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Abstract

In this study, a general frictional cohesive zone model (FCZM) dedicated
to quasi-brittle fracture is proposed to describe the mechanical response of
an interface under combined traction or compression and shear loadings.
Under combined traction and shear loadings, mixed-mode+ Il cohesive
zone model, as proposed by Camanho et al. (2003), is used to express the
mixed-mode response of the interface and the dependence to the loading path
consistent to the one expected in quasi-brittle fracture. Under combined
compression and shear loadings, the novelty lies in the proposed coupling
between Mode Il cohesive behavior and frictional behavior based on the
damage level leading to a progressive rising of the frictional stress associated
with the softening part of the cohesive behavior of the interface. FCZM
thus describes a smooth transition from a cohesive zone to a pure frictional
contact zone. Applied to the masonry context, this general FCZM can be
fully characterized through two fracture tests carried out on small masonry
assemblages. Finally, FCZM is implemented in LMGC90 discrete element
code and used to simulate the experimental response of an unilateral cyclic
shear test carried out on a triplet of limestone blocks assembled by two mortar
joints.
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1. Introduction

The basic hypothesis of cohesive zone models is that failure can be de-
scribed through a ctitious surface crack (which is usually characterized by
a zero thickness interface) which transmits normal and shear stresses. The
magnitudes of normal and shear stresses are described from functions (mono-
tonically decreasing) of the opening displacement (Mode I) and of the shear
plane displacement (Mode Il) of the interface.
In literature there is a large variety of Cohesive Zone Models (CZM) which
can be di erentiated according to the shape of their softening parts: rigid-
linear (Camacho and Ortiz, 1996; Snozzi and Molinari, 2013), bi-linear (Hille-
borg et al., 1976; Camanho et al., 2003; Hagberg, 2006), tri-linear (Morel et
al., 2010; Biso -Sauve et al., 2019) and exponential CZM (Xu and Needle-
man, 1993; van den Bosch et al., 2006). In those models, the cohesive stresses
decrease (after an elastic domain) according to the rising of a damage vari-
able (scalar) usually noted asl. Mode | and Modell cohesive behaviors
are generally described according to softening functions exhibiting a similar
shape.
In the case of combined traction and shear loadings, Modeand Modell
cohesive behaviors can be coupled or uncoupled. Uncoupled CZM are typi-
cally used when interface separation occurs in a single prede ned direction,
while coupled CZM are used for complex loading leading simultaneously to
opening and shear plane displacements of the interface. Coupled CZM gen-
erally di er according to the criteria used to describe the mixed-mode+ I
failure and the dependence (or not) to the loading path exhibited by the
material fracture (van den Bosch et al., 2006; Camanho et al., 2003; Dimitri
et al., 2015).
In the case of combined compression and shear loadings, the contribution of
the friction phenomenon complicates the analysis of the respective contri-
butions of the frictional and cohesive behaviors in the mechanical response
of the interface. As such, if the cohesive behavior is estimated by simply
subtracting the value of thefull friction stress from the total shear stress-
shear plane displacement response (Freddi et al., 2017; Baek and Park, 2018;
Biso -Sauve et al., 2019; Yuen et al., 2019), the resulting Mode |l cohesive
energy is usually underestimated and associated with a physically inconsis-
tent dependence to the normal stress. Note that such an assumption of



superimposition offull friction stress and cohesive stress leads to consider
that the cohesive behavior is only activated if the full friction threshold is
reached or, in other words, that the friction e ect takes place while the co-
hesive capacity of interface is still intact, which appears to be physically
inconsistent. To overcome this issue, several authors (Chaboche et al., 1997;
Snozzi and Molinari, 2013; Spring and Paulino, 2015; D'Altri et al, 2018)
have proposed phenomenological evolutions of the friction stress as a func-
tion of the shear plane displacement superimposed to the cohesive behavior.
Nevertheless, even if thesgictional cohesive zone models allow a better de-
scription of experimental stress-displacement responses, assuming a friction
stress function of the shear plane displacement is not physically based since
frictional e ect is expected to depend only on the normal stress, the friction
coe cient and the area of the surface on which it acts. A coupling based
on the damage part of the interface on which the frictional phenomenon can
physically act appears more relevant (Raous and Monerie, 2002; Acary and
Monerie, 2006; Alfano and Sacco, 2006).

On this basis, we propose a general Frictional Cohesive Zone Model dedi-
cated to quasi-brittle fracture describing the mechanical response of an inter-
face under combined traction or compression and shear loadings. In Section
2, the cohesive laws with exponential softening used for pure Mode | and
Mode Il fractures are presented and a reminder of the physical meaning of
the damage variable driving the softening part is proposed. On this basis,
under combined traction and shear loadings (Section 3), mixed-modte- 11
cohesive zone model proposed by Camanho et al. (2003) is used to express
the mixed-mode response of the interface and the dependence to the loading
path consistent to the one expected in quasi-brittle fracture. Under combined
compression and shear loadings (Section 4), the novelty lies in the proposed
coupling between cohesive and frictional behaviors which is obtained through
an estimate of the e ective frictional area, itself estimated from the damage
variable. A rstillustration of the response obtained from FCZM under cyclic
shear loading is proposed. In Section 5, the FCZM is used in the context
of masonry and two characterization tests allowing the estimation of all the
cohesive and frictional parameters of a block-mortar interface are described.
The methodology used to estimate simultaneously the frictional and Mode
Il cohesive parameters is particularly discussed. Finally, in Section 6, the
FCZM is implemented in LMGC90 discrete element code and used to simu-
late the experimental response of an unilateral cyclic shear test carried out
on a triplet of limestone blocks assembled by two mortar joints.
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2. Cohesive law with exponential softening

The accurate simulation of interfacial failure in quasi-brittle materials
needs to use an appropriate cohesive law allowing in particular the descrip-
tion of (i) the negative hardening expected for the tension and shear stress-
displacement responses of the interface, (ii) the dependence on the loading
path and of (iii) the strong dissymmetry of tensile and shear fracture prop-
erties.

