Virulence in Enterotoxin-Mediated Staphylococcal Food Poisoning. Front. Microbiol, vol.9, p.436, 2018.

G. H. Dayan, N. Mohamed, I. L. Scully, D. Cooper, E. Begier et al., Staphylococcus aureus: The current state of disease, pathophysiology and strategies for prevention, Expert. Rev. Vaccines, vol.15, pp.1373-1392, 2016.

B. Krismer, C. Weidenmaier, A. Zipperer, and A. Peschel, The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota, Nat. Rev. Microbiol, vol.15, pp.675-687, 2017.

L. Thomer, O. Schneewind, and D. Missiakas, Pathogenesis of Staphylococcus aureus Bloodstream Infections, Annu. Rev. Pathol, vol.11, pp.343-364, 2016.

L. D. Bos, P. J. Sterk, and M. J. Schultz, Volatile metabolites of pathogens: A systematic review, Plos. Pathog, vol.9, 2013.

S. Schulz and J. S. Dickschat, Bacterial volatiles: The smell of small organisms, Nat. Prod. Rep, vol.24, pp.814-842, 2007.

S. Sethi, R. Nanda, and T. Chakraborty, Clinical application of volatile organic compound analysis for detecting infectious diseases, Clin. Microbiol. Rev, vol.26, pp.462-475, 2013.

P. Martinez-lozano-sinues, E. Landoni, R. Miceli, V. F. Dibari, M. Dugo et al., Secondary electrospray ionization-mass spectrometry and a novel statistical bioinformatic approach identifies a cancer-related profile in exhaled breath of breast cancer patients: A pilot study, J. Breath. Res, vol.9, 2015.

N. Ochiai, K. Sasamoto, T. Ieda, F. David, and P. Sandra, Multi-stir bar sorptive extraction for analysis of odor compounds in aqueous samples, J. Chromatogr. A, pp.70-79, 1315.

Q. Ye, D. Zheng, L. Liu, and L. Hong, Rapid analysis of aldehydes by simultaneous microextraction and derivatization followed by GC-MS, J. Sep. Sci, vol.34, pp.1607-1612, 2011.

J. M. Scotter, R. A. Allardyce, V. S. Langford, A. Hill, and D. R. Murdoch, The rapid evaluation of bacterial growth in blood cultures by selected ion flow tube-mass spectrometry (SIFT-MS) and comparison with the BacT/ALERT automated blood culture system, J. Microbiol. Methods, vol.65, pp.628-631, 2006.

J. Zhu, H. D. Bean, Y. Kuo, and J. E. Hill, Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry, J. Clin. Microbiol, vol.48, pp.4426-4431, 2010.

M. Jünger, W. Vautz, M. Kuhns, L. Hofmann, S. Ulbricht et al., Ion mobility spectrometry for microbial volatile organic compounds: A new identification tool for human pathogenic bacteria, Appl. Microbiol. Biotechnol, vol.93, pp.2603-2614, 2012.

R. M. Thorn, D. M. Reynolds, and J. Greenman, Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro, J. Microbiol. Methods, vol.84, pp.258-264, 2011.

M. E. Dolch, C. Hornuss, C. Klocke, S. Praun, J. Villinger et al., Volatile organic compound analysis by ion molecule reaction mass spectrometry for Gram-positive bacteria differentiation, Eur. J. Clin. Microbiol. Infect. Dis, vol.31, pp.3007-3013, 2012.

R. A. Allardyce, A. L. Hill, and D. R. Murdoch, The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry, Diagn. Microbiol. Infect. Dis, vol.55, pp.255-261, 2006.

M. K. Storer, K. Hibbard-melles, B. Davis, and J. Scotter, Detection of volatile compounds produced by microbial growth in urine by selected ion flow tube mass spectrometry (SIFT-MS), J. Microbiol. Methods, vol.87, pp.111-113, 2011.

J. Mesureur, S. Ranaldi, V. Monnin, V. Girard, S. Arend et al., A simple and safe protocol for preparing Brucella samples for Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry analysis, J. Clin. Microbiol, vol.54, pp.449-452, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01909349

H. Van-den-dool and P. D. Kratz, A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography, J. Chromatogr. A, vol.11, pp.463-471, 1963.

I. Eom, S. Risticevic, and J. Pawliszyn, Simultaneous sampling and analysis of indoor air infested with Cimex lectularius L. (Hemiptera: Cimicidae) by solid phase microextraction, thin film microextraction and needle trap device, Anal. Chim. Acta, vol.716, pp.2-10, 2012.

, Strains are available and cultures and analysis can be reproduced. © 2019 by the authors, Licensee MDPI