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Abstract

In this study, a general frictional cohesive zone model (FCZM) dedicated
to quasi-brittle fracture is proposed to describe the mechanical response of
an interface under combined traction or compression and shear loadings.
Under combined traction and shear loadings, mixed-mode I + II cohesive
zone model, as proposed by Camanho et al. (2003), is used to express the
mixed-mode response of the interface and the dependence to the loading path
consistent to the one expected in quasi-brittle fracture. Under combined
compression and shear loadings, the novelty lies in the proposed coupling
between Mode II cohesive behavior and frictional behavior based on the
damage level leading to a progressive rising of the frictional stress associated
with the softening part of the cohesive behavior of the interface. FCZM
thus describes a smooth transition from a cohesive zone to a pure frictional
contact zone. Applied to the masonry context, this general FCZM can be
fully characterized through two fracture tests carried out on small masonry
assemblages. Finally, FCZM is implemented in LMGC90 discrete element
code and used to simulate the experimental response of an unilateral cyclic
shear test carried out on a triplet of limestone blocks assembled by two mortar
joints.
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1. Introduction

The basic hypothesis of cohesive zone models is that failure can be de-
scribed through a fictitious surface crack (which is usually characterized by
a zero thickness interface) which transmits normal and shear stresses. The
magnitudes of normal and shear stresses are described from functions (mono-
tonically decreasing) of the opening displacement (Mode I) and of the shear
plane displacement (Mode II) of the interface.
In literature there is a large variety of Cohesive Zone Models (CZM) which
can be differentiated according to the shape of their softening parts: rigid-
linear (Camacho and Ortiz, 1996; Snozzi and Molinari, 2013), bi-linear (Hille-
borg et al., 1976; Camanho et al., 2003; Högberg, 2006), tri-linear (Morel et
al., 2010; Bisoffi-Sauve et al., 2019) and exponential CZM (Xu and Needle-
man, 1993; van den Bosch et al., 2006). In those models, the cohesive stresses
decrease (after an elastic domain) according to the rising of a damage vari-
able (scalar) usually noted as d. Mode I and Mode II cohesive behaviors
are generally described according to softening functions exhibiting a similar
shape.
In the case of combined traction and shear loadings, Mode I and Mode II
cohesive behaviors can be coupled or uncoupled. Uncoupled CZM are typi-
cally used when interface separation occurs in a single predefined direction,
while coupled CZM are used for complex loading leading simultaneously to
opening and shear plane displacements of the interface. Coupled CZM gen-
erally differ according to the criteria used to describe the mixed-mode I+ II
failure and the dependence (or not) to the loading path exhibited by the
material fracture (van den Bosch et al., 2006; Camanho et al., 2003; Dimitri
et al., 2015).
In the case of combined compression and shear loadings, the contribution of
the friction phenomenon complicates the analysis of the respective contri-
butions of the frictional and cohesive behaviors in the mechanical response
of the interface. As such, if the cohesive behavior is estimated by simply
subtracting the value of the full friction stress from the total shear stress-
shear plane displacement response (Freddi et al., 2017; Baek and Park, 2018;
Bisoffi-Sauve et al., 2019; Yuen et al., 2019), the resulting Mode II cohesive
energy is usually underestimated and associated with a physically inconsis-
tent dependence to the normal stress. Note that such an assumption of
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superimposition of full friction stress and cohesive stress leads to consider
that the cohesive behavior is only activated if the full friction threshold is
reached or, in other words, that the friction effect takes place while the co-
hesive capacity of interface is still intact, which appears to be physically
inconsistent. To overcome this issue, several authors (Chaboche et al., 1997;
Snozzi and Molinari, 2013; Spring and Paulino, 2015; D’Altri et al, 2018)
have proposed phenomenological evolutions of the friction stress as a func-
tion of the shear plane displacement superimposed to the cohesive behavior.
Nevertheless, even if these frictional cohesive zone models allow a better de-
scription of experimental stress-displacement responses, assuming a friction
stress function of the shear plane displacement is not physically based since
frictional effect is expected to depend only on the normal stress, the friction
coefficient and the area of the surface on which it acts. A coupling based
on the damage part of the interface on which the frictional phenomenon can
physically act appears more relevant (Raous and Monerie, 2002; Acary and
Monerie, 2006; Alfano and Sacco, 2006).

On this basis, we propose a general Frictional Cohesive Zone Model dedi-
cated to quasi-brittle fracture describing the mechanical response of an inter-
face under combined traction or compression and shear loadings. In Section
2, the cohesive laws with exponential softening used for pure Mode I and
Mode II fractures are presented and a reminder of the physical meaning of
the damage variable driving the softening part is proposed. On this basis,
under combined traction and shear loadings (Section 3), mixed-mode I + II
cohesive zone model proposed by Camanho et al. (2003) is used to express
the mixed-mode response of the interface and the dependence to the loading
path consistent to the one expected in quasi-brittle fracture. Under combined
compression and shear loadings (Section 4), the novelty lies in the proposed
coupling between cohesive and frictional behaviors which is obtained through
an estimate of the effective frictional area, itself estimated from the damage
variable. A first illustration of the response obtained from FCZM under cyclic
shear loading is proposed. In Section 5, the FCZM is used in the context
of masonry and two characterization tests allowing the estimation of all the
cohesive and frictional parameters of a block-mortar interface are described.
The methodology used to estimate simultaneously the frictional and Mode
II cohesive parameters is particularly discussed. Finally, in Section 6, the
FCZM is implemented in LMGC90 discrete element code and used to simu-
late the experimental response of an unilateral cyclic shear test carried out
on a triplet of limestone blocks assembled by two mortar joints.
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2. Cohesive law with exponential softening

The accurate simulation of interfacial failure in quasi-brittle materials
needs to use an appropriate cohesive law allowing in particular the descrip-
tion of (i) the negative hardening expected for the tension and shear stress-
displacement responses of the interface, (ii) the dependence on the loading
path and of (iii) the strong dissymmetry of tensile and shear fracture prop-
erties.
Among the different functions used to describe the softening behavior in
CZM, exponential softening allows fitting, with a reasonable accuracy, of the
negative and concave hardening function expected in quasi-brittle fracture
as shown in Figure 1. In this study, one proposes to describe the Mode I
and Mode II cohesive behaviors from the same shape of cohesive law (expo-
nential softening) as shown in Figure 1 where i = {I, II}. The initial elastic
behavior is characterized by the stiffness K0

i [N/m3] and the tensile (i = I)
or shear (i = II) strength σei [N/m2]. The stress σi as well as the stiffness
Ki decrease continuously reflecting the softening behavior of the interface
(Fig. 1). The decrease of the stiffness Ki from its initial value K0

i (and

δi

σi

K0
i

1

K0
i (1− d)

1

σi ∼ e(δ
e
i−δi)

σei

δei δui

Gfi

Figure 1: Cohesive law with exponential softening

consequently, the one of the cohesive stress σi from the strength σei ) is driven
by a damage variable d (scalar variable). The damage variable d reflects the
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level of the mechanical degradation of the interface which can be described
through the development of crack surface. In this way and particularly in
Mode I, d is defined as the ratio of the cracked surface Ad [m2] over the whole
interfacial surface area A0 [m2], i.e., d = Ad/A0. Thus 0 ≤ d ≤ 1, d = 0
corresponding to an intact interface (Ad = 0) while d = 1 reflects the overall
failure of the interface (Ad = A0). Thus, for a given damage level d, the load
Fi transmitted by the interface can be expressed either with the apparent
stress σi applied on the whole interface surface A0 or with the effective stress
σ̃i applied on the healthy surface of the interface Ã:

Fi = σ̃iÃ = σiA0, (1)

where the healthy surface Ã can be related to the whole surface A0 and the
damage surface Ad as:

Ã = A0 − Ad = A0(1− d) (2)

Thus, from Equations (1) and (2), the apparent cohesive stress σi can be
expressed as a function of the effective one σ̃i as:

σi = (1− d)σ̃i (3)

Anyway, the displacement δi is the same for the apparent and effective be-
haviors of the interface, such as:

δi =
σi
Ki

=
σ̃i
K0
i

, (4)

Thus, introducing Eq.(4) into Eq.(3) leads to the expression of the apparent
stiffness 1:

Ki = (1− d)K0
i , (5)

hence, the apparent cohesive stress yields:

σi = K0
i (1− d)δi (6)

1In case of zero thickness interface, the initial stiffness K0
i must tend towards infinity

if the adhesion at the interface is perfect (K0
i is then qualified as a penalty stiffness) while

K0
i will take a finite value in the case of a lack of cohesion of the interface which can be

described from an initial damage surface Ad or, in a equivalent way, from an initial value
of the damage variable d according to Eq.(5).
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as shown in Figure 1.
According to Eq.(6), the softening behavior of the interface is related to
the increase of the damage variable d while the apparent stress σi follow an
exponential function:

σi(δi) = σei e
φi(δ

e
i−δi), (7)

where δei = σei /K
0
i [m] corresponds to the displacement at the end of the elas-

tic regime and such as the cohesive energy Gf i [J/m2] verify Gfi =
∫∞
0
σi dδi

which leads to:

φi =
2K0

i σ
e
i

2K0
iGfi − (σei )

2
(8)

According to Equations (6) and (7), the damage variable d can be expressed
as:

d = 1− σei
K0
i δi

e
φi

(
σei
K0
i

−δi
)

(9)

Note that, according to the second law of the thermodynamics of irreversible
processes, the evolution of the damage parameter is always positive (ḋ ≥ 0,
d = max(dhistory)).

To resume, for each fracture mode (i = I: Mode I and i = II: Mode
II), the cohesive law of the interface is described with only three cohesive
parameters: the initial stiffness K0

i , the tensile or shear strength σei and the
cohesive energy Gfi . Thus, the pure Mode i cohesive law can be summarized
as:

σi(δi) =


K0
i δi if δi ≤ δei

σei e
φi(δ

e
i−δi) if δei ≤ δi < δui

0 if δi ≥ δui

(10)

where φi has been previously defined from Eq.(8) and δui corresponds to
an upper cut-off of the displacement which can be introduced in order to
indicate artificially the total failure of the interface (i.e., σi = 0 and d = 1
for δi ≥ δuI ) because the exponential function defined in Eq.(7) tends to
σi = 0 asymptotically as a function of displacement δi. For instance, the
upper cut-off of the displacement δui can be estimated from a percentage η
of the strength σei that leads, in the case of an exponential softening, to:

δui = δei −
1

φi
ln(η) (11)
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3. Combined traction and shear loading: mixed-mode I+II CZM

3.1. Mixed-mode I + II

First CZMs (Hilleborg et al., 1976; Xu and Needleman, 1993; Camacho
and Ortiz, 1996) have been developed for single mode fracture processes (i.e.
for pure Mode I or pure Mode II fractures). Nevertheless, an interface is
generally loaded in Mode I and in Mode II simultaneously (Zucchini and
Lourenço, 2002) leading to mixed-mode I + II fracture process. Therefore,
various mixed-mode I + II cohesive zone models have been proposed in or-
der to describe such a complex fracture process (van den Bosch et al., 2006;
Högberg, 2006; Snozzi and Molinari, 2013; Bisoffi-Sauve et al., 2019) which
are mostly inspired by the pioneering model due to Camanho et al. (2003).
The mixed-mode I + II CZM proposed by Camanho et al. (2003) is formu-
lated from the pure modes (Mode I and Mode II) cohesive laws (as detailed
in the preceding Section) and leads to the expression of a mixed-mode cohe-
sive law which has a form similar to those used for pure modes (Fig. 1), i.e.,
characterized by an initial stiffness K0

I+II , a strength σeI+II (or a limit elastic
displacement δeI+II) and a cohesive energy Gf I+II as shown in Figure 2.
The mix of modes is obtained on the basis of a coupling parameter β cor-
responding to the ratio of the shear plane component of the displacement
δIII+II over the normal one δII+II :

β =
δIII+II
δII+II

= tan(α), (12)

and from two criteria, the first one relating to the damage initiation and the
second one corresponding to the interface failure.

Damage initiation criterion. It is assumed that the mixed-mode limit
elastic stress σeI+II corresponding to the damage onset and especially its
Mode I and Mode II components, respectively noted as σeII+II and σeIII+II ,
must satisfy the quadratic stress criterion:(

σeII+II
σeI

)2

+

(
σeIII+II
σeII

)2

= 1, (13)

where, σeI corresponds to the tensile strength in pure Mode I and σeII is the
shear strength in pure Mode II previously defined in Section 2.
On this basis, the initial stiffness of the Mode I and Mode II components
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Figure 2: Mixed-mode cohesive law

of the mixed-mode being equal to the initial stiffness of the pure modes, i.e.
K0
II+II

= K0
I and K0

III+II
= K0

II , the quadratic stress criterion [Eq.(13)] can
be rewritten in terms of displacements as:(

δeII+II
δeI

)2

+

(
δeIII+II
δeII

)2

= 1 (14)

Thus, using the relationships between the displacement δI+II , its Mode I
and Mode II components (δeII+II and δeIII+II respectively) and the coupling
parameter β [Eq.(12)], the mixed-mode limit elastic displacement δeI+II can
be obtained from Equation (14) such as:

δeI+II = δeI δ
e
II

√
1 + β2

(δeII)
2 + (δeIβ)2

(15)

where δeI and δeII are the limit elastic displacements of the pure modes I and
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II respectively [Eq.(10)]. Note that, according to Equation (15), a Mode I
loading corresponding to a value of the coupling parameter β = 0 leads to
δeI+II = δeI while a Mode II loading, inducing β →∞, leads to δeI+II = δeII .
Finally, the expression of the mixed-mode I + II limit elastic stress σeI+II
yields:

σeI+II = δeIδ
e
II

√
K02
I + β2K02

II

δe
2

II + β2δe
2

I

(16)

Note that pure Mode I loading and pure Mode II loading correspond also
to particular cases of Equation (16) insofar as σeI+II = σeI for β = 0 and
σeI+II = σeII for β →∞ (Figure 3).