Among the dierent functions used to describe the softening behavior in
CZM, exponential softening allows tting, with a reasonable accuracy, of the
negative and concave hardening function expected in quasi-brittle fracture
as shown in Figure 1. In this study, one proposes to describe the Mobe
and Modell cohesive behaviors from the same shape of cohesive law (expo-
nential softening) as shown in Figure 1 where= fl;1l g. The initial elastic
behavior is characterized by the sti nesK ° [N/m 3] and the tensile { = I)

or shear { = Il ) strength & [N/m?]. The stress ; as well as the sti ness

K; decrease continuously re ecting the softening behavior of the interface
(Fig. 1). The decrease of the stinesK; from its initial value K? (and

Figure 1: Cohesive law with exponential softening

consequently, the one of the cohesive stressfrom the strength ) is driven
by a damage variabled (scalar variable). The damage variablel re ects the



level of the mechanical degradation of the interface which can be described
through the development of crack surface. In this way and particularly in
Mode I, d is de ned as the ratio of the cracked surfacé 4 [m?] over the whole
interfacial surface areaAy [m?], i.e., d = Ag=Ao. ThusO0 d 1,d=0
corresponding to an intact interface A4 = 0) while d = 1 re ects the overall
failure of the interface Ay = Ap). Thus, for a given damage levedl, the load

F; transmitted by the interface can be expressed either with thapparent
stress ; applied on the whole interface surfac, or with the e ective stress

~ applied on the healthy surface of the interfac&:

Fi=~A= iAo (1)

where the healthy surfaceX can be related to the whole surfacé and the
damage surfacé\y as:

A=Ay Ad= Aol d (2)

Thus, from Equations (1) and (2), the apparent cohesive stress can be
expressed as a function of the e ective ong 4as:

=@ d~ 3)

Anyway, the displacement ; is the same for the apparent and e ective be-
haviors of the interface, such as:

= —=; (4)

Thus, introducing Eq.(4) into Eq.(3) leads to the expression of the apparent
sti ness 1
Ki=(1 dK?2 (5)

hence, the apparent cohesive stress yields:

= KL d) (6)

in case of zero thickness interface, the initial sti nessK ° must tend towards in nity
if the adhesion at the interface is perfect K ? is then quali ed as a penalty sti ness) while
K 2 will take a nite value in the case of a lack of cohesion of the interface which can be
described from an initial damage surfaceAy or, in a equivalent way, from an initial value
of the damage variabled according to Eq.(5).
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as shown in Figure 1.

According to Eq.(6), the softening behavior of the interface is related to
the increase of the damage variable while the apparent stress ; follow an
exponential function:

()= fert ()
where & = £=K? [m] corresponds to the displacement at the endﬁf the elas-

tic reglme and such as the cohesive ener@y; [J/m ?] verify Gy, = id
which leads to:

0

2K0 e
i 8
S KG, (P ®)

According to Equations (6) and (7), the damage variable can be expressed
as:

— i ko 1
d=1 co e " 9)
Note that, according to the second law of the thermodynamics of irreversible
processes, the evolution of the damage parameter is always positide (0,
d= max(dhistory )

To resume, for each fracture modei(= |: Mode | andi = Il : Mode
I1), the cohesive law of the interface is described with only three cohesive
parameters: the initial stiness K?, the tensile or shear strength £ and the
cohesive energy;, . Thus, the pure Modei cohesive law can be summarized
as:

8 :
(D=, fet it e i<y (10)
0 if o

where ; has been previously de ned from Eq.(8) and;" corresponds to
an upper cut-o of the displacement which can be introduced in order to
indicate arti cially the total failure of the interface (i.e., i =0andd=1
for | I') because the exponential function de ned in Eq.(7) tends to
i = 0 asymptotically as a function of displacement ;. For instance, the
upper cut-o of the displacement ! can be estimated from a percentage
of the strength £ that leads, in the case of an exponential softening, to:

i= e Lingy (11)



3. Combined traction and shear loading: mixed-mode I+II CZM

3.1. Mixed-model + Il

First CZMs (Hilleborg et al., 1976; Xu and Needleman, 1993; Camacho
and Ortiz, 1996) have been developed for single mode fracture processes (
for pure Mode | or pure Mode Il fractures). Nevertheless, an interface is
generally loaded in Mode | and in Mode Il simultaneously (Zucchini and
Lourerco, 2002) leading tomixed-model + |l fracture process. Therefore,
various mixed-model + Il cohesive zone models have been proposed in or-
der to describe such a complex fracture process (van den Bosch et al., 2006;
Hegberg, 2006; Snozzi and Molinari, 2013; Biso -Sauve et al., 2019) which
are mostly inspired by the pioneering model due to Camanho et al. (2003).
The mixed-model + Il CZM proposed by Camanho et al. (2003) is formu-
lated from the pure modes (Modd and Modell ) cohesive laws (as detailed
in the preceding Section) and leads to the expression of a mixed-mode cohe-
sive law which has a form similar to those used for pure modes (Fig. 1g.,
characterized by an initial sti nessK?’,,, , a strength &, ,, (or a limit elastic
displacement f, ) and a cohesive energgs ., as shown in Figure 2.

The mix of modes is obtained on the basis of a coupling parametercor-
responding to the ratio of the shear plane component of the displacement

i,,, overthe normal one,,, :

= L —tan( ); (12)

li+n

and from two criteria, the rst one relating to the damage initiation and the
second one corresponding to the interface failure.

Damage initiation criterion. It is assumed that the mixed-mode limit
elastic stress y,, corresponding to the damage onset and especially its
Mode | and Modell components, respectively noted as®  —and  ,
must satisfy the quadratic stress criterion:

e 2 e 2
(T + Iy

e e
| 1

=1, (13)
where, [ corresponds to the tensile strength in pure Mode and [ is the
shear strength in pure Moddl previously de ned in Section 2.

On this basis, the initial sti ness of the Model and Modell components
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Figure 2: Mixed-mode cohesive law

of the mixed-mode being equal to the initial sti ness of the pure modesg.

KP,, = KpPandK{ == K, the quadratic stress criterion [Eq.(13)] can
be rewritten in terms of displacements as:

e 2 e 2

[ T _

| eII + Ie 1 — 1 (14)

Thus, using the relationships between the displacement. |, , its Mode |
and Modell components (f , and {  respectively) and the coupling
parameter [Eq.(12)], the mixed-mode limit elastic displacementf,, can

be obtained from Equation (14) such as:
s

e — e e 1+ 2
I+ = 1 1 (|e|)2+( Ie )2 (15)

where 7 and | are the limit elastic displacements of the pure moddsand
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Il respectively [Eg.(10)]. Note that, according to Equation (15), a Modé
loading corresponding to a value of the coupling parameter = O leads to

‘. =  while a Modell loading, inducing !1 ,leadsto 7, = |-
Finally, the expression of the mixed-mode + Il limit elastic stress ,
yields: S

Kloz + ZKHZ

TR (16)
T

Note that pure Mode | loading and pure Mode Il loading correspond also

to particular cases of Equation (16) insofar as?,,, = [ for =0 and

Fen = G for 11 (Figure 3).

e — ee
1+ 11 |

Failure criterion.  The failure of an interface under mixed-mode loading is
governed by the mixed-mode cohesive ener@y , , . This cohesive energy
can be expressed from the sum of its Mode and Mode Il components,
Gt,,,, and Gy, respectively, such as:

Gf|+|| = Gf||+|| + Gf|||+|| (17)

On this basis, a second criterion, named dailure criterion is necessary to
estimate the value of mixed-mode cohesive ener@,,, (van den Bosch
et al., 2006; Heagberg, 2006; Snozzi and Molinari, 2013; Biso -Sauve et al.,
2019). This failure criterion is usually expressed through a power law of the
Mode | and Modell components of the cohesive energy, such as:

n
Gf||+|| + Gf|||+||

Gfl Gfll

=1 (18)

where G¢, and G, are the cohesive energies relative to the pure modes
and Il respectively (Section 2).

As a rst approximation, a linear relationship is usually chosen from Eq.(18),
i,e. n = m =1 (Biso-Sauve et al.,, 2019). Such a linear relationship
(n = m=1) will be also assumed in this study.

Let us express the Modd and Mode Il components of the mixed-mode
cohesive energy as:

1 = lsn C;f| (19)
Gf” 1+ 11 = e C;fll (20)



where ,,,, [1]and ., [1] correspond respectively to the fractions of the
pure Model and Modell cohesive energies in the correspondent components
of the mixed-mode cohesive energy. Therefore, according to Equations (19)
and (20), the failure criterion de ned in Eq.(18) yields :

en t 1y =1 (21)
Moreover, a given cohesive energ$;, can be expressed as the sum of the
energy associated with the elastic parG;” = 7 =2 and the one related to
the softening part G¢ =", i.e., G¢, = G¢®+ G;*°". On this basis, the ratio
of the elastic energy over the whole cohesive energy energy of a given mode
must be maintained in the corresponding component of the mixed-mode such
as:

Gfle Gf |e| I e

= = = cte 22
Gf' Gf||+|| | ( )
Gfﬁ Gfﬁl I e

= = = cte 23
Gy Grus ! 239

Note that such ratio could be also expressed from the softening part of the
cohesive behaviors. Finally, the parameters describing the elastic part of the
cohesive behavior in pure modes (Section 2) and those of the mixed-mode
(obtained from the damage initiation criterion) being known, the fraction of

the Mode | cohesive energy in the mixed-mode cohesive energy,, can
be expressed, according to Equations (19) and (22), as:

— Gf||+|| — Gf?wn — ﬁ 2 24

lren — Gf| - fo - Ie|2_|. 2|82 ( )

while, according to Equations (20) and (23), the fraction of the Modél
cohesive energy in the mixed-mode cohesive energy,,, Yields:

Gf” Gfﬁ 2 e2
— 1+ 11 — 1+ 11 = | (25)
Iy Gf” Gf|e| Iel 2 4 2|e2

Note that, according to Equations (24) and (25), a Modéd loading corre-
sponding to a value of the coupling parameter = 0 leads to fractions of the
Model and Modell cohesive energiessuchas,,, =l1and ,,, =0and
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hence, according to Equations (17) and (19), the mixed-mode cohesive en-
ergy is then equal to the Mode | cohesive enerdy;,,, = G;, as expected
intuitively. Conversely, a Mode |l loading inducing a coupling parameter

'l leads to fractions of the Modd and Modell cohesive energies such
as ,,, =0and y,,, =1 and so, according to Equations (17) and (20),
to mixed-mode cohesive energ®;,,, = Gt , i.e., the Mode Il cohesive
energy.

—— Gfn
. /
—— Gy,

/

~10 20 30 40 50 60 70 80 90
(degreg

(b)
Figure 3: Mixed-mode CZM as a function of the angle: (a) Cohesive behaviovs and

(b) Mixed-mode cohesive energy and its Modd and Modell componentsvs obtained
for G¢, =200J=m? and Gy, =400J=m?.

Figure 3(a) exhibits the response of the mixed-mode CZM when the in-
terface is subjected to a monotonically rising displacement.,, up to the
ultimate displacement }',,, according to various angles (Fig. 2) ranged
between 0 and 90 degrees. It can be observed from Figure 3(b) that mixed-
mode cohesive energs ., (Equation 17) increases from the Mode | cohe-
sive energyGs ,,,, = G| = Gr, when the interface is loaded according to

= 0deg (for this example, the valueGs, has been xed to 200=m?) to the
Mode Il cohesive energy when = 90deg, i.e.,Gt,,, = Gt , = Gt
with here Gr,, =400J=m?.