Failure criterion. The failure of an interface under mixed-mode loading is
governed by the mixed-mode cohesive energy Gf I+II . This cohesive energy
can be expressed from the sum of its Mode I and Mode II components,
Gf II+II

and Gf III+II
respectively, such as:

Gf I+II = Gf II+II
+Gf III+II

(17)

On this basis, a second criterion, named as failure criterion is necessary to
estimate the value of mixed-mode cohesive energy Gf I+II (van den Bosch
et al., 2006; Högberg, 2006; Snozzi and Molinari, 2013; Bisoffi-Sauve et al.,
2019). This failure criterion is usually expressed through a power law of the
Mode I and Mode II components of the cohesive energy, such as:(

Gf II+II

Gf I

)n
+

(
Gf III+II

Gf II

)m
= 1 (18)

where GfI and GfII are the cohesive energies relative to the pure modes I
and II respectively (Section 2).
As a first approximation, a linear relationship is usually chosen from Eq.(18),
i.e. n = m = 1 (Bisoffi-Sauve et al., 2019). Such a linear relationship
(n = m = 1) will be also assumed in this study.
Let us express the Mode I and Mode II components of the mixed-mode
cohesive energy as:

Gf II+II
= ΨII+II Gf I (19)

Gf III+II
= ΨIII+II Gf II (20)
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where ΨII+II [1] and ΨIII+II [1] correspond respectively to the fractions of the
pure Mode I and Mode II cohesive energies in the correspondent components
of the mixed-mode cohesive energy. Therefore, according to Equations (19)
and (20), the failure criterion defined in Eq.(18) yields :

ΨII+II + ΨIII+II = 1 (21)

Moreover, a given cohesive energy Gf i can be expressed as the sum of the
energy associated with the elastic part Gf

e
i = σei δ

e
i /2 and the one related to

the softening part Gf
soft
i , i.e., Gf i = Gf

e
i + Gf

soft
i . On this basis, the ratio

of the elastic energy over the whole cohesive energy energy of a given mode
must be maintained in the corresponding component of the mixed-mode such
as:

Gf
e
I

Gf I

=
Gf

e
II+II

Gf II+II

= φI
e = cte (22)

Gf
e
II

Gf II

=
Gf

e
III+II

Gf III+II

= φII
e = cte (23)

Note that such ratio could be also expressed from the softening part of the
cohesive behaviors. Finally, the parameters describing the elastic part of the
cohesive behavior in pure modes (Section 2) and those of the mixed-mode
(obtained from the damage initiation criterion) being known, the fraction of
the Mode I cohesive energy in the mixed-mode cohesive energy ΨII+II can
be expressed, according to Equations (19) and (22), as:

ΨII+II =
Gf II+II

Gf I

=
Gf

e
II+II

Gf
e
I

=
δeII

2

δeII
2 + β2δeI

2
(24)

while, according to Equations (20) and (23), the fraction of the Mode II
cohesive energy in the mixed-mode cohesive energy ΨIII+II yields:

ΨIII+II =
Gf III+II

Gf II

=
Gf

e
III+II

Gf
e
II

=
β2δeI

2

δeII
2 + β2δeI

2
(25)

Note that, according to Equations (24) and (25), a Mode I loading corre-
sponding to a value of the coupling parameter β = 0 leads to fractions of the
Mode I and Mode II cohesive energies such as ΨII+II = 1 and ΨIII+II = 0 and
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hence, according to Equations (17) and (19), the mixed-mode cohesive en-
ergy is then equal to the Mode I cohesive energy Gf I+II = Gf I as expected
intuitively. Conversely, a Mode II loading inducing a coupling parameter
β →∞ leads to fractions of the Mode I and Mode II cohesive energies such
as ΨII+II = 0 and ΨIII+II = 1 and so, according to Equations (17) and (20),
to mixed-mode cohesive energy Gf I+II = Gf II , i.e., the Mode II cohesive
energy.

δIII+II
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0.0
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1.0
1.5

2.0

δ
I
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σ
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+
I
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P
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GfII+II

GfIII +II

(a) (b)

Figure 3: Mixed-mode CZM as a function of the α angle: (a) Cohesive behavior vs α and
(b) Mixed-mode cohesive energy and its Mode I and Mode II components vs α obtained
for Gf I = 200J/m2 and Gf II = 400J/m2.

Figure 3(a) exhibits the response of the mixed-mode CZM when the in-
terface is subjected to a monotonically rising displacement δI+II up to the
ultimate displacement δuI+II according to various α angles (Fig. 2) ranged
between 0 and 90 degrees. It can be observed from Figure 3(b) that mixed-
mode cohesive energy Gf I+II (Equation 17) increases from the Mode I cohe-
sive energy Gf I+II = Gf II+II

= Gf I when the interface is loaded according to

α = 0 deg (for this example, the value Gf I has been fixed to 200J/m2) to the
Mode II cohesive energy when α = 90 deg, i.e., Gf I+II = Gf III+II

= Gf II

with here Gf II = 400J/m2.

3.2. Influence of the mixed-mode coupling on the dissipated energy

As previously mentioned, the quasi-brittle damage being caused by ex-
tension, the dissipated energy is expected to be different if the interface is
firstly loaded in pure traction then in pure shear and conversely. A way of
studying the behavior of a coupled cohesive zone law is to analyze the dissi-
pated energy under combined normal and shear loading as proposed by van
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den Bosch et al. (2006).
In a first case, the interface is loaded in the direction I (i.e., α = 0 deg) up
to a displacement δ∗II+II whose value is a percentage of the ultimate one δuI
then, δ∗II+II is kept constant and a displacement is applied in the direction
II up to the corresponding ultimate one δIII+II = δuII (Fig. 4(a)). This first
case of non-proportional loading is applied for various ratio δ∗II+II/δ

u
I ranged

between 0 and 1.
In the second case (Fig. 4(b)), the interface is firstly loaded in the direction
II (i.e., α = 90 deg) up to a displacement δ∗III+II corresponding to a percent-
age of the ultimate one δuII then, δ∗III+II is kept constant and a displacement is
applied in the direction I up to the ultimate one δII+II = δuI . As for the first
case, the second loading case is applied for various ratio 0 ≤ δ∗III+II/δ

u
II ≤ 1.

The mixed-mode energy Gf I+II dissipated during both cases as well as the

I

II

δI+II
δ∗II+II ≤ δuI

δIII+II = δuII I

II

δI+IIδII+II = δuI

δ∗III+II ≤ δuII

(a) (b)

Figure 4: Loading sequence to study the influence of the coupling parameters on the
work-of-separation: as proposed by van den Bosch et al. (2006)

Mode I and Mode II components of this energy, Gf II+II
and Gf III+II

re-

spectively, are plotted in Figure 5 as a function of the ratio δ∗II+II/δ
u
I relative

to the first case (Fig. 5(a)) and δ∗III+II/δ
u
II corresponding to the second case

(Fig. 5(b)).
In the first case (Fig. 5(a)), as expected, the dissipated energy Gf I+II =
Gf III+II

= Gf II when the ratio δ∗II+II/δ
u
I = 0 which corresponds to a pure

shear loading of the interface while, Gf I+II = Gf II+II
= Gf I when δ∗II+II/δ

u
I =

1 corresponding to pure traction loading. Moreover, the dissipated energy
decreases monotonically as a function of the ratio δ∗II+II/δ

u
I from Gf II to Gf I

exhibiting a consistent physical behavior.
In the second case (Fig. 5(b)), the dissipated energy Gf I+II increases mono-
tonically as a function of the ratio δ∗III+II/δ

u
II from Gf I+II = Gf II+II

= Gf I

when δ∗III+II/δ
u
II = 0 which corresponds to pure traction loading of the inter-
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face, to Gf I+II = Gf III+II
= Gf II when δ∗III+II/δ

u
II = 1 corresponding a pure

shear loading of the interface.
As a conclusion, the monotonous evolutions of the mixed-mode dissipated
energy observed from both loading cases in Figures 5(a) and 5(b) seems to
be consistent with the expected behavior of a quasi-brittle interface.
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Figure 5: Energy dissipated from non proportionnal loading (with GfI = 200J/m2 and
GfII = 400J/m2)

In the following part, cases of combined compression and shear loadings
applied to the interface are studied. In these cases, friction effect strongly
influences the mechanical response of the interface and hence, a coupling
between frictional and Mode II cohesive behaviors based on an estimation
of the effective frictional area is proposed.

4. Combined compression and shear loading: Frictional Mode II
CZM

4.1. Monotonically loading

When the interface is subjected to shear and compression loading, the
contribution of the friction must be taken into account to describe accu-
rately the interface behavior. As mentioned in Introduction, in most models,
the full friction stress is usually considered from the onset of cohesive be-
havior and leads to consider that the friction effect takes place while the
cohesive capacity of the interface is still intact. To overcome this physical
inconsistency, several authors (Chaboche et al., 1997; Snozzi and Molinari,
2013; Spring and Paulino, 2015; D’Altri et al, 2018) introduce, in their CZM,
a phenomenological progressive rising of the friction stress as a function of
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the shear plane displacement which allow a better description of experimen-
tal stress-displacement responses. Nevertheless, assuming a friction stress
depending of shear plane displacement is not physically based because fric-
tion stress is expected to depend only on normal stress, on friction coefficient
and on the surface area on which acts the friction effect. Thus, as proposed
by Raous and Monerie (2002), Acary and Monerie (2006) and Alfano and
Sacco (2006), a coupling based on the damage part of the interface on which
the frictional phenomenon can physically act appears more relevant.
In the following, taking inspiration from these latter works, a frictional Mode
II cohesive zone model founded on a physically based coupling of cohesive
and frictional behaviors is proposed. The coupling is here introduced from
the damage variable, single internal variable of the model, which gives an
estimate of the effective damage area of the interface.

σII σµ

σI

σIIt

σI
σIIt

d

A
A0

Ad ∼
Aµ

∼
A

10
(a) (b)

Figure 6: Combined compression and shear loading, based on apparent stresses: (a) rhe-
ological model, and on effective stresses: (b) evolution of effective areas against interface
area A0

Let us consider the rheological model shown in Figure 6(a) which consists
in a cohesive spring and a friction pad in parallel in order to describe the
interface mechanical behavior. According to this rheological model, the shear
stress σIIt can be expressed as the sum of the cohesive stress σII and the
frictional stress σµ:

σIIt = σII + σµ (26)

Note that all stresses in Eq.(26) correspond to apparent stresses, i.e., stresses
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acting on the whole surface of the interface A0.
Moreover, according to Eq.(1), the apparent cohesive stress σII [Eq.(26)] can
be expressed from the effective cohesive stress σ̃II acting on the effective
cohesive area Ã = A0(1− d) and yields:

σII = σ̃II
Ã

A0

= σ̃II(1− d) = K0
II(1− d)δII (27)

An example of the cohesive stress σII vs δII behavior is plotted in Figure 7
(red curve).
In the same way, the apparent frictional stress σµ [Eq.(26)] can be expressed,
according to Eq.(1), from the effective cohesive stress σ̃µ acting on the effec-
tive frictional area Ãµ such as:

σµ = σ̃µ
Ãµ
A0

(28)

where the effective frictional stress σ̃µ is defined, according to the Coulomb’s
law, as:

0 ≤ |σ̃µ| ≤ σ̃µc = µ σI (29)

where µ is the friction coefficient and σ̃µc = µ σI corresponds to the shear
sliding resistance.
Regarding the effective frictional area Ãµ [Eq.(28)], it is assumed that this
area corresponds to a part or all of the damage area Ad = d A0 through the
function f(d) = dp with p ≥ 1, as shown in Fig. 6(b):

Ãµ = f(d)A0 = dpA0 (30)

Indeed, at the onset of interface damage (i.e., d ' 0), combination to both
compression and shear loading leads to extension (strain) approximately ori-
ented at 45◦ with respect to the interface plane which, in a case of a quasi-
brittle material, generates microcracks oriented perpendicularly to the exten-
sion direction. Due to this preferential orientation of microcracks, the shear
loading tends to open the microcraks and consequently to cancel the friction
effects on the damage area (for d ' 0, Ãµ ' 0 and so σµ ' 0). Then, with
the increase of interface damage (i.e., 0 < d < 1), the number of microcracks
increases (0 < Ad < A0) and the microcracks progressively coalesce towards
a main crack oriented in parallel to the interface plane on which compression
and shear loadings act simultaneously. This progressive change in the orien-
tation of cracking (from 45◦ to 0◦ with respect to the interface plane) coupled
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Figure 7: Total shear stress vs shear plane displacement response obtained from FCZM
and its frictional and cohesive components.

to the increase of damage area lead to an increase of the effective frictional
area Ãµ (but Ãµ ≤ Ad) and hence of the frictional stress σµ. Finally, when
the failure of interface occurs (i.e., d = 1), the effective frictional area Ãµ
equals the damage area Ad and both correspond to the whole interface area
A0 which leads to an apparent frictional stress such as: σµ = µ σI . Note
that the function f(d) = dp which corresponds to the ratio of the effective
frictional area Ãµ over the damage area Ad must correspond to a concave
form as shown in Fig. 6(b) since the effective frictional area must not exceed
the damage one (Ãµ ≤ Ad). Nevertheless, another form of concave function
could be used to describe f(d) = Ãµ/Ad instead of f(d) = dp with p ≥ 1.

Thus, according to Eqs.(29) and (30), the apparent frictional stress σµ
[Eq.(28)] yields:

0 ≤ |σµ| ≤ σµc(d) = f(d) µ σI (31)

where σµc(d) corresponds to the apparent friction sliding threshold which
increases as a function of the damage variable d as shown in Figure 7 (blue
curve) and leads to the classical value of the sliding stress σµc = µ σI when
d = 1, i.e. when the interface is totally failed. Note that, according to
Eq.(31), the apparent friction sliding stress σµc(d) can be also expressed as
σµc(d) = µ(d) σI where µ(d) = µ f(d) = µ dp can be seen as the apparent
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friction coefficient evolving as a function of the damage level.
Finally, according to Eqs.(27) and (28), the apparent shear stress σIIt

[Eq.(26)] yields:
σIIt = K0

II(1− d)δII + σµ (32)

where the frictional stress |σµ| ≤ σµc(d) and where σµc(d) = dp µ σI corre-
sponds to the apparent sliding resistance. According to Eq.(32), an example
of the shear stress σIIt , resulting from the sum of the cohesive stress σII and
of the shear one σµ, is plotted in Figure 7 (black curve). The shape of the
obtained σIIt vs δII response is in agreement that those usually observed
experimentally for interfacial failure and describes a smooth transition from
a cohesive zone to a pure frictional contact zone.

Moreover, regarding the general shear behavior of the interface given
by Eq.(32), when the apparent frictional stress |σµ| < σµc(d), the interface
displacement is blocked (due to blocking on the effective frictional area Ãµ)
and hence the cohesive part is no longer loaded (but the cohesive stress
σII remains its value before blocking). Conversely, when |σµ| = σµc(d), the
interface displacement is possible due to sliding on Ãµ and both cohesive
and frictional parts are loaded. This consequences of the rheological model
(cohesive spring and a friction pad in parallel as shown Fig. 6(a)) are detailed
in the following section from cyclically loading of the interface.

4.2. Response obtained under cyclic loading

In this section, the simulation of a cyclic loading test (obtained from an
analytical computation) is carried out to show, from a qualitative point of
view, the main features of the proposed constitutive model. The cyclic shear
response of the FCZM model is shown in Figure 8. The interface is sub-
jected to a constant compressive normal stress and to tangential cyclic stress
through an imposed tangential displacement. Figure 8 shows the evolution
of total shear stress σIIt = σII + σµ as a function of shear displacement δII
while the evolution of damage variable d is plotted on the secondary axis.
The cyclic path is characterized by two loading-unloading cycles (cycle 1:
ABCD and cycle 2: EFG). In order to ensure an easier description of the
loading-unloading behavior, the damage level is kept constant during both
cycles.

At the onset of the loading, as long as the cohesive shear stress is lower
than the shear strength (σII < σeII), the model remains in the elastic domain
(phase OO’ ) and damage variable d = 0. When the shear strength σeII is
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Figure 8: FCZM response expected in the case of two load-unload cycles performed during
an unilateral shear test under compression. Inserted graph: example of expected response
from a bilateral shear test.

reached (point O’ ), the cohesive stress σII decreases following the softening
exponential law [Eq. (7)] and frictional stress σµ begins to increase according
to the rising of damage variable d, i.e., σµ = σµc(d). Note that during the
phase O’A the imposed shear displacement is positive ˙δII > 0 which implies
that cohesive stress as well as the frictional one are positive.