3.2. Inuence of the mixed-mode coupling on the dissipated energy

As previously mentioned, the quasi-brittle damage being caused by ex-
tension, the dissipated energy is expected to be di erent if the interface is
rstly loaded in pure traction then in pure shear and conversely. A way of
studying the behavior of a coupled cohesive zone law is to analyze the dissi-
pated energy under combined normal and shear loading as proposed by van

11



den Bosch et al. (2006).

In a rst case, the interface is loaded in the directionl (i.e., = 0deg) up
to a displacement |~ whose value is a percentage of the ultimate ong¢
then, | ., Iis kept constant and a displacement is applied in the direction
[l up to the corresponding ultimate one ., = |, (Fig. 4(a)). This rst
case of non-proportional loading is applied for various ratiq, ., = ' ranged
between 0 and 1.

In the second case (Fig. 4(b)), the interface is rstly loaded in the direction
Il (i.e., =90deg) up to adisplacement, _  corresponding to a percent-
age of the ultimate one ; then, ,;  is keptconstant and a displacement is
applied in the direction| up to the ultimate one ,,,, = }'. As for the rst
case, the second loading case is applied for various ratio 0,, =, 1.
The mixed-mode energyGs , ,, dissipated during both cases as well as the

(a) (b)

Figure 4: Loading sequence to study the inuence of the coupling parameters on the
work-of-separation: as proposed by van den Bosch et al. (2006)

Mode | and Mode Il components of this energyGr, =~ and G, = re-
spectively, are plotted in Figure 5 as a function of the ratio, ., =} relative
to the rst case (Fig. 5(a)) and =1 corresponding to the second case
(Fig. 5(b)).

In the rst case (Fig. 5(a)), as expected, the dissipated energs , |,

Gty ., = Gr, whentheratio |, =" = 0 which corresponds to a pure
shear loading of the interface whileG¢ |, , = G¢| =~ = Gf, when | ==

1 corresponding to pure traction loading. Moreover, the dissipated energy
decreases monotonically as a function of the ratig . = ' from G, to Gy,
exhibiting a consistent physical behavior.

In the second case (Fig. 5(b)), the dissipated enerdy; ,,,, increases mono-
tonically as a function of the ratio ,, ,, = from G¢ ,, = G, == G,
when = =0 which corresponds to pure traction loading of the inter-

Iy

I+ 11
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face, oGy, = Gt ., = Gr,, when , = =1 corresponding a pure
shear loading of the interface.

As a conclusion, the monotonous evolutions of the mixed-mode dissipated
energy observed from both loading cases in Figures 5(a) and 5(b) seems to
be consistent with the expected behavior of a quasi-brittle interface.

] Gf 41
N e GFy
300 N Gfur.y

% 02 04 06 08 10 %o 02 04 06 08 10
u
|

(a) (b)

Figure 5: Energy dissipated from non proportionnal loading (with Gf; = 200J=m? and
Gfy =400J=m2)

In the following part, cases of combined compression and shear loadings
applied to the interface are studied. In these cases, friction e ect strongly
in uences the mechanical response of the interface and hence, a coupling
between frictional and Modell cohesive behaviors based on an estimation
of the e ective frictional area is proposed.

4. Combined compression and shear loading: Frictional Mode I
CzZM

4.1. Monotonically loading

When the interface is subjected to shear and compression loading, the
contribution of the friction must be taken into account to describe accu-
rately the interface behavior. As mentioned in Introduction, in most models,
the full friction stress is usually considered from the onset of cohesive be-
havior and leads to consider that the friction e ect takes place while the
cohesive capacity of the interface is still intact. To overcome this physical
inconsistency, several authors (Chaboche et al., 1997; Snozzi and Molinari,
2013; Spring and Paulino, 2015; D'Altri et al, 2018) introduce, in their CZM,

a phenomenological progressive rising of the friction stress as a function of

13



the shear plane displacement which allow a better description of experimen-
tal stress-displacement responses. Nevertheless, assuming a friction stress
depending of shear plane displacement is not physically based because fric-
tion stress is expected to depend only on normal stress, on friction coe cient
and on the surface area on which acts the friction e ect. Thus, as proposed
by Raous and Monerie (2002), Acary and Monerie (2006) and Alfano and
Sacco (2006), a coupling based on the damage part of the interface on which
the frictional phenomenon can physically act appears more relevant.

In the following, taking inspiration from these latter works, a frictional Mode

Il cohesive zone model founded on a physically based coupling of cohesive
and frictional behaviors is proposed. The coupling is here introduced from
the damage variable, single internal variable of the model, which gives an
estimate of the e ective damage area of the interface.

A
Ao ;

(@) (b)

Figure 6: Combined compression and shear loading, based on apparent stresses: (a) rhe-
ological model, and on e ective stresses: (b) evolution of e ective areas against interface
areaAg

Let us consider the rheological model shown in Figure 6(a) which consists
in a cohesive spring and a friction pad in parallel in order to describe the
interface mechanical behavior. According to this rheological model, the shear
stress |;, can be expressed as the sum of the cohesive stregsand the
frictional stress

ne= 0+ (26)

Note that all stresses in Eq.(26) correspond tapparent stressesi.e., stresses

14



acting on the whole surface of the interfacé,.

Moreover, according to Eq.(1), the apparent cohesive stresg [EQ.(26)] can
be expressed from the e ective cohesive stresg -acting on the e ective
cohesive aredR = Ap(1 d) and yields:

A
1 AO

An example of the cohesive stress, vs ;; behavior is plotted in Figure 7
(red curve).

In the same way, the apparent frictional stress [EQ.(26)] can be expressed,
according to Eq.(1), from the e ective cohesive stress -acting on the e ec-
tive frictional area A such as:

=~ (l d) = K|O| (1 d) T (27)

A
=~ — 2
A (28)
where the e ective frictional stress ~ is de ned, according to the Coulomb's
law, as:
Oj~j ~c= (29)

[

where is the friction coe cient and ~ _ = | corresponds to the shear
sliding resistance.

Regarding the e ective frictional areaA [EQ.(28)], it is assumed that this
area corresponds to a part or all of the damage aréey = d Ag through the
function f (d) = d° with p 1, as shown in Fig. 6(b):

A = f(d)Ag = dPA, (30)

Indeed, at the onset of interface damaga.€., d' 0), combination to both
compression and shear loading leads to extension (strain) approximately ori-
ented at 45 with respect to the interface plane which, in a case of a quasi-
brittle material, generates microcracks oriented perpendicularly to the exten-
sion direction. Due to this preferential orientation of microcracks, the shear
loading tends to open the microcraks and consequently to cancel the friction
e ects on the damage area (fod' O,A ' Oandso ' 0). Then, with
the increase of interface damage.¢., 0 <d < 1), the number of microcracks
increases (X A 4 < Ay) and the microcracks progressively coalesce towards
a main crack oriented in parallel to the interface plane on which compression
and shear loadings act simultaneously. This progressive change in the orien-
tation of cracking (from 45 to O with respect to the interface plane) coupled
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Coupling cohesion-friction ' Pure friction | 0:4

— Frictional stress

t0:2

— Total shear stress),
— Cohesive stress;

Displacement;,

Figure 7: Total shear stressvs shear plane displacement response obtained from FCZM
and its frictional and cohesive components.

to the increase of damage area lead to an increase of the e ective frictional
areaA (but A  Ay) and hence of the frictional stress . Finally, when
the failure of interface occursi(e., d = 1), the e ective frictional area A
equals the damage areA4 and both correspond to the whole interface area
Ao which leads to an apparent frictional stress such as: = . Note
that the function f (d) = d° which corresponds to the ratio of the e ective
frictional area A over the damage areaAy must correspond to a concave
form as shown in Fig. 6(b) since the e ective frictional area must not exceed
the damage one &  Ay). Nevertheless, another form of concave function
could be used to describé(d) = A =Aq instead off (d) = d° with p 1.
Thus, according to Egs.(29) and (30), the apparent frictional stress

[EQ.(28)] yields:

0j | J[d)=f(d) (31)

where _(d) corresponds to theapparent friction sliding threshold which

increases as a function of the damage variabieas shown in Figure 7 (blue

curve) and leads to the classical value of the sliding stress, = | when

d = 1, i.e. when the interface is totally failed. Note that, according to

Eq.(31), the apparent friction sliding stress _(d) can be also expressed as
(d)= (d) , where (d)= f (d)= dP can be seen as the apparent
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friction coe cient evolving as a function of the damage level.
Finally, according to Egs.(27) and (28), the apparent shear stress,
[Eq.(26)] yields:
= KQ@ d) o+ (32)

where the frictional stressj | .(d) and where _(d) = d® | corre-
sponds to the apparent sliding resistance. According to Eq.(32), an example
of the shear stress |, ,, resulting from the sum of the cohesive stress, and

of the shear one , is plotted in Figure 7 (black curve). The shape of the
obtained |, vs | response is in agreement that those usually observed
experimentally for interfacial failure and describes a smooth transition from
a cohesive zone to a pure frictional contact zone.

Moreover, regarding the general shear behavior of the interface given
by Eq.(32), when the apparent frictional stresg j < _(d), the interface
displacement is blocked (due to blocking on the e ective frictional are& )
and hence the cohesive part is no longer loaded (but the cohesive stress

i1 remains its value before blocking). Conversely, whgn j = _(d), the
interface displacement is possible due to sliding o& and both cohesive
and frictional parts are loaded. This consequences of the rheological model
(cohesive spring and a friction pad in parallel as shown Fig. 6(a)) are detailed
in the following section from cyclically loading of the interface.

4.2. Response obtained under cyclic loading

In this section, the simulation of a cyclic loading test (obtained from an
analytical computation) is carried out to show, from a qualitative point of
view, the main features of the proposed constitutive model. The cyclic shear
response of the FCZM model is shown in Figure 8. The interface is sub-
jected to a constant compressive normal stress and to tangential cyclic stress
through an imposed tangential displacement. Figure 8 shows the evolution
of total shear stress ;, = | + as a function of shear displacement;,
while the evolution of damage variabled is plotted on the secondary axis.
The cyclic path is characterized by two loading-unloading cycles (cycle 1:
ABCD and cycle 2: EFG). In order to ensure an easier description of the
loading-unloading behavior, the damage level is kept constant during both
cycles.

At the onset of the loading, as long as the cohesive shear stress is lower
than the shear strength (;; < | ), the model remains in the elastic domain
(phase OQO') and damage variabled = 0. When the shear strength [} is

17



Shear stress
o o
o N
| I

ALt AN 0406 0810 10
7 Shear displacement

— Total shear stressy, -g)
—— Cohesive stress, 05 ©

; —— Frictional stress %
04 B =SSR I B PR Damage variabld o

02

Shear stress [MPa]

10 12 14 16

0.0 ‘ 0:2 04 0.6 . 08 :
Shear displacement [mm]

Figure 8: FCZM response expected in the case of two load-unload cycles performed during
an unilateral shear test under compression. Inserted graph: example of expected response
from a bilateral shear test.

reached (pointQ'), the cohesive stress,, decreases following the softening
exponential law [Eq. (7)] and frictional stress begins to increase according
to the rising of damage variabled, i.e., = .(d). Note that during the
phaseO'A the imposed shear displacement is positivg- > 0 which implies
that cohesive stress as well as the frictional one are positive.