Cycle ABCD-unilateral shear test : From point A, the displacement
δII is no longer imposed and the interface is unloaded under the sole effect of
the cohesive part (this situation corresponds to the realization of an unilateral
shear test). This induces a change in the sign of frictional stress (σµ < 0)
while the cohesive one remains positive. The fact that σµ = −σµc(d) leads
to a vertical jump of the total shear stress up to point B such as |∆σIIt | =
2σµc(d) while the value of the cohesive stress remains constant. From point
B, a decrease of the total shear stress is observed up to point C (with ˙δII < 0)
which corresponds to a sliding phase of the interface since the value of the
cohesive stress is greater than the one of the frictional one σII > |σµ| where
σµ = −σµc(d) with d = cte. The slope of the BC part corresponds to the
stiffness of the cohesive spring KII = K0

II(1 − d). At point C, the total
shear stress value is equal to zero which corresponds to the balance between
cohesive and frictional residual stresses such as σII = −σµ = −σµc(d).
From point C, the displacement δII is again imposed with ˙δII > 0 and then
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the value of frictional stress becomes again positive. Thus, the change in
loading direction again induces a jump of the total shear stress up to the
point D whose magnitude corresponds to |∆σIIt| = 2σµc(d) (since the value
of σµ changes from −σµc(d) to σµc(d)) then an interface sliding occurs from
the point D to the point A since the value of the cohesive stress becomes
greater to the one of the frictional stress is σII > σµ with σµ = σµc(d).
The slope of the part DA corresponds to the stiffness of the cohesive part
KII = K0

II(1− d).
Thus, the cycle ABCD exhibits an hysteresis effect induced by the interface
sliding along the part BC and DA and associated dissipated energy from
friction effect.

Then, from point A a monotonically loading (i.e., ˙δII > 0 where δII is
imposed) is carried out from point A to point E. The branch AE highlights
the rising of damage variable which leads to a softening of the cohesive law
and an increase of the frictional stress.

Cycle EFG-unilateral shear test : From point E, the displacement
δII is no longer imposed again and, as from point A, the interface is unloaded
according to an unilateral shear test in which the displacement can be also
induced by the cohesive part of the model. This unloading leads to a change
in the sign of frictional stress (σµ < 0) and induces a theoretical vertical
jump of the total shear stress such as |∆σIIt | = 2σµc(d) while the value of
the cohesive stress remains constant and positive.

However, the unloading being carried out under the sole effect of the co-
hesive spring (unilateral shear test), the fact that the cohesive stress is lesser
than the frictional one leads only to a jump of the total shear stress up to
σIIt = 0 (point F ) which corresponds to residual stresses such as σµ = −σII
with |σµ| < σµc(d) meaning the blockage of the interface.
If the interface is then re-loaded from point F ( ˙δII > 0 where δII is imposed),
the value of frictional stress becomes again positive and leads to a jump of
the total shear stress up to point G induced by the increase of the frictional
stress magnitude up to the value σµc(d) (while the cohesive stress value re-
mains constant) from which the interface can slide again but with an increase
of the damage variable d.
Thus, from an unilateral shear test, when the cohesive stress becomes lesser
than the frictional one, an unloading-loading cycle takes place without hys-
teresis effect because the sole effect of the cohesive part is not sufficient to
induce a sliding of the interface. Conversely, when the cohesive stress is
greater than the frictional one, an unloading-loading cycle will exhibit an
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hysteresis effect (cycle ABCD).
Cycle EF’G’H’-bilateral shear test (graph inserted in Fig. 8):

Now consider that the unloading is carried out from point E through a bilat-
eral shear test rather than an unilateral one, i.e., the shear displacement is
imposed for ˙δII < 0, the total shear stress exhibits effectively the theoretical
vertical jump of magnitude |∆σIIt| = 2σµc(d) up to the point F ′. From this
point, the interface is then able to slide since the frictional stress is equal
σµ = −σµc(d) and the interface exhibits a stiffness corresponding to the one
of the cohesive part KII = K0

II(1 − d) (part F ′G′). From point G′, the in-
terface is re-loaded ( ˙δII > 0) and, as previously explained, the reverse of the
loading leads to a change in the sign of frictional stress (σµ > 0) inducing a
jump of the total shear stress such as |∆σIIt| = 2σµc(d) up to point H ′ (while
the cohesive stress remains constant and positive) from which the interface is
again able to slide (since σµ = σµc(d)) up to point G, exhibiting the stiffness
KII = K0

II(1− d). Note that the cycle EF ′G′H ′ exhibits an hysteresis effect
linked to the sliding of the interface along the parts F ′G′ and H ′G and the
associated dissipated energy.

5. Estimation of cohesive and frictional parameters in the context
of masonry : block-mortar interface

Frictional Cohesive Zone Model described in the previous sections is ap-
plied in the following in the context of masonry where the knowledge of the
mechanical behavior of interface between stone block and joint mortar is par-
ticularly relevant with regard to the accurate description of the mechanical
behavior of masonry.
FCZM parameters introduced in Sections 3 and 4 are identified on the in-
terface between limestone blocks and hydraulic lime mortar (NHL 3.5)2. In
the following, the first part presents the main mechanical properties of the
masonry constituents: limestone blocks and mortar. Then, a direct ten-
sile test carried out on a duo of limestone blocks assembled by one mortar
joint and leading to an estimation of the FCZM Mode I cohesive parameters
(K0

I [N/m3], σeI [N/m2] and GfI [J/m2]) is presented. Finally, a shear test
performed on a triplet of limestone blocks assembled by two mortar joints
is described. This test allows estimating the Mode II cohesive parameters

2Limestone blocks and hydraulic lime mortar (NHL 3.5) are traditionally used in west-
ern region of France for small residential buildings, buildings, churches and bridges
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Designation Quantity Symbol Value (CV) Unit
Limestone Youngs modulus Eb 11.1 (15%) GPa

blocks Compressive strength σcb 9.5 (26%) MPa
Hydraulic Youngs modulus Em 3.95 GPa

lime Compressive strength σcm 1.9 (14%) MPa
mortar Flexural strength σfm 0.6 (6%) MPa

Table 1: Mechanical characteristics of limestone blocks and hydraulic lime mortar. The
Young’s modulus of lime mortar Em has been estimated by Bisoffi-Sauve (2016) for the
same mixture of lime mortar.

(K0
II [N/m3], σeII [N/m2] and GfII [J/m2]) and frictional parameters (µ [1]

and p [1]).

5.1. Characterization of constituents materials

Limestone blocks. The limestone used in this study is typical of the south-
west of France and stem from Pierres de Frontenac stone quarry. Their
compressive properties are determined, according to EN 1926 (2006), from
20 specimens. The blocks tested of nominal dimensions of 100×100×100 mm3

are positioned between steel plates and 4 extensometers attached directly to
the specimen allow to measure strains. Average compressive strength and
Youngs modulus obtained from the compression tests are reported in Table
1.

Mortar joints. The lime mortar used in this study is composed of sand,
hydraulic lime (NHL 3.5) and water. Proportions by volume of the lime,
sand and water in the mixture are estimated by a master stonemason on the
basis to 1 part of lime and 3 parts of sand. After that, water is added in
the mixture until reaching desired traditional workability. Finally, measured
proportions in grams are: 1 (NHL3.5): 6.5 (sand 0-2 [mm]): 1.5 (water).
Flexural strength and compressive strength were obtained according to EN
1015-11 (2007) on 8 specimens (4 × 4 × 16 cm3). Average flexural strength
and compressive strength obtained from lime mortar are reported in Tab. 1.

5.2. Estimation of Mode I cohesive parameters: direct tensile test

5.2.1. Experimental set-up

The cohesive parameters characterizing the Mode I fracture behavior of
a block-mortar interface are usually estimated from a direct tensile test (van
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Mier, 1996; van der Pluijm, 1999; Almeida et al., 2002; Bisoffi-Sauve, 2016;
Sandoval and Arnau, 2017; Bisoffi-Sauve et al., 2019). Despite some dif-
ferences between the tensile tests proposed in the literature, they can be
categorized as a function of their boundaries conditions: rotating supports
or fixed supports. Experimental set-up using fixed supports leads to a higher
value of the cohesive energy and the tensile strength compared to the one us-
ing rotating supports insofar as fixed supports limit flexure effects and induce
a more uniform damage of the interface (van Mier, 1996). On this basis, an
experimental set-up using fixed supports is chosen in this study to character-
ize the block-mortar interface in Mode I (Bisoffi-Sauve, 2016; Bisoffi-Sauve
et al., 2019).
According to experimental set-up proposed Bisoffi-Sauve et al. (2019), duo of
limestone blocks (10×10×7 cm3) assembled by one mortar joint (10×10×0.7
cm3) are directly glued (epoxy resin) inside steel boxes fixed on universal test-
ing machine of 100 kN maximum load capacity thus restricting rotations of
blocks during tensile test as shown in Figure 9(b). Experiments are controlled
by the opening rate of the mortar joint obtained from the average of displace-
ments measured by four extensometers located on each side of the sample (in
the vicinity of corners as proposed by van der Pluijm, 1999) (Figure 9(a)),
imposing a opening displacement at constant velocity (0.3 µm/min). In order
to limit long term mechanical effects, the opening rate is gradually increased
in the post-peak regime to reach 100 µm/min at the end of the test.

(a) (b)

Figure 9: Tensile test setup: (a) location of extensometers measuring the opening dis-
placement of the mortar joint and (b) picture of test setup
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5.2.2. Estimation of Mode I cohesive parameters

As usually observed from direct tensile test, the failure of mortar joint is
mainly located at the block-mortar interface. As a consequence, if the tensile
stress obtained from the ratio of the tensile load over the specimen nominal
cross section is characteristic of the tensile stress applied on the interface,
the average displacement measured from the extensometers does not reflect
the single opening of the interface. Indeed, as the extensometers are fixed on
stone blocks in the immediate vicinity of the joint as shown from Fig. 9(a),
the measured displacement value also includes the extension of the mortar
joint and, to a lesser extent, the extension of limestone. Thus, knowing the
Young’s moduli of lime mortar (3.95 GPa, Bisoffi-Sauve, 2016) and limestone
(11.1 GPa, Tab. 1), the interface opening is estimated from the average dis-
placement measured from the extensometers in substracting the limestone
and joint extensions and this for all values of the tensile stress.
Figure 10(a) exhibits experimental tensile stress vs interface opening re-
sponses obtained from the tensile test. As previously shown in several studies
(van der Pluijm, 1999; Bisoffi-Sauve, 2016; Sandoval and Arnau, 2017; Bisoffi-
Sauve et al., 2019), the initial elastic response is followed after the peak stress
by a strain negative hardening phase characteristic of the quasi-brittle frac-
ture behavior of the mortar joint and especially the fracture energy required
to completely separated the two limestone blocks.
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Figure 10: Direct tensile test results: (a) experimental σI − δI responses and (b) Mode I
cohesive behavior obtained from Eq.(10) compared to the average experimental response
more or less one standard deviation

The Mode I cohesive parameters are directly estimated from the tensile
stress vs opening displacement responses plotted in Fig.10(a). The initial
stiffness K0

I is estimated from a linear regression of the elastic regime before
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Designation Quantity Symbol Value Unit
Initial stiffness K0

I 1.21× 1011 Pa/m
Mode I Maximum stress σeI 0.05 MPa

Cohesive energy GfI 3 J/m2

Initial stiffness K0
II 2.82× 1011 Pa/m

Mode II Maximum stress σeII 0.27 MPa
Cohesive energy GfII 206 J/m2

Frictional Frictional coefficient µ 0.81 1
parameters Exponent of f(d) function p 11.0 1

Table 2: FCZM parameters obtained from experimental campaign

the peak stress, the maximum tensile stress σeI is directly obtained from the
experimental peak stress while the cohesive energy GfI is estimated from the
area under the σ − δ response. The average of each cohesive parameters is
given in Table 2. On this basis and according to Eq.(10), the Mode I cohesive
response corresponding to these average parameters is plotted in Figure 10(b)
and exhibits a fairly good agreement with the average experimental tensile
stress-opening displacement response more or less one standard deviation.

5.3. Mode II characterization: triplet shear test

In literature, there is a large variety of experimental setups allowing com-
bined compression and shear loadings. Among the different proposed setups,
one can note (i) the direct shear test used by van der Pluijm (1999) (Fig.
11(a)), (ii) the couplet test (Fig. 11(b)) and (iii) the triplet test requested
by EN 1052-3 (2007) shown in Fig. 11(c). The first test (van der Pluijm,
1999) requires very stiff supports to prevent flexure effects while the second
one (Lourenço and Ramos, 2004; Abdou et al., 2006) is not symmetrical and
can lead to a non homogeneous loading on the mortar joint if the boundary
conditions are not perfectly controlled. On this basis, the triplet test ap-
pears as the most appropriate insofar as it is symmetric and does not require
excessively stiff supports. Furthermore, the simultaneous test of two mortar
joints, which may exhibit scattered mechanical properties, leads to the me-
chanical characterization of a single joint whose response corresponds to the
average responses of the two joints (Zhang et al., 2008).
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(a) (b) (c)

Figure 11: Different types of combined compression and shear test setups: (a) van der
Pluijm (1999), (b) couplet test and (c) triplet test (Figure extracted from Lourenço and
Ramos, 2004)

5.3.1. Experimental setup

The triplet test is chosen in this study to characterize the frictional and
Mode II cohesive properties; this test can exhibits more or less pronounced
parasitic loadings. Indeed, a bending loading may appear on the sample
especially if the blocks dimension is not sufficient in the direction of the
transverse loading (shear loading) as well as a parasitic torsion loading can
act on the sample due to the flatness defects of the reference face (supported
face) of sample. Improvements of the triplet test (EN 1052-3, 2007) have been
recently proposed by Bisoffi-Sauve et al. (2019). The first one, inspired by the
EN 13733 (2002) test, is to fix the two end blocks by means of clamping rods
in order to prevent bending loading (Fig. 12(b)). The second improvement
consists in the modification of one of the supports by the introduction of a
degree of freedom in rotation with respect to the axis perpendicular to the
joints in order to adapt to flatness defects of the sample supported face.
According to experimental set-up proposed by Bisoffi-Sauve et al. (2019),
triplet of limestone blocks (10×10×10 cm3) assembled by two mortar joints
(10× 10× 0.7 cm3) are initially submitted to a compression loading leading
to a normal stress on the mortar joint and then fixed on universal testing
machine of 100 kN maximum load capacity at the end blocks. Three normal
stress levels are applied on the mortar joint: 0.4 MPa, 0.6 MPa and 0.8 MPa.
Specimens are tested by imposing a vertical displacement to the central block
leading to shearing of the mortar joints. Experiments are controlled by the
shear plane displacement rate of the mortar joints obtained from the average
of displacements measured by four extensometers located on both sides of
the sample in the immediate vicinity of the joints (Fig. 12(a)). At the onset
of the test, the velocity of the average shear plane displacement is imposed
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to 0.5 µm/min then is gradually increased in the post peak regime to reach
100 µm/min at the end of the test.