Cycle ABCD-unilateral shear test : From point A, the displacement

1 Is no longer imposed and the interface is unloaded under the sole e ect of

the cohesive part (this situation corresponds to the realization of an unilateral
shear test). This induces a change in the sign of frictional stress (< 0)
while the cohesive one remains positive. The fact that = .(d) leads
to a vertical jump of the total shear stress up to point8 such asj ,j =
2 _(d) while the value of the cohesive stress remains constant. From point
B, a decrease of the total shear stress is observed up to pdihfwith 4 < 0)
which corresponds to a sliding phase of the interface since the value of the
cohesive stress is greater than the one of the frictional ong > j | where

= .(d) with d = cte. The slope of theBC part corresponds to the

stiness of the cohesive springk;, = K3 (1 d). At point C, the total
shear stress value is equal to zero which corresponds to the balance between
cohesive and frictional residual stresses such ag = = .(d).

From point C, the displacement |, is again imposed with 4 > 0 and then
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the value of frictional stress becomes again positive. Thus, the change in
loading direction again induces a jump of the total shear stress up to the
point D whose magnitude corresponds tp ;,j =2 (d) (since the value
of changes from _(d) to _(d)) then an interface sliding occurs from
the point D to the point A since the value of the cohesive stress becomes
greater to the one of the frictional stress is | > with = (d).
The slope of the partDA corresponds to the sti ness of the cohesive part
Ki =Kj@ d).

Thus, the cycleABCD exhibits an hysteresis e ect induced by the interface
sliding along the part BC and DA and associated dissipated energy from
friction e ect.

Then, from point A a monotonically loading (i.e., + > 0 where |, is
imposed) is carried out from pointA to point E. The branch AE highlights
the rising of damage variable which leads to a softening of the cohesive law
and an increase of the frictional stress.

Cycle EFG-unilateral shear test : From point E, the displacement

1 is no longer imposed again and, as from poi#t, the interface is unloaded
according to an unilateral shear test in which the displacement can be also
induced by the cohesive part of the model. This unloading leads to a change
in the sign of frictional stress ( < 0) and induces atheoretical vertical
jump of the total shear stress such ag ,J =2 .(d) while the value of
the cohesive stress remains constant and positive.

However, the unloading being carried out under the sole e ect of the co-
hesive spring (unilateral shear test), the fact that the cohesive stress is lesser
than the frictional one leads only to a jump of the total shear stress up to

1, =0 (point F) which corresponds to residual stresses such as= I
with j j< _(d) meaning the blockage of the interface.

If the interface is then re-loaded from poinF ( 4 > 0 where ,, is imposed),
the value of frictional stress becomes again positive and leads to a jump of
the total shear stress up to pointG induced by the increase of the frictional
stress magnitude up to the value _(d) (while the cohesive stress value re-
mains constant) from which the interface can slide again but with an increase
of the damage variabled.

Thus, from an unilateral shear test, when the cohesive stress becomes lesser
than the frictional one, an unloading-loading cycle takes place without hys-
teresis e ect because the sole e ect of the cohesive part is not su cient to
induce a sliding of the interface. Conversely, when the cohesive stress is
greater than the frictional one, an unloading-loading cycle will exhibit an
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hysteresis e ect (cycleABCD ).

Cycle EF'G'H'-bilateral shear test (graph inserted in Fig. 8)
Now consider that the unloading is carried out from poinE through a bilat-
eral shear test rather than an unilateral one, i.e., the shear displacement is
imposed for 4 < 0, the total shear stress exhibits e ectively thetheoretical
vertical jump of magnitudej ,j =2 (d) up to the point F° From this
point, the interface is then able to slide since the frictional stress is equal

= .(d) and the interface exhibits a sti ness corresponding to the one
of the cohesive partk;; = K3 (1 d) (part F%GY. From point G° the in-
terface is re-loaded (4 > 0) and, as previously explained, the reverse of the
loading leads to a change in the sign of frictional stress (> 0) inducing a
jump of the total shear stress such as ,,j=2 _(d) up to point H°(while
the cohesive stress remains constant and positive) from which the interface is
again able to slide (since = _(d)) up to point G, exhibiting the sti ness
Ky = K2 (1 d). Note that the cycle EF %G™ © exhibits an hysteresis e ect
linked to the sliding of the interface along the parts= %G° and H% and the
associated dissipated energy.

5. Estimation of cohesive and frictional parameters in the context
of masonry : block-mortar interface

Frictional Cohesive Zone Model described in the previous sections is ap-
plied in the following in the context of masonry where the knowledge of the
mechanical behavior of interface between stone block and joint mortar is par-
ticularly relevant with regard to the accurate description of the mechanical
behavior of masonry.

FCZM parameters introduced in Sections 3 and 4 are identi ed on the in-
terface between limestone blocks and hydraulic lime mortar (NHL 35) In
the following, the rst part presents the main mechanical properties of the
masonry constituents: limestone blocks and mortar. Then, a direct ten-
sile test carried out on a duo of limestone blocks assembled by one mortar
joint and leading to an estimation of the FCZM Mode | cohesive parameters
(KP2 [N=m?3], ¢ [N=m?] and G;, [J=m?]) is presented. Finally, a shear test
performed on a triplet of limestone blocks assembled by two mortar joints
is described. This test allows estimating the Mode Il cohesive parameters

2Limestone blocks and hydraulic lime mortar (NHL 3.5) are traditionally used in west-
ern region of France for small residential buildings, buildings, churches and bridges
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Designation Quantity Symbol Value (CV) Unit
Limestone Youngs modulus Ep 11.1 (15%) GPa
blocks Compressive strength G 9.5 (26%) MPa

Hydraulic Youngs modulus Enm 3.95 GPa
lime Compressive strength cm 1.9 (14%) MPa
mortar Flexural strength fim 0.6 (6%) MPa

Table 1: Mechanical characteristics of limestone blocks and hydraulic lime mortar. The
Young's modulus of lime mortar E,;, has been estimated by Biso -Sauve (2016) for the
same mixture of lime mortar.

(K3 [N=m3], §& [N=m?] and Gy, [J=m?]) and frictional parameters ( [1]
and p [1]).