(a) (b)

Figure 12: Combined compression and shear test setup: (a) position of extensometers and
(b) picture of the triplet test

5.3.2. Estimation of frictional and Mode II cohesive parameters

As previously observed from tensile test, shear test exhibits also failures
mainly located of the block-mortar interface. Thus, the shear plane displace-
ment corresponding to the interface needs to be estimated from the average
displacement measured from the four extensometers by substracting the con-
tributions of the mortar joint and of the limestone knowing the shear moduli
of materials (G = E/[2(1 + ν)] with a Poisson’s ratio of 0.2). Moreover, the
shear stress is obtained by dividing the vertical load applied on the central
block by the nominal cross section of both joints while the normal stress is
estimated from the compression load divided by the nominal cross section of
one joint. As the effective section of the joints gradually decreases according
to the shear plane displacement, the values of the shear and normal stresses
are updated as a function the shear displacement value.
Six to seven specimens have been tested for each normal stress level (0.4, 0.6
and 0.8 MPa). From the experimental shear stresses vs shear displacement
responses of the block-mortar interface (i.e., σIIt vs δII) obtained for each
normal stress level, the average shear stress and the standard deviation of
this one ∆σIIt are computed as a function of the shear plane displacement
δII and are plotted in Figure 13(a): blue color for experimental (σIIt±∆σIIt)
vs δII response obtained for σN = 0.4 MPa, green color for σN = 0.6 MPa
and red color for σN = 0.8 MPa.

First of the mechanical parameters estimated from the experimental re-
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Figure 13: Experimental results obtained from improved triplet shear tests: (a) average
experimental shear stress vs shear displacement responses of the block-mortar interface
and (b) estimation of friction coefficient linear regression

sponses plotted in Fig. 13(a), the friction coefficient µ is obtained from a
linear regression of the residual stress (i.e., the constant stress observed for
large shear plane displacements and for which there is no longer cohesion
of the interface) as a function of the normal stress with a y-intercept forced
to zero as shown in Figure 13(b). Indeed, when there is no longer cohesion
of the block-mortar interface (i.e., d = 1 for the whole interface area), the
residual stress is expected to be equal to the effective frictional stress such
as σII = σµ = σ̃µc = µσI . As shown from Fig. 13(b), the friction coefficient
of the interface limestone block-lime mortar is estimated to µ = 0.81 and
reported in Table 2.
The second parameter which can be directly estimated from the experimental
responses plotted in Fig. 13(a) is the initial stiffness K0

II of the block-mortar
interface. The initial stiffness K0

II is estimated from linear regression of the
initial elastic part of the experimental responses and the value obtained is
reported in Table 2.
Contrarily to initial stiffness K0

II and friction coefficient µ, the shear strength
σeII , the total cohesive energy GfII and the exponent p of the power function
f(d) cannot be directly identified from the experimental responses. Latter
cohesive and frictional parameters are estimated by matching the experi-
mental responses according to the theoretical behavior expected from FCZM
described in Eq.(32). Nevertheless, in the mechanical response of the block-
mortar interface, the accurate description of the stress and displacement at
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peak load appear relevant while the accuracy of the description of the re-
sponse as a whole appears less important. Thus, a large quantity of σeII , GfII

and p combinations are tested and, for each combination, a first normalized
square deviation between experimental and numerical peak loads (stress and
displacement) are computed and a second one is computed from the whole
experimental and numerical responses. On this basis, in order to ensure a
description of the peak load with accuracy, a weight of 5/10 is given arbi-
trarly to the normalized square deviation linked to peak load value and 4/10
is given (arbitrarly) to the one linked to the displacement at peak load (i.e.
a weight of 9/10 for peak load) while a weight of 1/10 is considered for the
normalized square deviation corresponding to the whole response. The fit-

(a) (b) (c)

Figure 14: Square deviation evolution for: (a) σe
II = 0.27 MPa, (b) GfII = 206 J/m2 and

(c) p = 11

ting method proposed here leads to a single combination solution as shown
in Figure 14 even if Mode II cohesive energy GfII has a lesser impact on the
best response compared to shear strength σeII and exponent p of the power
function f(d). Cohesive parameters and frictional one are reported in Ta-
ble 2 while the shear stress vs shear plane displacement of the block-mortar
interface obtained from FCZM [Eq. 32] are plotted as black color curves in
Fig. 13(a).
Finally, let us emphasize that the experimental shear stress vs shear plane dis-
placement responses of the block-mortar interface are described from FCZM
[Eq. 32] with a reasonable accuracy and especially from a single set of co-
hesive parameters (i.e. independent of the normal stress applied on the
interface).
Moreover, note that the FCZM model presented here will be able to describe
the flattening of the shear stress vs shear displacement response usually ob-
served in the case of high normal stress level as shown from Fig.13(a) (or
from Fig.10b in D’Altri et al, 2019). Indeed, as it can be deduced from Fig.
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13(a), for large critical frictional stress σµc = µσI compared to the interfa-
cial shear strength σeII , it is expected that the peaked shape of the response
vanishes to the benefit of a response close to the one associated with the
frictional stress. In the opposite case, i.e. when the normal stress to the
interface is weak (Fig.10b in D’Altri et al, 2019), the FCZM proposed here
will be able to exhibit the peaked shape of the response because the cohesive
stress becomes predominant compared to the frictional one.3

Note that the flattening of the shear stress vs shear displacement response
with respect to the normal stress value (exhibited by the FCZM proposed
here) is not reachable by classical FCZM (i.e. based on the superimposition
of the full friction stress and the cohesive one) because, whatever the normal
stress is, the difference between the peak stress and the critical frictional
stress remains constant and equal to the cohesive shear strength.

The two characterization tests proposed here (direct tensile test
on duo and shear test on triplet) are designed to lead to almost
uniform loading along the block-mortar interface. In both tests,
the damage tends to spread uniformly over the entire surface of
the interface and hence allows to estimate the behavior of the as-
sembly block-joint-block and especially the one of the interface
block mortar at the mesoscopic scale. If from a theoretical point of
view, FCZM can be used at the microscopic scale (local response of
the material), the estimate of cohesive and frictional parameters of
FCZM obtained from both tests and given in Table 2 is performed
at the mesoscopic scale, with the aim of using it on this scale. Note
that, the notion of mesoscopic scale is important for the future use
of FCZM for masonry simulations and especially in a code based
on Discrete Element Method (DEM). Indeed, in the case of large
structure sizes simulations, only a few contact points are usually
considered on each face of the blocks and hence each contact point
is associated with a surface of the block-mortar interface of several
tens of square centimeters.

3The flattening phenomenon experimentally observed on the shear stress vs shear dis-
placement response with respect to the normal stress level is at the source of the underes-
timation of the cohesive behavior (and especially of the cohesive energy) when this one is
simply estimated by subtracting the full friction stress from the total shear stress vs shear
displacement response because the part supposed to correspond to the cohesive behavior
decreases with respect to normal stress level.
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In the following section, the ability of FCZM to describe an experimental
cyclic shear loading applied on the triplet specimen is shown and discussed.

6. Triplet shear test under unilateral cyclic loading: experimental
vs numerical responses

In order to use the FCZM in the case of complex loading, the model
was implemented in the LMGC90 code (Dubois et al., 2011) based on the
Discrete Element Method (DEM) and more specifically on the Non Smooth
Contact Dynamics (Moreau, 1988; Jean, 1999). As a first attempt, FCZM
is used to describe the experimental response obtained from unilateral cyclic
shear loading applied on triplet specimen.
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Figure 15: Experimental and simulated shear stress vs shear plane displacement response
of the joint and block-mortar interface obtained from an unilateral cyclic loading.

Using the same experimental setup as the one described in Section 5.3, a
cyclic loading test leads to the typical shear stress vs shear plane displace-
ment response plotted in Figure 15. Note that the shear plane displacement
corresponds here to the one of the mortar joint and of the block-mortar in-
terface, i.e. only the contribution of the limestone is subtracted from the
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Designation Quantity Symbol Value Unit
Initial stiffness K0

II 3.4× 1011 Pa/m
Mode II Maximum stress σeII 0.17 MPa

Cohesive energy GfII 83 J/m2

Frictional Frictional coefficient µ 0.71 1
parameters f(d) function exponent p 15 1

Normal stress σI 0.59 MPa

Table 3: FCZM parameters fitted to describe the typical response obtained from the
unilateral cyclic shear loading applied on triplet specimen (Fig. 15)

average displacement measured from the four extensometers. The experi-
mental response plotted in Fig.15 is obtained for a normal stress value of 0.6
MPa and exhibits jumps of the shear stress associated with each onset of
loading and unloading phases as theoretically expected from the discussion
proposed in Section 4.2.
A 2D simulation of the unilateral shear test is carried out using LMGC90

software considering rigid blocks and two mortar joints modelled by de-
formable elements meshed with 25 regular quadrangles in the height and
2 in the width as shown in Fig. 16. Young’s modulus of joint elements is
Ej = 3.95 GPa while Poisson’s ratio ν = 0.2. Moreover, the experimental
joint failure being mainly interfacial, only the interfaces block-joint associated
with the central block are considered, the other two interfaces are coupled
at rigid blocks to prevent the relative displacement between ends block and
joints. Note that the blocks being modelled from rigid bodies, their geometry
is not relevant in this simulation, only the geometry and dimensions of the
joints need to correspond to experimental ones. Two contact points per finite
element are considered leading to a total of 50 contact points along each in-
terface. The modelling of the unilateral cyclic shear test from LMGC90 code
is performed by first applying the normal force to the end blocks and then by
loading the central block through the contact of a rigid body (not shown in
Fig. 15) on which a vertical velocity-time function reproducing experimental
loading cycles is imposed. The shear loading procedure by contact allows
to lose contact with the central block and thus to achieve a complete shear
unloading of the specimen between two consecutive cycles.
Firstly, FCZM parameters are fitted, according to the procedure described
in Section 5.3.2, to describe the envelope of the typical experimental shear
stress vs shear plane displacement response. The simulated σIIt vs δII re-
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sponse is plotted in Figure 15 and its envelope appears to be consistent with
the experimental one. Note that FCZM parameters obtained to describe the
experimental response are given in Table 3 and differ from those given in
Table 2 because they correspond to a given experimental triplet specimen
while those given in Tab. 2 result from the fitting procedure applied on a set
of triplets (Section 5.3.2).
In a second time, the cyclic loading is simulated and the obtained response
is plotted in Fig. 15. As shown from Fig. 15, the onset of experimental
loading and unloading phases and associated residual displacements are de-
scribed by the model with a reasonable accuracy. Let us remember that a

Figure 16: Numerical model of the triplet shear test (LMGC90)

jump of the total shear stress σIIt associated with a blockage of the interface
displacement is expected at the onset of loading and unloading phases when
the cohesive stress σII becomes lesser than the critical frictional one σµc(d)
which is the case here for all the loading and unloading phases as shown from
the evolutions of cohesive stress and of the critical frictional one plotted in
red color and blue color respectively in Fig. 15. Moreover, as shown from the
inserted graph in Fig. 15 which corresponds to a zoom of the onset of load-
ing and unloading phases A-B, the experimental and numerical responses
are characterized by a slope which correspond to the stiffness of the joint
(the interface displacements being mainly blocked during loading-unloading
phases). The fact that the experimental stiffness of the joint differs from the
numerical one (inserted graph in Fig.15) could be explained by the fact that,
experimentally, the damage is not fully located on the interfaces but also
diffuses in the mortar joint inducing a decrease of the joint stiffness which is
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not taken into account in the simulation. Moreover, experimental cycles ex-
hibit more pronounced hysteresis loops than simulated ones which seems to
indicate the existence of dissipative mechanisms other than the only damage
and friction at the block-mortar interface. Finally, note that thin hysteresis
loops exhibited by the simulation are only due to the fact the contact points
along the interfaces do not show the same (σIIt , δII) state at the same time
in the sense that, if the the majority of the contact points are blocking, some
of contact points are still sliding.

7. Conclusions

In this paper, a general Frictional Cohesive Zone Model dedicated to
quasi-brittle failure is proposed. The model is based on pure Mode I and
Mode II cohesive behaviors whose softening part is described from an expo-
nential function and on Coulomb’s law for the frictional behavior.

Under combined traction and shear loadings, the coupling between Mode
I and Mode II cohesive behaviors is obtained from two criteria (damage
initiation criterion and failure criterion) proposed by Camanho et al. (2003).
The analytical study of the cohesive energy dissipated as function of loading
path emphasizes that proposed FCZM exhibits a load path dependency which
is in agreement with the one observed in quasi-brittle fracture.

Under combined compression and shear loadings, taking inspiration of
several preceding works which revised the assumption of simple superposi-
tion of full friction and Mode II cohesive behavior, a coupling between friction
effect and cohesive behavior is proposed through the damage variable (single
internal variable of the FCZM). Indeed, the damage variable gives an esti-
mation of the effective damage area of the interface and we assume here that
the effective friction phenomenon takes place on part of all of the damage
area as a function of the damage level. On this basis, FCZM exhibits a pro-
gressive rising friction stress as a function of the shear plane displacement
which leads to a smooth transition from a cohesive zone to a pure contact
zone.

Applied to the context of masonry, FCZM can be fully characterized from
two fracture tests carried out on small masonry assemblages. Mode I cohe-
sive parameters are estimated from a tensile fracture test carried out on duo
of limestone blocks assembled by one lime mortar joint while the Mode II
cohesive parameters and the frictional ones are estimated from a shear test
performed on a triplet of limestone blocks assembled by two lime mortar
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joints. If the estimation of Mode I cohesive parameters is directly obtained
from the tensile stress vs interface opening response, the estimation of Mode
II and frictional parameters needs, firstly, the estimate of the friction co-
efficient from the residual shear stresses with regard to the normal stress
imposed on the joint, then, an indirect estimation procedure needs to be
used in order to simultaneously determine the Mode II cohesive parameters
and the parameter driving the evolution of the friction stress as a function
of the damage variable value. The proposed methodology is discussed and
it is shown that this one leads to a single set of cohesive and frictional pa-
rameters to describe the shear stress vs shear plane displacement responses.
Moreover, FCZM describes the flattening of the shear stress vs shear dis-
placement response as a function of the normal stress value usually observed
experimentally. Such a phenomenon is not possible to describe from classical
FCZM (i.e. based on the superimposition of the full friction stress and the
cohesive one) because, whatever the normal stress is, the difference between
the peak stress and the critical frictional stress remains constant and equal
to the cohesive shear strength in these models.

Finally, the FCZM is implemented in LMGC90 discrete element code and
is used to simulate the experimental response of an unilateral cyclic shear test
carried on a triplet of lime stone assembled by two lime mortar joints. The
envelope of a typical shear stress vs shear plane displacement response is de-
scribed by the FCZM with a reasonable accuracy as well as the experimental
stress jumps and corresponding residual displacements associated with the
onset of the loading and unloading phases.

FCZM will be used shortly to simulate the mechanical behavior of ma-
sonry panels submitted to constant vertical load (three vertical load levels)
and to a progressive horizontal load up to failure of the panel. Indeed, this
kind of loading applied on masonry panels lead to various loading modes as
a function of the considered area of the panel (traction, compression, shear,
combined traction or compression and shear) and hence simulations of such
experiments should constitute a large base of validation of the model.
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(I2M), Dépt. Génie Civil et Environnemental (GCE), Bordeaux F-33000, France

bLMGC, Univ Montpellier, CNRS, Montpellier, France
cAIA Ingénierie, 10 rue Ariane, Bât C, 33700 Mérignac, France

Abstract

In this study, a general frictional cohesive zone model (FCZM) dedicated
to quasi-brittle fracture is proposed to describe the mechanical response of
an interface under combined traction or compression and shear loadings.
Under combined traction and shear loadings, mixed-mode I + II cohesive
zone model, as proposed by Camanho et al. (2003), is used to express the
mixed-mode response of the interface and the dependence to the loading path
consistent to the one expected in quasi-brittle fracture. Under combined
compression and shear loadings, the novelty lies in the proposed coupling
between Mode II cohesive behavior and frictional behavior based on the
damage level leading to a progressive rising of the frictional stress associated
with the softening part of the cohesive behavior of the interface. FCZM
thus describes a smooth transition from a cohesive zone to a pure frictional
contact zone. Applied to the masonry context, this general FCZM can be
fully characterized through two fracture tests carried out on small masonry
assemblages. Finally, FCZM is implemented in LMGC90 discrete element
code and used to simulate the experimental response of an unilateral cyclic
shear test carried out on a triplet of limestone blocks assembled by two mortar
joints.
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1. Introduction

The basic hypothesis of cohesive zone models is that failure can be de-
scribed through a fictitious surface crack (which is usually characterized by
a zero thickness interface) which transmits normal and shear stresses. The
magnitudes of normal and shear stresses are described from functions (mono-
tonically decreasing) of the opening displacement (Mode I) and of the shear
plane displacement (Mode II) of the interface.
In literature there is a large variety of Cohesive Zone Models (CZM) which
can be differentiated according to the shape of their softening parts: rigid-
linear (Camacho and Ortiz, 1996; Snozzi and Molinari, 2013), bi-linear (Hille-
borg et al., 1976; Camanho et al., 2003; Högberg, 2006), tri-linear (Morel et
al., 2010; Bisoffi-Sauve et al., 2019) and exponential CZM (Xu and Needle-
man, 1993; van den Bosch et al., 2006). In those models, the cohesive stresses
decrease (after an elastic domain) according to the rising of a damage vari-
able (scalar) usually noted as d. Mode I and Mode II cohesive behaviors
are generally described according to softening functions exhibiting a similar
shape.
In the case of combined traction and shear loadings, Mode I and Mode II
cohesive behaviors can be coupled or uncoupled. Uncoupled CZM are typi-
cally used when interface separation occurs in a single predefined direction,
while coupled CZM are used for complex loading leading simultaneously to
opening and shear plane displacements of the interface. Coupled CZM gen-
erally differ according to the criteria used to describe the mixed-mode I+ II
failure and the dependence (or not) to the loading path exhibited by the
material fracture (van den Bosch et al., 2006; Camanho et al., 2003; Dimitri
et al., 2015).
In the case of combined compression and shear loadings, the contribution of
the friction phenomenon complicates the analysis of the respective contri-
butions of the frictional and cohesive behaviors in the mechanical response
of the interface. As such, if the cohesive behavior is estimated by simply
subtracting the value of the full friction stress from the total shear stress-
shear plane displacement response (Freddi et al., 2017; Baek and Park, 2018;
Bisoffi-Sauve et al., 2019; Yuen et al., 2019), the resulting Mode II cohesive
energy is usually underestimated and associated with a physically inconsis-
tent dependence to the normal stress. Note that such an assumption of
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superimposition of full friction stress and cohesive stress leads to consider
that the cohesive behavior is only activated if the full friction threshold is
reached or, in other words, that the friction effect takes place while the co-
hesive capacity of interface is still intact, which appears to be physically
inconsistent. To overcome this issue, several authors (Chaboche et al., 1997;
Snozzi and Molinari, 2013; Spring and Paulino, 2015; D’Altri et al, 2018)
have proposed phenomenological evolutions of the friction stress as a func-
tion of the shear plane displacement superimposed to the cohesive behavior.
Nevertheless, even if these frictional cohesive zone models allow a better de-
scription of experimental stress-displacement responses, assuming a friction
stress function of the shear plane displacement is not physically based since
frictional effect is expected to depend only on the normal stress, the friction
coefficient and the area of the surface on which it acts. A coupling based
on the damage part of the interface on which the frictional phenomenon can
physically act appears more relevant (Raous and Monerie, 2002; Acary and
Monerie, 2006; Alfano and Sacco, 2006).

On this basis, we propose a general Frictional Cohesive Zone Model dedi-
cated to quasi-brittle fracture describing the mechanical response of an inter-
face under combined traction or compression and shear loadings. In Section
2, the cohesive laws with exponential softening used for pure Mode I and
Mode II fractures are presented and a reminder of the physical meaning of
the damage variable driving the softening part is proposed. On this basis,
under combined traction and shear loadings (Section 3), mixed-mode I + II
cohesive zone model proposed by Camanho et al. (2003) is used to express
the mixed-mode response of the interface and the dependence to the loading
path consistent to the one expected in quasi-brittle fracture. Under combined
compression and shear loadings (Section 4), the novelty lies in the proposed
coupling between cohesive and frictional behaviors which is obtained through
an estimate of the effective frictional area, itself estimated from the damage
variable. A first illustration of the response obtained from FCZM under cyclic
shear loading is proposed. In Section 5, the FCZM is used in the context
of masonry and two characterization tests allowing the estimation of all the
cohesive and frictional parameters of a block-mortar interface are described.
The methodology used to estimate simultaneously the frictional and Mode
II cohesive parameters is particularly discussed. Finally, in Section 6, the
FCZM is implemented in LMGC90 discrete element code and used to simu-
late the experimental response of an unilateral cyclic shear test carried out
on a triplet of limestone blocks assembled by two mortar joints.
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2. Cohesive law with exponential softening

The accurate simulation of interfacial failure in quasi-brittle materials
needs to use an appropriate cohesive law allowing in particular the descrip-
tion of (i) the negative hardening expected for the tension and shear stress-
displacement responses of the interface, (ii) the dependence on the loading
path and of (iii) the strong dissymmetry of tensile and shear fracture prop-
erties.
Among the different functions used to describe the softening behavior in
CZM, exponential softening allows fitting, with a reasonable accuracy, of the
negative and concave hardening function expected in quasi-brittle fracture
as shown in Figure 1. In this study, one proposes to describe the Mode I
and Mode II cohesive behaviors from the same shape of cohesive law (expo-
nential softening) as shown in Figure 1 where i = {I, II}. The initial elastic
behavior is characterized by the stiffness K0

i [N/m3] and the tensile (i = I)
or shear (i = II) strength σei [N/m2]. The stress σi as well as the stiffness
Ki decrease continuously reflecting the softening behavior of the interface
(Fig. 1). The decrease of the stiffness Ki from its initial value K0

i (and

δi

σi

K0
i

1

K0
i (1− d)
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σi ∼ e(δ
e
i−δi)
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δei δui

Gfi

Figure 1: Cohesive law with exponential softening

consequently, the one of the cohesive stress σi from the strength σei ) is driven
by a damage variable d (scalar variable). The damage variable d reflects the
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level of the mechanical degradation of the interface which can be described
through the development of crack surface. In this way and particularly in
Mode I, d is defined as the ratio of the cracked surface Ad [m2] over the whole
interfacial surface area A0 [m2], i.e., d = Ad/A0. Thus 0 ≤ d ≤ 1, d = 0
corresponding to an intact interface (Ad = 0) while d = 1 reflects the overall
failure of the interface (Ad = A0). Thus, for a given damage level d, the load
Fi transmitted by the interface can be expressed either with the apparent
stress σi applied on the whole interface surface A0 or with the effective stress
σ̃i applied on the healthy surface of the interface Ã:

Fi = σ̃iÃ = σiA0, (1)

where the healthy surface Ã can be related to the whole surface A0 and the
damage surface Ad as:

Ã = A0 − Ad = A0(1− d) (2)

Thus, from Equations (1) and (2), the apparent cohesive stress σi can be
expressed as a function of the effective one σ̃i as:

σi = (1− d)σ̃i (3)

Anyway, the displacement δi is the same for the apparent and effective be-
haviors of the interface, such as:

δi =
σi
Ki

=
σ̃i
K0
i

, (4)

Thus, introducing Eq.(4) into Eq.(3) leads to the expression of the apparent
stiffness 1:

Ki = (1− d)K0
i , (5)

hence, the apparent cohesive stress yields:

σi = K0
i (1− d)δi (6)

1In case of zero thickness interface, the initial stiffness K0
i must tend towards infinity

if the adhesion at the interface is perfect (K0
i is then qualified as a penalty stiffness) while

K0
i will take a finite value in the case of a lack of cohesion of the interface which can be

described from an initial damage surface Ad or, in a equivalent way, from an initial value
of the damage variable d according to Eq.(5).
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as shown in Figure 1.
According to Eq.(6), the softening behavior of the interface is related to
the increase of the damage variable d while the apparent stress σi follow an
exponential function:

σi(δi) = σei e
φi(δ

e
i−δi), (7)

where δei = σei /K
0
i [m] corresponds to the displacement at the end of the elas-

tic regime and such as the cohesive energy Gf i [J/m2] verify Gfi =
∫∞
0
σi dδi

which leads to:

φi =
2K0

i σ
e
i

2K0
iGfi − (σei )

2
(8)

According to Equations (6) and (7), the damage variable d can be expressed
as:

d = 1− σei
K0
i δi

e
φi

(
σei
K0
i

−δi
)

(9)

Note that, according to the second law of the thermodynamics of irreversible
processes, the evolution of the damage parameter is always positive (ḋ ≥ 0,
d = max(dhistory)).

To resume, for each fracture mode (i = I: Mode I and i = II: Mode
II), the cohesive law of the interface is described with only three cohesive
parameters: the initial stiffness K0

i , the tensile or shear strength σei and the
cohesive energy Gfi . Thus, the pure Mode i cohesive law can be summarized
as:

σi(δi) =


K0
i δi if δi ≤ δei

σei e
φi(δ

e
i−δi) if δei ≤ δi < δui

0 if δi ≥ δui

(10)

where φi has been previously defined from Eq.(8) and δui corresponds to
an upper cut-off of the displacement which can be introduced in order to
indicate artificially the total failure of the interface (i.e., σi = 0 and d = 1
for δi ≥ δuI ) because the exponential function defined in Eq.(7) tends to
σi = 0 asymptotically as a function of displacement δi. For instance, the
upper cut-off of the displacement δui can be estimated from a percentage η
of the strength σei that leads, in the case of an exponential softening, to:

δui = δei −
1

φi
ln(η) (11)
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3. Combined traction and shear loading: mixed-mode I+II CZM

3.1. Mixed-mode I + II

First CZMs (Hilleborg et al., 1976; Xu and Needleman, 1993; Camacho
and Ortiz, 1996) have been developed for single mode fracture processes (i.e.
for pure Mode I or pure Mode II fractures). Nevertheless, an interface is
generally loaded in Mode I and in Mode II simultaneously (Zucchini and
Lourenço, 2002) leading to mixed-mode I + II fracture process. Therefore,
various mixed-mode I + II cohesive zone models have been proposed in or-
der to describe such a complex fracture process (van den Bosch et al., 2006;
Högberg, 2006; Snozzi and Molinari, 2013; Bisoffi-Sauve et al., 2019) which
are mostly inspired by the pioneering model due to Camanho et al. (2003).
The mixed-mode I + II CZM proposed by Camanho et al. (2003) is formu-
lated from the pure modes (Mode I and Mode II) cohesive laws (as detailed
in the preceding Section) and leads to the expression of a mixed-mode cohe-
sive law which has a form similar to those used for pure modes (Fig. 1), i.e.,
characterized by an initial stiffness K0

I+II , a strength σeI+II (or a limit elastic
displacement δeI+II) and a cohesive energy Gf I+II as shown in Figure 2.
The mix of modes is obtained on the basis of a coupling parameter β cor-
responding to the ratio of the shear plane component of the displacement
δIII+II over the normal one δII+II :

β =
δIII+II
δII+II

= tan(α), (12)

and from two criteria, the first one relating to the damage initiation and the
second one corresponding to the interface failure.

Damage initiation criterion. It is assumed that the mixed-mode limit
elastic stress σeI+II corresponding to the damage onset and especially its
Mode I and Mode II components, respectively noted as σeII+II and σeIII+II ,
must satisfy the quadratic stress criterion:(

σeII+II
σeI

)2

+

(
σeIII+II
σeII

)2

= 1, (13)

where, σeI corresponds to the tensile strength in pure Mode I and σeII is the
shear strength in pure Mode II previously defined in Section 2.
On this basis, the initial stiffness of the Mode I and Mode II components
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Figure 2: Mixed-mode cohesive law

of the mixed-mode being equal to the initial stiffness of the pure modes, i.e.
K0
II+II

= K0
I and K0

III+II
= K0

II , the quadratic stress criterion [Eq.(13)] can
be rewritten in terms of displacements as:(

δeII+II
δeI

)2

+

(
δeIII+II
δeII

)2

= 1 (14)

Thus, using the relationships between the displacement δI+II , its Mode I
and Mode II components (δeII+II and δeIII+II respectively) and the coupling
parameter β [Eq.(12)], the mixed-mode limit elastic displacement δeI+II can
be obtained from Equation (14) such as:

δeI+II = δeI δ
e
II

√
1 + β2

(δeII)
2 + (δeIβ)2

(15)

where δeI and δeII are the limit elastic displacements of the pure modes I and
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II respectively [Eq.(10)]. Note that, according to Equation (15), a Mode I
loading corresponding to a value of the coupling parameter β = 0 leads to
δeI+II = δeI while a Mode II loading, inducing β →∞, leads to δeI+II = δeII .
Finally, the expression of the mixed-mode I + II limit elastic stress σeI+II
yields:

σeI+II = δeIδ
e
II

√
K02
I + β2K02

II

δe
2

II + β2δe
2

I

(16)

Note that pure Mode I loading and pure Mode II loading correspond also
to particular cases of Equation (16) insofar as σeI+II = σeI for β = 0 and
σeI+II = σeII for β →∞ (Figure 3).