5.1. Characterization of constituents materials

Limestone blocks. The limestone used in this study is typical of the south-
west of France and stem fromPierres de Frontenacstone quarry. Their
compressive properties are determined, according to EN 1926 (2006), from
20 specimens. The blocks tested of nominal dimensions of 1000 100 mn?

are positioned between steel plates and 4 extensometers attached directly to
the specimen allow to measure strains. Average compressive strength and
Youngs modulus obtained from the compression tests are reported in Table
1.

Mortar joints.  The lime mortar used in this study is composed of sand,
hydraulic lime (NHL 3.5) and water. Proportions by volume of the lime,
sand and water in the mixture are estimated by a master stonemason on the
basis to 1 part of lime and 3 parts of sand. After that, water is added in
the mixture until reaching desired traditional workability. Finally, measured
proportions in grams are: 1 (NHL3.5): 6.5 (sand 0-2 [mm]): 1.5 (water).
Flexural strength and compressive strength were obtained according to EN
1015-11 (2007) on 8 specimens (44 16 cn?). Average exural strength
and compressive strength obtained from lime mortar are reported in Tab. 1.

5.2. Estimation of Mode | cohesive parameters: direct tensile test

5.2.1. Experimental set-up
The cohesive parameters characterizing the Mode | fracture behavior of
a block-mortar interface are usually estimated from a direct tensile test (van
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Mier, 1996; van der Pluijm, 1999; Almeida et al., 2002; Biso -Sauve, 2016;
Sandoval and Arnau, 2017; Biso -Sauve et al., 2019). Despite some dif-
ferences between the tensile tests proposed in the literature, they can be
categorized as a function of their boundaries conditions: rotating supports
or xed supports. Experimental set-up using xed supports leads to a higher
value of the cohesive energy and the tensile strength compared to the one us-
ing rotating supports insofar as xed supports limit exure e ects and induce

a more uniform damage of the interface (van Mier, 1996). On this basis, an
experimental set-up using xed supports is chosen in this study to character-
ize the block-mortar interface in Mode | (Biso -Sauve, 2016; Biso -Sauve

et al., 2019).

According to experimental set-up proposed Biso -Sauve et al. (2019), duo of
limestone blocks (10 10 7 cn?®) assembled by one mortar joint (10 10 0:7
cm?®) are directly glued (epoxy resin) inside steel boxes xed on universal test-
ing machine of 100 kN maximum load capacity thus restricting rotations of
blocks during tensile test as shown in Figure 9(b). Experiments are controlled
by the opening rate of the mortar joint obtained from the average of displace-
ments measured by four extensometers located on each side of the sample (in
the vicinity of corners as proposed by van der Pluijm, 1999) (Figure 9(a)),
imposing a opening displacement at constant velocity (8 m/min). In order

to limit long term mechanical e ects, the opening rate is gradually increased
in the post-peak regime to reach 100m/min at the end of the test.

(a) (b)

Figure 9: Tensile test setup: (a) location of extensometers measuring the opening dis-
placement of the mortar joint and (b) picture of test setup
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5.2.2. Estimation of Mode | cohesive parameters

As usually observed from direct tensile test, the failure of mortar joint is
mainly located at the block-mortar interface. As a consequence, if the tensile
stress obtained from the ratio of the tensile load over the specimen nominal
cross section is characteristic of the tensile stress applied on the interface,
the average displacement measured from the extensometers does not re ect
the single opening of the interface. Indeed, as the extensometers are xed on
stone blocks in the immediate vicinity of the joint as shown from Fig. 9(a),
the measured displacement value also includes the extension of the mortar
joint and, to a lesser extent, the extension of limestone. Thus, knowing the
Young's moduli of lime mortar (3.95 GPa, Biso -Sauve, 2016) and limestone
(11.1 GPa, Tab. 1), the interface opening is estimated from the average dis-
placement measured from the extensometers in substracting the limestone
and joint extensions and this for all values of the tensile stress.
Figure 10(a) exhibits experimental tensile stresys interface opening re-
sponses obtained from the tensile test. As previously shown in several studies
(van der Pluijm, 1999; Biso -Sauve, 2016; Sandoval and Arnau, 2017; Biso -
Sauve et al., 2019), the initial elastic response is followed after the peak stress
by a strain negative hardening phase characteristic of the quasi-brittle frac-
ture behavior of the mortar joint and especially the fracture energy required
to completely separated the two limestone blocks.
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Figure 10: Direct tensile test results: (a) experimental | | responses and (b) Mode |

cohesive behavior obtained from Eq.(10) compared to the average experimental response
more or less one standard deviation

The Mode | cohesive parameters are directly estimated from the tensile
stressvs opening displacement responses plotted in Fig.10(a). The initial
sti ness K is estimated from a linear regression of the elastic regime before
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Designation Quantity Symbol Value Unit

Initial sti ness K? 121 10% Pa/m
Mode | Maximum stress ¥ 0:05 MPa
Cohesive energy Gf, 3 J=m?
Initial sti ness K3 282 10" Pa/m
Mode I Maximum stress M 0:27 MPa
Cohesive energy Gfy, 206 J/m?
Frictional Frictional coe cient 0:81 1
parameters Exponent off (d) function p 110 1

Table 2: FCZM parameters obtained from experimental campaign

the peak stress, the maximum tensile stress is directly obtained from the
experimental peak stress while the cohesive enerG@y, is estimated from the
area under the response. The average of each cohesive parameters is
given in Table 2. On this basis and according to Eq.(10), the Mode | cohesive
response corresponding to these average parameters is plotted in Figure 10(b)
and exhibits a fairly good agreement with the average experimental tensile
stress-opening displacement response more or less one standard deviation.