Failure criterion. The failure of an interface under mixed-mode loading is
governed by the mixed-mode cohesive energy Gf I+II . This cohesive energy
can be expressed from the sum of its Mode I and Mode II components,
Gf II+II

and Gf III+II
respectively, such as:

Gf I+II = Gf II+II
+Gf III+II

(17)

On this basis, a second criterion, named as failure criterion is necessary to
estimate the value of mixed-mode cohesive energy Gf I+II (van den Bosch
et al., 2006; Högberg, 2006; Snozzi and Molinari, 2013; Bisoffi-Sauve et al.,
2019). This failure criterion is usually expressed through a power law of the
Mode I and Mode II components of the cohesive energy, such as:(

Gf II+II

Gf I

)n
+

(
Gf III+II

Gf II

)m
= 1 (18)

where GfI and GfII are the cohesive energies relative to the pure modes I
and II respectively (Section 2).
As a first approximation, a linear relationship is usually chosen from Eq.(18),
i.e. n = m = 1 (Bisoffi-Sauve et al., 2019). Such a linear relationship
(n = m = 1) will be also assumed in this study.
Let us express the Mode I and Mode II components of the mixed-mode
cohesive energy as:

Gf II+II
= ΨII+II Gf I (19)

Gf III+II
= ΨIII+II Gf II (20)
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where ΨII+II [1] and ΨIII+II [1] correspond respectively to the fractions of the
pure Mode I and Mode II cohesive energies in the correspondent components
of the mixed-mode cohesive energy. Therefore, according to Equations (19)
and (20), the failure criterion defined in Eq.(18) yields :

ΨII+II + ΨIII+II = 1 (21)

Moreover, a given cohesive energy Gf i can be expressed as the sum of the
energy associated with the elastic part Gf

e
i = σei δ

e
i /2 and the one related to

the softening part Gf
soft
i , i.e., Gf i = Gf

e
i + Gf

soft
i . On this basis, the ratio

of the elastic energy over the whole cohesive energy energy of a given mode
must be maintained in the corresponding component of the mixed-mode such
as:

Gf
e
I

Gf I

=
Gf

e
II+II

Gf II+II

= φI
e = cte (22)

Gf
e
II

Gf II

=
Gf

e
III+II

Gf III+II

= φII
e = cte (23)

Note that such ratio could be also expressed from the softening part of the
cohesive behaviors. Finally, the parameters describing the elastic part of the
cohesive behavior in pure modes (Section 2) and those of the mixed-mode
(obtained from the damage initiation criterion) being known, the fraction of
the Mode I cohesive energy in the mixed-mode cohesive energy ΨII+II can
be expressed, according to Equations (19) and (22), as:

ΨII+II =
Gf II+II

Gf I

=
Gf

e
II+II

Gf
e
I

=
δeII

2

δeII
2 + β2δeI

2
(24)

while, according to Equations (20) and (23), the fraction of the Mode II
cohesive energy in the mixed-mode cohesive energy ΨIII+II yields:

ΨIII+II =
Gf III+II

Gf II

=
Gf

e
III+II

Gf
e
II

=
β2δeI

2

δeII
2 + β2δeI

2
(25)

Note that, according to Equations (24) and (25), a Mode I loading corre-
sponding to a value of the coupling parameter β = 0 leads to fractions of the
Mode I and Mode II cohesive energies such as ΨII+II = 1 and ΨIII+II = 0 and
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hence, according to Equations (17) and (19), the mixed-mode cohesive en-
ergy is then equal to the Mode I cohesive energy Gf I+II = Gf I as expected
intuitively. Conversely, a Mode II loading inducing a coupling parameter
β →∞ leads to fractions of the Mode I and Mode II cohesive energies such
as ΨII+II = 0 and ΨIII+II = 1 and so, according to Equations (17) and (20),
to mixed-mode cohesive energy Gf I+II = Gf II , i.e., the Mode II cohesive
energy.
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Figure 3: Mixed-mode CZM as a function of the α angle: (a) Cohesive behavior vs α and
(b) Mixed-mode cohesive energy and its Mode I and Mode II components vs α obtained
for Gf I = 200J/m2 and Gf II = 400J/m2.

Figure 3(a) exhibits the response of the mixed-mode CZM when the in-
terface is subjected to a monotonically rising displacement δI+II up to the
ultimate displacement δuI+II according to various α angles (Fig. 2) ranged
between 0 and 90 degrees. It can be observed from Figure 3(b) that mixed-
mode cohesive energy Gf I+II (Equation 17) increases from the Mode I cohe-
sive energy Gf I+II = Gf II+II

= Gf I when the interface is loaded according to

α = 0 deg (for this example, the value Gf I has been fixed to 200J/m2) to the
Mode II cohesive energy when α = 90 deg, i.e., Gf I+II = Gf III+II

= Gf II

with here Gf II = 400J/m2.

3.2. Influence of the mixed-mode coupling on the dissipated energy

As previously mentioned, the quasi-brittle damage being caused by ex-
tension, the dissipated energy is expected to be different if the interface is
firstly loaded in pure traction then in pure shear and conversely. A way of
studying the behavior of a coupled cohesive zone law is to analyze the dissi-
pated energy under combined normal and shear loading as proposed by van
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den Bosch et al. (2006).
In a first case, the interface is loaded in the direction I (i.e., α = 0 deg) up
to a displacement δ∗II+II whose value is a percentage of the ultimate one δuI
then, δ∗II+II is kept constant and a displacement is applied in the direction
II up to the corresponding ultimate one δIII+II = δuII (Fig. 4(a)). This first
case of non-proportional loading is applied for various ratio δ∗II+II/δ

u
I ranged

between 0 and 1.
In the second case (Fig. 4(b)), the interface is firstly loaded in the direction
II (i.e., α = 90 deg) up to a displacement δ∗III+II corresponding to a percent-
age of the ultimate one δuII then, δ∗III+II is kept constant and a displacement is
applied in the direction I up to the ultimate one δII+II = δuI . As for the first
case, the second loading case is applied for various ratio 0 ≤ δ∗III+II/δ

u
II ≤ 1.

The mixed-mode energy Gf I+II dissipated during both cases as well as the

I

II

δI+II
δ∗II+II ≤ δuI

δIII+II = δuII I

II

δI+IIδII+II = δuI

δ∗III+II ≤ δuII

(a) (b)

Figure 4: Loading sequence to study the influence of the coupling parameters on the
work-of-separation: as proposed by van den Bosch et al. (2006)

Mode I and Mode II components of this energy, Gf II+II
and Gf III+II

re-

spectively, are plotted in Figure 5 as a function of the ratio δ∗II+II/δ
u
I relative

to the first case (Fig. 5(a)) and δ∗III+II/δ
u
II corresponding to the second case

(Fig. 5(b)).
In the first case (Fig. 5(a)), as expected, the dissipated energy Gf I+II =
Gf III+II

= Gf II when the ratio δ∗II+II/δ
u
I = 0 which corresponds to a pure

shear loading of the interface while, Gf I+II = Gf II+II
= Gf I when δ∗II+II/δ

u
I =

1 corresponding to pure traction loading. Moreover, the dissipated energy
decreases monotonically as a function of the ratio δ∗II+II/δ

u
I from Gf II to Gf I

exhibiting a consistent physical behavior.
In the second case (Fig. 5(b)), the dissipated energy Gf I+II increases mono-
tonically as a function of the ratio δ∗III+II/δ

u
II from Gf I+II = Gf II+II

= Gf I

when δ∗III+II/δ
u
II = 0 which corresponds to pure traction loading of the inter-
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face, to Gf I+II = Gf III+II
= Gf II when δ∗III+II/δ

u
II = 1 corresponding a pure

shear loading of the interface.
As a conclusion, the monotonous evolutions of the mixed-mode dissipated
energy observed from both loading cases in Figures 5(a) and 5(b) seems to
be consistent with the expected behavior of a quasi-brittle interface.
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Figure 5: Energy dissipated from non proportionnal loading (with GfI = 200J/m2 and
GfII = 400J/m2)

In the following part, cases of combined compression and shear loadings
applied to the interface are studied. In these cases, friction effect strongly
influences the mechanical response of the interface and hence, a coupling
between frictional and Mode II cohesive behaviors based on an estimation
of the effective frictional area is proposed.

4. Combined compression and shear loading: Frictional Mode II
CZM

4.1. Monotonically loading

When the interface is subjected to shear and compression loading, the
contribution of the friction must be taken into account to describe accu-
rately the interface behavior. As mentioned in Introduction, in most models,
the full friction stress is usually considered from the onset of cohesive be-
havior and leads to consider that the friction effect takes place while the
cohesive capacity of the interface is still intact. To overcome this physical
inconsistency, several authors (Chaboche et al., 1997; Snozzi and Molinari,
2013; Spring and Paulino, 2015; D’Altri et al, 2018) introduce, in their CZM,
a phenomenological progressive rising of the friction stress as a function of
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the shear plane displacement which allow a better description of experimen-
tal stress-displacement responses. Nevertheless, assuming a friction stress
depending of shear plane displacement is not physically based because fric-
tion stress is expected to depend only on normal stress, on friction coefficient
and on the surface area on which acts the friction effect. Thus, as proposed
by Raous and Monerie (2002), Acary and Monerie (2006) and Alfano and
Sacco (2006), a coupling based on the damage part of the interface on which
the frictional phenomenon can physically act appears more relevant.
In the following, taking inspiration from these latter works, a frictional Mode
II cohesive zone model founded on a physically based coupling of cohesive
and frictional behaviors is proposed. The coupling is here introduced from
the damage variable, single internal variable of the model, which gives an
estimate of the effective damage area of the interface.

σII σµ

σI

σIIt

σI
σIIt

d

A
A0

Ad ∼
Aµ

∼
A

10
(a) (b)

Figure 6: Combined compression and shear loading, based on apparent stresses: (a) rhe-
ological model, and on effective stresses: (b) evolution of effective areas against interface
area A0

Let us consider the rheological model shown in Figure 6(a) which consists
in a cohesive spring and a friction pad in parallel in order to describe the
interface mechanical behavior. According to this rheological model, the shear
stress σIIt can be expressed as the sum of the cohesive stress σII and the
frictional stress σµ:

σIIt = σII + σµ (26)

Note that all stresses in Eq.(26) correspond to apparent stresses, i.e., stresses
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acting on the whole surface of the interface A0.
Moreover, according to Eq.(1), the apparent cohesive stress σII [Eq.(26)] can
be expressed from the effective cohesive stress σ̃II acting on the effective
cohesive area Ã = A0(1− d) and yields:

σII = σ̃II
Ã

A0

= σ̃II(1− d) = K0
II(1− d)δII (27)

An example of the cohesive stress σII vs δII behavior is plotted in Figure 7
(red curve).
In the same way, the apparent frictional stress σµ [Eq.(26)] can be expressed,
according to Eq.(1), from the effective cohesive stress σ̃µ acting on the effec-
tive frictional area Ãµ such as:

σµ = σ̃µ
Ãµ
A0

(28)

where the effective frictional stress σ̃µ is defined, according to the Coulomb’s
law, as:

0 ≤ |σ̃µ| ≤ σ̃µc = µ σI (29)

where µ is the friction coefficient and σ̃µc = µ σI corresponds to the shear
sliding resistance.
Regarding the effective frictional area Ãµ [Eq.(28)], it is assumed that this
area corresponds to a part or all of the damage area Ad = d A0 through the
function f(d) = dp with p ≥ 1, as shown in Fig. 6(b):

Ãµ = f(d)A0 = dpA0 (30)

Indeed, at the onset of interface damage (i.e., d ' 0), combination to both
compression and shear loading leads to extension (strain) approximately ori-
ented at 45◦ with respect to the interface plane which, in a case of a quasi-
brittle material, generates microcracks oriented perpendicularly to the exten-
sion direction. Due to this preferential orientation of microcracks, the shear
loading tends to open the microcraks and consequently to cancel the friction
effects on the damage area (for d ' 0, Ãµ ' 0 and so σµ ' 0). Then, with
the increase of interface damage (i.e., 0 < d < 1), the number of microcracks
increases (0 < Ad < A0) and the microcracks progressively coalesce towards
a main crack oriented in parallel to the interface plane on which compression
and shear loadings act simultaneously. This progressive change in the orien-
tation of cracking (from 45◦ to 0◦ with respect to the interface plane) coupled
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Figure 7: Total shear stress vs shear plane displacement response obtained from FCZM
and its frictional and cohesive components.

to the increase of damage area lead to an increase of the effective frictional
area Ãµ (but Ãµ ≤ Ad) and hence of the frictional stress σµ. Finally, when
the failure of interface occurs (i.e., d = 1), the effective frictional area Ãµ
equals the damage area Ad and both correspond to the whole interface area
A0 which leads to an apparent frictional stress such as: σµ = µ σI . Note
that the function f(d) = dp which corresponds to the ratio of the effective
frictional area Ãµ over the damage area Ad must correspond to a concave
form as shown in Fig. 6(b) since the effective frictional area must not exceed
the damage one (Ãµ ≤ Ad). Nevertheless, another form of concave function
could be used to describe f(d) = Ãµ/Ad instead of f(d) = dp with p ≥ 1.

Thus, according to Eqs.(29) and (30), the apparent frictional stress σµ
[Eq.(28)] yields:

0 ≤ |σµ| ≤ σµc(d) = f(d) µ σI (31)

where σµc(d) corresponds to the apparent friction sliding threshold which
increases as a function of the damage variable d as shown in Figure 7 (blue
curve) and leads to the classical value of the sliding stress σµc = µ σI when
d = 1, i.e. when the interface is totally failed. Note that, according to
Eq.(31), the apparent friction sliding stress σµc(d) can be also expressed as
σµc(d) = µ(d) σI where µ(d) = µ f(d) = µ dp can be seen as the apparent
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friction coefficient evolving as a function of the damage level.
Finally, according to Eqs.(27) and (28), the apparent shear stress σIIt

[Eq.(26)] yields:
σIIt = K0

II(1− d)δII + σµ (32)

where the frictional stress |σµ| ≤ σµc(d) and where σµc(d) = dp µ σI corre-
sponds to the apparent sliding resistance. According to Eq.(32), an example
of the shear stress σIIt , resulting from the sum of the cohesive stress σII and
of the shear one σµ, is plotted in Figure 7 (black curve). The shape of the
obtained σIIt vs δII response is in agreement that those usually observed
experimentally for interfacial failure and describes a smooth transition from
a cohesive zone to a pure frictional contact zone.

Moreover, regarding the general shear behavior of the interface given
by Eq.(32), when the apparent frictional stress |σµ| < σµc(d), the interface
displacement is blocked (due to blocking on the effective frictional area Ãµ)
and hence the cohesive part is no longer loaded (but the cohesive stress
σII remains its value before blocking). Conversely, when |σµ| = σµc(d), the
interface displacement is possible due to sliding on Ãµ and both cohesive
and frictional parts are loaded. This consequences of the rheological model
(cohesive spring and a friction pad in parallel as shown Fig. 6(a)) are detailed
in the following section from cyclically loading of the interface.

4.2. Response obtained under cyclic loading

In this section, the simulation of a cyclic loading test (obtained from an
analytical computation) is carried out to show, from a qualitative point of
view, the main features of the proposed constitutive model. The cyclic shear
response of the FCZM model is shown in Figure 8. The interface is sub-
jected to a constant compressive normal stress and to tangential cyclic stress
through an imposed tangential displacement. Figure 8 shows the evolution
of total shear stress σIIt = σII + σµ as a function of shear displacement δII
while the evolution of damage variable d is plotted on the secondary axis.
The cyclic path is characterized by two loading-unloading cycles (cycle 1:
ABCD and cycle 2: EFG). In order to ensure an easier description of the
loading-unloading behavior, the damage level is kept constant during both
cycles.

At the onset of the loading, as long as the cohesive shear stress is lower
than the shear strength (σII < σeII), the model remains in the elastic domain
(phase OO’ ) and damage variable d = 0. When the shear strength σeII is
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Figure 8: FCZM response expected in the case of two load-unload cycles performed during
an unilateral shear test under compression. Inserted graph: example of expected response
from a bilateral shear test.

reached (point O’ ), the cohesive stress σII decreases following the softening
exponential law [Eq. (7)] and frictional stress σµ begins to increase according
to the rising of damage variable d, i.e., σµ = σµc(d). Note that during the
phase O’A the imposed shear displacement is positive ˙δII > 0 which implies
that cohesive stress as well as the frictional one are positive.

Cycle ABCD-unilateral shear test : From point A, the displacement
δII is no longer imposed and the interface is unloaded under the sole effect of
the cohesive part (this situation corresponds to the realization of an unilateral
shear test). This induces a change in the sign of frictional stress (σµ < 0)
while the cohesive one remains positive. The fact that σµ = −σµc(d) leads
to a vertical jump of the total shear stress up to point B such as |∆σIIt | =
2σµc(d) while the value of the cohesive stress remains constant. From point
B, a decrease of the total shear stress is observed up to point C (with ˙δII < 0)
which corresponds to a sliding phase of the interface since the value of the
cohesive stress is greater than the one of the frictional one σII > |σµ| where
σµ = −σµc(d) with d = cte. The slope of the BC part corresponds to the
stiffness of the cohesive spring KII = K0

II(1 − d). At point C, the total
shear stress value is equal to zero which corresponds to the balance between
cohesive and frictional residual stresses such as σII = −σµ = −σµc(d).
From point C, the displacement δII is again imposed with ˙δII > 0 and then
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the value of frictional stress becomes again positive. Thus, the change in
loading direction again induces a jump of the total shear stress up to the
point D whose magnitude corresponds to |∆σIIt| = 2σµc(d) (since the value
of σµ changes from −σµc(d) to σµc(d)) then an interface sliding occurs from
the point D to the point A since the value of the cohesive stress becomes
greater to the one of the frictional stress is σII > σµ with σµ = σµc(d).
The slope of the part DA corresponds to the stiffness of the cohesive part
KII = K0

II(1− d).
Thus, the cycle ABCD exhibits an hysteresis effect induced by the interface
sliding along the part BC and DA and associated dissipated energy from
friction effect.

Then, from point A a monotonically loading (i.e., ˙δII > 0 where δII is
imposed) is carried out from point A to point E. The branch AE highlights
the rising of damage variable which leads to a softening of the cohesive law
and an increase of the frictional stress.

Cycle EFG-unilateral shear test : From point E, the displacement
δII is no longer imposed again and, as from point A, the interface is unloaded
according to an unilateral shear test in which the displacement can be also
induced by the cohesive part of the model. This unloading leads to a change
in the sign of frictional stress (σµ < 0) and induces a theoretical vertical
jump of the total shear stress such as |∆σIIt | = 2σµc(d) while the value of
the cohesive stress remains constant and positive.

However, the unloading being carried out under the sole effect of the co-
hesive spring (unilateral shear test), the fact that the cohesive stress is lesser
than the frictional one leads only to a jump of the total shear stress up to
σIIt = 0 (point F ) which corresponds to residual stresses such as σµ = −σII
with |σµ| < σµc(d) meaning the blockage of the interface.
If the interface is then re-loaded from point F ( ˙δII > 0 where δII is imposed),
the value of frictional stress becomes again positive and leads to a jump of
the total shear stress up to point G induced by the increase of the frictional
stress magnitude up to the value σµc(d) (while the cohesive stress value re-
mains constant) from which the interface can slide again but with an increase
of the damage variable d.
Thus, from an unilateral shear test, when the cohesive stress becomes lesser
than the frictional one, an unloading-loading cycle takes place without hys-
teresis effect because the sole effect of the cohesive part is not sufficient to
induce a sliding of the interface. Conversely, when the cohesive stress is
greater than the frictional one, an unloading-loading cycle will exhibit an
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hysteresis effect (cycle ABCD).
Cycle EF’G’H’-bilateral shear test (graph inserted in Fig. 8):

Now consider that the unloading is carried out from point E through a bilat-
eral shear test rather than an unilateral one, i.e., the shear displacement is
imposed for ˙δII < 0, the total shear stress exhibits effectively the theoretical
vertical jump of magnitude |∆σIIt| = 2σµc(d) up to the point F ′. From this
point, the interface is then able to slide since the frictional stress is equal
σµ = −σµc(d) and the interface exhibits a stiffness corresponding to the one
of the cohesive part KII = K0

II(1 − d) (part F ′G′). From point G′, the in-
terface is re-loaded ( ˙δII > 0) and, as previously explained, the reverse of the
loading leads to a change in the sign of frictional stress (σµ > 0) inducing a
jump of the total shear stress such as |∆σIIt| = 2σµc(d) up to point H ′ (while
the cohesive stress remains constant and positive) from which the interface is
again able to slide (since σµ = σµc(d)) up to point G, exhibiting the stiffness
KII = K0

II(1− d). Note that the cycle EF ′G′H ′ exhibits an hysteresis effect
linked to the sliding of the interface along the parts F ′G′ and H ′G and the
associated dissipated energy.

5. Estimation of cohesive and frictional parameters in the context
of masonry : block-mortar interface

Frictional Cohesive Zone Model described in the previous sections is ap-
plied in the following in the context of masonry where the knowledge of the
mechanical behavior of interface between stone block and joint mortar is par-
ticularly relevant with regard to the accurate description of the mechanical
behavior of masonry.
FCZM parameters introduced in Sections 3 and 4 are identified on the in-
terface between limestone blocks and hydraulic lime mortar (NHL 3.5)2. In
the following, the first part presents the main mechanical properties of the
masonry constituents: limestone blocks and mortar. Then, a direct ten-
sile test carried out on a duo of limestone blocks assembled by one mortar
joint and leading to an estimation of the FCZM Mode I cohesive parameters
(K0

I [N/m3], σeI [N/m2] and GfI [J/m2]) is presented. Finally, a shear test
performed on a triplet of limestone blocks assembled by two mortar joints
is described. This test allows estimating the Mode II cohesive parameters

2Limestone blocks and hydraulic lime mortar (NHL 3.5) are traditionally used in west-
ern region of France for small residential buildings, buildings, churches and bridges
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Designation Quantity Symbol Value (CV) Unit
Limestone Youngs modulus Eb 11.1 (15%) GPa

blocks Compressive strength σcb 9.5 (26%) MPa
Hydraulic Youngs modulus Em 3.95 GPa

lime Compressive strength σcm 1.9 (14%) MPa
mortar Flexural strength σfm 0.6 (6%) MPa

Table 1: Mechanical characteristics of limestone blocks and hydraulic lime mortar. The
Young’s modulus of lime mortar Em has been estimated by Bisoffi-Sauve (2016) for the
same mixture of lime mortar.

(K0
II [N/m3], σeII [N/m2] and GfII [J/m2]) and frictional parameters (µ [1]

and p [1]).

5.1. Characterization of constituents materials

Limestone blocks. The limestone used in this study is typical of the south-
west of France and stem from Pierres de Frontenac stone quarry. Their
compressive properties are determined, according to EN 1926 (2006), from
20 specimens. The blocks tested of nominal dimensions of 100×100×100 mm3

are positioned between steel plates and 4 extensometers attached directly to
the specimen allow to measure strains. Average compressive strength and
Youngs modulus obtained from the compression tests are reported in Table
1.

Mortar joints. The lime mortar used in this study is composed of sand,
hydraulic lime (NHL 3.5) and water. Proportions by volume of the lime,
sand and water in the mixture are estimated by a master stonemason on the
basis to 1 part of lime and 3 parts of sand. After that, water is added in
the mixture until reaching desired traditional workability. Finally, measured
proportions in grams are: 1 (NHL3.5): 6.5 (sand 0-2 [mm]): 1.5 (water).
Flexural strength and compressive strength were obtained according to EN
1015-11 (2007) on 8 specimens (4 × 4 × 16 cm3). Average flexural strength
and compressive strength obtained from lime mortar are reported in Tab. 1.

5.2. Estimation of Mode I cohesive parameters: direct tensile test

5.2.1. Experimental set-up

The cohesive parameters characterizing the Mode I fracture behavior of
a block-mortar interface are usually estimated from a direct tensile test (van
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Mier, 1996; van der Pluijm, 1999; Almeida et al., 2002; Bisoffi-Sauve, 2016;
Sandoval and Arnau, 2017; Bisoffi-Sauve et al., 2019). Despite some dif-
ferences between the tensile tests proposed in the literature, they can be
categorized as a function of their boundaries conditions: rotating supports
or fixed supports. Experimental set-up using fixed supports leads to a higher
value of the cohesive energy and the tensile strength compared to the one us-
ing rotating supports insofar as fixed supports limit flexure effects and induce
a more uniform damage of the interface (van Mier, 1996). On this basis, an
experimental set-up using fixed supports is chosen in this study to character-
ize the block-mortar interface in Mode I (Bisoffi-Sauve, 2016; Bisoffi-Sauve
et al., 2019).
According to experimental set-up proposed Bisoffi-Sauve et al. (2019), duo of
limestone blocks (10×10×7 cm3) assembled by one mortar joint (10×10×0.7
cm3) are directly glued (epoxy resin) inside steel boxes fixed on universal test-
ing machine of 100 kN maximum load capacity thus restricting rotations of
blocks during tensile test as shown in Figure 9(b). Experiments are controlled
by the opening rate of the mortar joint obtained from the average of displace-
ments measured by four extensometers located on each side of the sample (in
the vicinity of corners as proposed by van der Pluijm, 1999) (Figure 9(a)),
imposing a opening displacement at constant velocity (0.3 µm/min). In order
to limit long term mechanical effects, the opening rate is gradually increased
in the post-peak regime to reach 100 µm/min at the end of the test.

(a) (b)

Figure 9: Tensile test setup: (a) location of extensometers measuring the opening dis-
placement of the mortar joint and (b) picture of test setup
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5.2.2. Estimation of Mode I cohesive parameters

As usually observed from direct tensile test, the failure of mortar joint is
mainly located at the block-mortar interface. As a consequence, if the tensile
stress obtained from the ratio of the tensile load over the specimen nominal
cross section is characteristic of the tensile stress applied on the interface,
the average displacement measured from the extensometers does not reflect
the single opening of the interface. Indeed, as the extensometers are fixed on
stone blocks in the immediate vicinity of the joint as shown from Fig. 9(a),
the measured displacement value also includes the extension of the mortar
joint and, to a lesser extent, the extension of limestone. Thus, knowing the
Young’s moduli of lime mortar (3.95 GPa, Bisoffi-Sauve, 2016) and limestone
(11.1 GPa, Tab. 1), the interface opening is estimated from the average dis-
placement measured from the extensometers in substracting the limestone
and joint extensions and this for all values of the tensile stress.
Figure 10(a) exhibits experimental tensile stress vs interface opening re-
sponses obtained from the tensile test. As previously shown in several studies
(van der Pluijm, 1999; Bisoffi-Sauve, 2016; Sandoval and Arnau, 2017; Bisoffi-
Sauve et al., 2019), the initial elastic response is followed after the peak stress
by a strain negative hardening phase characteristic of the quasi-brittle frac-
ture behavior of the mortar joint and especially the fracture energy required
to completely separated the two limestone blocks.
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Figure 10: Direct tensile test results: (a) experimental σI − δI responses and (b) Mode I
cohesive behavior obtained from Eq.(10) compared to the average experimental response
more or less one standard deviation

The Mode I cohesive parameters are directly estimated from the tensile
stress vs opening displacement responses plotted in Fig.10(a). The initial
stiffness K0

I is estimated from a linear regression of the elastic regime before
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Designation Quantity Symbol Value Unit
Initial stiffness K0

I 1.21× 1011 Pa/m
Mode I Maximum stress σeI 0.05 MPa

Cohesive energy GfI 3 J/m2

Initial stiffness K0
II 2.82× 1011 Pa/m

Mode II Maximum stress σeII 0.27 MPa
Cohesive energy GfII 206 J/m2

Frictional Frictional coefficient µ 0.81 1
parameters Exponent of f(d) function p 11.0 1

Table 2: FCZM parameters obtained from experimental campaign

the peak stress, the maximum tensile stress σeI is directly obtained from the
experimental peak stress while the cohesive energy GfI is estimated from the
area under the σ − δ response. The average of each cohesive parameters is
given in Table 2. On this basis and according to Eq.(10), the Mode I cohesive
response corresponding to these average parameters is plotted in Figure 10(b)
and exhibits a fairly good agreement with the average experimental tensile
stress-opening displacement response more or less one standard deviation.

5.3. Mode II characterization: triplet shear test

In literature, there is a large variety of experimental setups allowing com-
bined compression and shear loadings. Among the different proposed setups,
one can note (i) the direct shear test used by van der Pluijm (1999) (Fig.
11(a)), (ii) the couplet test (Fig. 11(b)) and (iii) the triplet test requested
by EN 1052-3 (2007) shown in Fig. 11(c). The first test (van der Pluijm,
1999) requires very stiff supports to prevent flexure effects while the second
one (Lourenço and Ramos, 2004; Abdou et al., 2006) is not symmetrical and
can lead to a non homogeneous loading on the mortar joint if the boundary
conditions are not perfectly controlled. On this basis, the triplet test ap-
pears as the most appropriate insofar as it is symmetric and does not require
excessively stiff supports. Furthermore, the simultaneous test of two mortar
joints, which may exhibit scattered mechanical properties, leads to the me-
chanical characterization of a single joint whose response corresponds to the
average responses of the two joints (Zhang et al., 2008).
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(a) (b) (c)

Figure 11: Different types of combined compression and shear test setups: (a) van der
Pluijm (1999), (b) couplet test and (c) triplet test (Figure extracted from Lourenço and
Ramos, 2004)

5.3.1. Experimental setup

The triplet test is chosen in this study to characterize the frictional and
Mode II cohesive properties; this test can exhibits more or less pronounced
parasitic loadings. Indeed, a bending loading may appear on the sample
especially if the blocks dimension is not sufficient in the direction of the
transverse loading (shear loading) as well as a parasitic torsion loading can
act on the sample due to the flatness defects of the reference face (supported
face) of sample. Improvements of the triplet test (EN 1052-3, 2007) have been
recently proposed by Bisoffi-Sauve et al. (2019). The first one, inspired by the
EN 13733 (2002) test, is to fix the two end blocks by means of clamping rods
in order to prevent bending loading (Fig. 12(b)). The second improvement
consists in the modification of one of the supports by the introduction of a
degree of freedom in rotation with respect to the axis perpendicular to the
joints in order to adapt to flatness defects of the sample supported face.
According to experimental set-up proposed by Bisoffi-Sauve et al. (2019),
triplet of limestone blocks (10×10×10 cm3) assembled by two mortar joints
(10× 10× 0.7 cm3) are initially submitted to a compression loading leading
to a normal stress on the mortar joint and then fixed on universal testing
machine of 100 kN maximum load capacity at the end blocks. Three normal
stress levels are applied on the mortar joint: 0.4 MPa, 0.6 MPa and 0.8 MPa.
Specimens are tested by imposing a vertical displacement to the central block
leading to shearing of the mortar joints. Experiments are controlled by the
shear plane displacement rate of the mortar joints obtained from the average
of displacements measured by four extensometers located on both sides of
the sample in the immediate vicinity of the joints (Fig. 12(a)). At the onset
of the test, the velocity of the average shear plane displacement is imposed
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to 0.5 µm/min then is gradually increased in the post peak regime to reach
100 µm/min at the end of the test.

(a) (b)

Figure 12: Combined compression and shear test setup: (a) position of extensometers and
(b) picture of the triplet test

5.3.2. Estimation of frictional and Mode II cohesive parameters

As previously observed from tensile test, shear test exhibits also failures
mainly located of the block-mortar interface. Thus, the shear plane displace-
ment corresponding to the interface needs to be estimated from the average
displacement measured from the four extensometers by substracting the con-
tributions of the mortar joint and of the limestone knowing the shear moduli
of materials (G = E/[2(1 + ν)] with a Poisson’s ratio of 0.2). Moreover, the
shear stress is obtained by dividing the vertical load applied on the central
block by the nominal cross section of both joints while the normal stress is
estimated from the compression load divided by the nominal cross section of
one joint. As the effective section of the joints gradually decreases according
to the shear plane displacement, the values of the shear and normal stresses
are updated as a function the shear displacement value.
Six to seven specimens have been tested for each normal stress level (0.4, 0.6
and 0.8 MPa). From the experimental shear stresses vs shear displacement
responses of the block-mortar interface (i.e., σIIt vs δII) obtained for each
normal stress level, the average shear stress and the standard deviation of
this one ∆σIIt are computed as a function of the shear plane displacement
δII and are plotted in Figure 13(a): blue color for experimental (σIIt±∆σIIt)
vs δII response obtained for σN = 0.4 MPa, green color for σN = 0.6 MPa
and red color for σN = 0.8 MPa.

First of the mechanical parameters estimated from the experimental re-
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Figure 13: Experimental results obtained from improved triplet shear tests: (a) average
experimental shear stress vs shear displacement responses of the block-mortar interface
and (b) estimation of friction coefficient linear regression

sponses plotted in Fig. 13(a), the friction coefficient µ is obtained from a
linear regression of the residual stress (i.e., the constant stress observed for
large shear plane displacements and for which there is no longer cohesion
of the interface) as a function of the normal stress with a y-intercept forced
to zero as shown in Figure 13(b). Indeed, when there is no longer cohesion
of the block-mortar interface (i.e., d = 1 for the whole interface area), the
residual stress is expected to be equal to the effective frictional stress such
as σII = σµ = σ̃µc = µσI . As shown from Fig. 13(b), the friction coefficient
of the interface limestone block-lime mortar is estimated to µ = 0.81 and
reported in Table 2.
The second parameter which can be directly estimated from the experimental
responses plotted in Fig. 13(a) is the initial stiffness K0

II of the block-mortar
interface. The initial stiffness K0

II is estimated from linear regression of the
initial elastic part of the experimental responses and the value obtained is
reported in Table 2.
Contrarily to initial stiffness K0

II and friction coefficient µ, the shear strength
σeII , the total cohesive energy GfII and the exponent p of the power function
f(d) cannot be directly identified from the experimental responses. Latter
cohesive and frictional parameters are estimated by matching the experi-
mental responses according to the theoretical behavior expected from FCZM
described in Eq.(32). Nevertheless, in the mechanical response of the block-
mortar interface, the accurate description of the stress and displacement at
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peak load appear relevant while the accuracy of the description of the re-
sponse as a whole appears less important. Thus, a large quantity of σeII , GfII

and p combinations are tested and, for each combination, a first normalized
square deviation between experimental and numerical peak loads (stress and
displacement) are computed and a second one is computed from the whole
experimental and numerical responses. On this basis, in order to ensure a
description of the peak load with accuracy, a weight of 5/10 is given arbi-
trarly to the normalized square deviation linked to peak load value and 4/10
is given (arbitrarly) to the one linked to the displacement at peak load (i.e.
a weight of 9/10 for peak load) while a weight of 1/10 is considered for the
normalized square deviation corresponding to the whole response. The fit-

(a) (b) (c)

Figure 14: Square deviation evolution for: (a) σe
II = 0.27 MPa, (b) GfII = 206 J/m2 and

(c) p = 11

ting method proposed here leads to a single combination solution as shown
in Figure 14 even if Mode II cohesive energy GfII has a lesser impact on the
best response compared to shear strength σeII and exponent p of the power
function f(d). Cohesive parameters and frictional one are reported in Ta-
ble 2 while the shear stress vs shear plane displacement of the block-mortar
interface obtained from FCZM [Eq. 32] are plotted as black color curves in
Fig. 13(a).
Finally, let us emphasize that the experimental shear stress vs shear plane dis-
placement responses of the block-mortar interface are described from FCZM
[Eq. 32] with a reasonable accuracy and especially from a single set of co-
hesive parameters (i.e. independent of the normal stress applied on the
interface).
Moreover, note that the FCZM model presented here will be able to describe
the flattening of the shear stress vs shear displacement response usually ob-
served in the case of high normal stress level as shown from Fig.13(a) (or
from Fig.10b in D’Altri et al, 2019). Indeed, as it can be deduced from Fig.
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13(a), for large critical frictional stress σµc = µσI compared to the interfa-
cial shear strength σeII , it is expected that the peaked shape of the response
vanishes to the benefit of a response close to the one associated with the
frictional stress. In the opposite case, i.e. when the normal stress to the
interface is weak (Fig.10b in D’Altri et al, 2019), the FCZM proposed here
will be able to exhibit the peaked shape of the response because the cohesive
stress becomes predominant compared to the frictional one.3

Note that the flattening of the shear stress vs shear displacement response
with respect to the normal stress value (exhibited by the FCZM proposed
here) is not reachable by classical FCZM (i.e. based on the superimposition
of the full friction stress and the cohesive one) because, whatever the normal
stress is, the difference between the peak stress and the critical frictional
stress remains constant and equal to the cohesive shear strength.

The two characterization tests proposed here (direct tensile test on duo
and shear test on triplet) are designed to lead to almost uniform loading
along the block-mortar interface. In both tests, the damage tends to spread
uniformly over the entire surface of the interface and hence allows to estimate
the behavior of the assembly block-joint-block and especially the one of the
interface block mortar at the mesoscopic scale. If from a theoretical point of
view, FCZM can be used at the microscopic scale (local response of the ma-
terial), the estimate of cohesive and frictional parameters of FCZM obtained
from both tests and given in Table 2 is performed at the mesoscopic scale,
with the aim of using it on this scale. Note that, the notion of mesoscopic
scale is important for the future use of FCZM for masonry simulations and
especially in a code based on Discrete Element Method (DEM). Indeed, in
the case of large structure sizes simulations, only a few contact points are
usually considered on each face of the blocks and hence each contact point
is associated with a surface of the block-mortar interface of several tens of
square centimeters.

In the following section, the ability of FCZM to describe an experimental
cyclic shear loading applied on the triplet specimen is shown and discussed.

3The flattening phenomenon experimentally observed on the shear stress vs shear dis-
placement response with respect to the normal stress level is at the source of the underes-
timation of the cohesive behavior (and especially of the cohesive energy) when this one is
simply estimated by subtracting the full friction stress from the total shear stress vs shear
displacement response because the part supposed to correspond to the cohesive behavior
decreases with respect to normal stress level.
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6. Triplet shear test under unilateral cyclic loading: experimental
vs numerical responses

In order to use the FCZM in the case of complex loading, the model
was implemented in the LMGC90 code (Dubois et al., 2011) based on the
Discrete Element Method (DEM) and more specifically on the Non Smooth
Contact Dynamics (Moreau, 1988; Jean, 1999). As a first attempt, FCZM
is used to describe the experimental response obtained from unilateral cyclic
shear loading applied on triplet specimen.
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Figure 15: Experimental and simulated shear stress vs shear plane displacement response
of the joint and block-mortar interface obtained from an unilateral cyclic loading.

Using the same experimental setup as the one described in Section 5.3, a
cyclic loading test leads to the typical shear stress vs shear plane displace-
ment response plotted in Figure 15. Note that the shear plane displacement
corresponds here to the one of the mortar joint and of the block-mortar in-
terface, i.e. only the contribution of the limestone is subtracted from the
average displacement measured from the four extensometers. The experi-
mental response plotted in Fig.15 is obtained for a normal stress value of 0.6
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Designation Quantity Symbol Value Unit
Initial stiffness K0

II 3.4× 1011 Pa/m
Mode II Maximum stress σeII 0.17 MPa

Cohesive energy GfII 83 J/m2

Frictional Frictional coefficient µ 0.71 1
parameters f(d) function exponent p 15 1

Normal stress σI 0.59 MPa

Table 3: FCZM parameters fitted to describe the typical response obtained from the
unilateral cyclic shear loading applied on triplet specimen (Fig. 15)

MPa and exhibits jumps of the shear stress associated with each onset of
loading and unloading phases as theoretically expected from the discussion
proposed in Section 4.2.
A 2D simulation of the unilateral shear test is carried out using LMGC90

software considering rigid blocks and two mortar joints modelled by de-
formable elements meshed with 25 regular quadrangles in the height and
2 in the width as shown in Fig. 16. Young’s modulus of joint elements is
Ej = 3.95 GPa while Poisson’s ratio ν = 0.2. Moreover, the experimental
joint failure being mainly interfacial, only the interfaces block-joint associated
with the central block are considered, the other two interfaces are coupled
at rigid blocks to prevent the relative displacement between ends block and
joints. Note that the blocks being modelled from rigid bodies, their geometry
is not relevant in this simulation, only the geometry and dimensions of the
joints need to correspond to experimental ones. Two contact points per finite
element are considered leading to a total of 50 contact points along each in-
terface. The modelling of the unilateral cyclic shear test from LMGC90 code
is performed by first applying the normal force to the end blocks and then by
loading the central block through the contact of a rigid body (not shown in
Fig. 15) on which a vertical velocity-time function reproducing experimental
loading cycles is imposed. The shear loading procedure by contact allows
to lose contact with the central block and thus to achieve a complete shear
unloading of the specimen between two consecutive cycles.
Firstly, FCZM parameters are fitted, according to the procedure described
in Section 5.3.2, to describe the envelope of the typical experimental shear
stress vs shear plane displacement response. The simulated σIIt vs δII re-
sponse is plotted in Figure 15 and its envelope appears to be consistent with
the experimental one. Note that FCZM parameters obtained to describe the
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experimental response are given in Table 3 and differ from those given in
Table 2 because they correspond to a given experimental triplet specimen
while those given in Tab. 2 result from the fitting procedure applied on a set
of triplets (Section 5.3.2).
In a second time, the cyclic loading is simulated and the obtained response
is plotted in Fig. 15. As shown from Fig. 15, the onset of experimental
loading and unloading phases and associated residual displacements are de-
scribed by the model with a reasonable accuracy. Let us remember that a

Figure 16: Numerical model of the triplet shear test (LMGC90)

jump of the total shear stress σIIt associated with a blockage of the interface
displacement is expected at the onset of loading and unloading phases when
the cohesive stress σII becomes lesser than the critical frictional one σµc(d)
which is the case here for all the loading and unloading phases as shown from
the evolutions of cohesive stress and of the critical frictional one plotted in
red color and blue color respectively in Fig. 15. Moreover, as shown from the
inserted graph in Fig. 15 which corresponds to a zoom of the onset of load-
ing and unloading phases A-B, the experimental and numerical responses
are characterized by a slope which correspond to the stiffness of the joint
(the interface displacements being mainly blocked during loading-unloading
phases). The fact that the experimental stiffness of the joint differs from the
numerical one (inserted graph in Fig.15) could be explained by the fact that,
experimentally, the damage is not fully located on the interfaces but also
diffuses in the mortar joint inducing a decrease of the joint stiffness which is
not taken into account in the simulation. Moreover, experimental cycles ex-
hibit more pronounced hysteresis loops than simulated ones which seems to
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indicate the existence of dissipative mechanisms other than the only damage
and friction at the block-mortar interface. Finally, note that thin hysteresis
loops exhibited by the simulation are only due to the fact the contact points
along the interfaces do not show the same (σIIt , δII) state at the same time
in the sense that, if the the majority of the contact points are blocking, some
of contact points are still sliding.

7. Conclusions

In this paper, a general Frictional Cohesive Zone Model dedicated to
quasi-brittle failure is proposed. The model is based on pure Mode I and
Mode II cohesive behaviors whose softening part is described from an expo-
nential function and on Coulomb’s law for the frictional behavior.

Under combined traction and shear loadings, the coupling between Mode
I and Mode II cohesive behaviors is obtained from two criteria (damage
initiation criterion and failure criterion) proposed by Camanho et al. (2003).
The analytical study of the cohesive energy dissipated as function of loading
path emphasizes that proposed FCZM exhibits a load path dependency which
is in agreement with the one observed in quasi-brittle fracture.

Under combined compression and shear loadings, taking inspiration of
several preceding works which revised the assumption of simple superposi-
tion of full friction and Mode II cohesive behavior, a coupling between friction
effect and cohesive behavior is proposed through the damage variable (single
internal variable of the FCZM). Indeed, the damage variable gives an esti-
mation of the effective damage area of the interface and we assume here that
the effective friction phenomenon takes place on part of all of the damage
area as a function of the damage level. On this basis, FCZM exhibits a pro-
gressive rising friction stress as a function of the shear plane displacement
which leads to a smooth transition from a cohesive zone to a pure contact
zone.

Applied to the context of masonry, FCZM can be fully characterized from
two fracture tests carried out on small masonry assemblages. Mode I cohe-
sive parameters are estimated from a tensile fracture test carried out on duo
of limestone blocks assembled by one lime mortar joint while the Mode II
cohesive parameters and the frictional ones are estimated from a shear test
performed on a triplet of limestone blocks assembled by two lime mortar
joints. If the estimation of Mode I cohesive parameters is directly obtained
from the tensile stress vs interface opening response, the estimation of Mode
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II and frictional parameters needs, firstly, the estimate of the friction co-
efficient from the residual shear stresses with regard to the normal stress
imposed on the joint, then, an indirect estimation procedure needs to be
used in order to simultaneously determine the Mode II cohesive parameters
and the parameter driving the evolution of the friction stress as a function
of the damage variable value. The proposed methodology is discussed and
it is shown that this one leads to a single set of cohesive and frictional pa-
rameters to describe the shear stress vs shear plane displacement responses.
Moreover, FCZM describes the flattening of the shear stress vs shear dis-
placement response as a function of the normal stress value usually observed
experimentally. Such a phenomenon is not possible to describe from classical
FCZM (i.e. based on the superimposition of the full friction stress and the
cohesive one) because, whatever the normal stress is, the difference between
the peak stress and the critical frictional stress remains constant and equal
to the cohesive shear strength in these models.

Finally, the FCZM is implemented in LMGC90 discrete element code and
is used to simulate the experimental response of an unilateral cyclic shear test
carried on a triplet of lime stone assembled by two lime mortar joints. The
envelope of a typical shear stress vs shear plane displacement response is de-
scribed by the FCZM with a reasonable accuracy as well as the experimental
stress jumps and corresponding residual displacements associated with the
onset of the loading and unloading phases.

FCZM will be used shortly to simulate the mechanical behavior of ma-
sonry panels submitted to constant vertical load (three vertical load levels)
and to a progressive horizontal load up to failure of the panel. Indeed, this
kind of loading applied on masonry panels lead to various loading modes as
a function of the considered area of the panel (traction, compression, shear,
combined traction or compression and shear) and hence simulations of such
experiments should constitute a large base of validation of the model.
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