5.3. Mode Il characterization: triplet shear test

In literature, there is a large variety of experimental setups allowing com-
bined compression and shear loadings. Among the di erent proposed setups,
one can note (i) the direct shear test used by van der Pluijm (1999) (Fig.
11(a)), (ii) the couplet test (Fig. 11(b)) and (iii) the triplet test requested
by EN 1052-3 (2007) shown in Fig. 11(c). The rst test (van der Pluijm,
1999) requires very sti supports to prevent exure e ects while the second
one (Lourerco and Ramos, 2004; Abdou et al., 2006) is not symmetrical and
can lead to a non homogeneous loading on the mortar joint if the boundary
conditions are not perfectly controlled. On this basis, the triplet test ap-
pears as the most appropriate insofar as it is symmetric and does not require
excessively sti supports. Furthermore, the simultaneous test of two mortar
joints, which may exhibit scattered mechanical properties, leads to the me-
chanical characterization of asingle joint whose response corresponds to the
average responses of the two joints (Zhang et al., 2008).
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Figure 11: Dierent types of combined compression and shear test setups: (a) van der
Pluijm (1999), (b) couplet test and (c) triplet test (Figure extracted from Lourerco and
Ramos, 2004)

5.3.1. Experimental setup

The triplet test is chosen in this study to characterize the frictional and
Mode Il cohesive properties; this test can exhibits more or less pronounced
parasitic loadings. Indeed, a bending loading may appear on the sample
especially if the blocks dimension is not su cient in the direction of the
transverse loading (shear loading) as well as a parasitic torsion loading can
act on the sample due to the atness defects of the reference face (supported
face) of sample. Improvements of the triplet test (EN 1052-3, 2007) have been
recently proposed by Biso -Sauve et al. (2019). The rst one, inspired by the
EN 13733 (2002) test, is to x the two end blocks by means of clamping rods
in order to prevent bending loading (Fig. 12(b)). The second improvement
consists in the modi cation of one of the supports by the introduction of a
degree of freedom in rotation with respect to the axis perpendicular to the
joints in order to adapt to atness defects of the sample supported face.
According to experimental set-up proposed by Biso -Sauve et al. (2019),
triplet of limestone blocks (10 10 10 cn?) assembled by two mortar joints
(10 10 0:7 cn?) are initially submitted to a compression loading leading
to a normal stress on the mortar joint and then xed on universal testing
machine of 100 kKN maximum load capacity at the end blocks. Three normal
stress levels are applied on the mortar joint: 0.4 MPa, 0.6 MPa and 0.8 MPa.
Specimens are tested by imposing a vertical displacement to the central block
leading to shearing of the mortar joints. Experiments are controlled by the
shear plane displacement rate of the mortar joints obtained from the average
of displacements measured by four extensometers located on both sides of
the sample in the immediate vicinity of the joints (Fig. 12(a)). At the onset
of the test, the velocity of the average shear plane displacement is imposed
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to 0:5 m/min then is gradually increased in the post peak regime to reach
100 m/min at the end of the test.

(@) (b)

Figure 12: Combined compression and shear test setup: (a) position of extensometers and
(b) picture of the triplet test

5.3.2. Estimation of frictional and Mode Il cohesive parameters
As previously observed from tensile test, shear test exhibits also failures

mainly located of the block-mortar interface. Thus, the shear plane displace-
ment corresponding to the interface needs to be estimated from the average
displacement measured from the four extensometers by substracting the con-
tributions of the mortar joint and of the limestone knowing the shear moduli
of materials (G = E=[2(1 + )] with a Poisson's ratio of 0.2). Moreover, the
shear stress is obtained by dividing the vertical load applied on the central
block by the nominal cross section of both joints while the normal stress is
estimated from the compression load divided by the nominal cross section of
one joint. As the e ective section of the joints gradually decreases according
to the shear plane displacement, the values of the shear and normal stresses
are updated as a function the shear displacement value.
Six to seven specimens have been tested for each normal stress level (0.4, 0.6
and 0.8 MPa). From the experimental shear stresses shear displacement
responses of the block-mortar interface (i.e.,;;, vs ) obtained for each
normal stress level, the average shear stress and the standard deviation of
this one ;, are computed as a function of the shear plane displacement

i and are plotted in Figure 13(a): blue color for experimental ( )
vS | response obtained for y = 0:4 MPa, green color for y = 0:6 MPa
and red color for y = 0:8 MPa.

First of the mechanical parameters estimated from the experimental re-
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Figure 13: Experimental results obtained from improved triplet shear tests: (a) average
experimental shear stressvs shear displacement responses of the block-mortar interface
and (b) estimation of friction coe cient linear regression

sponses plotted in Fig. 13(a), the friction coe cient is obtained from a
linear regression of the residual stress.€., the constant stress observed for
large shear plane displacements and for which there is no longer cohesion
of the interface) as a function of the normal stress with a y-intercept forced
to zero as shown in Figure 13(b). Indeed, when there is no longer cohesion
of the block-mortar interface (i.e.,d = 1 for the whole interface area), the
residual stress is expected to be equal to the e ective frictional stress such
as | = =~ _= . As shown from Fig. 13(b), the friction coe cient
of the interface limestone block-lime mortar is estimated to = 0:81 and
reported in Table 2.
The second parameter which can be directly estimated from the experimental
responses plotted in Fig. 13(a) is the initial stinesK ? of the block-mortar
interface. The initial stiness K} is estimated from linear regression of the
initial elastic part of the experimental responses and the value obtained is
reported in Table 2.
Contrarily to initial stiness K and friction coe cient , the shear strength

i » the total cohesive energyGs, and the exponentp of the power function
f (d) cannot be directly identi ed from the experimental responses. Latter
cohesive and frictional parameters are estimated by matching the experi-
mental responses according to the theoretical behavior expected from FCZM
described in EqQ.(32). Nevertheless, in the mechanical response of the block-
mortar interface, the accurate description of the stress and displacement at
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peak load appear relevant while the accuracy of the description of the re-
sponse as a whole appears less important. Thus, a large quantity ¢f, G,

and p combinations are tested and, for each combination, a rst normalized
square deviation between experimental and numerical peak loads (stress and
displacement) are computed and a second one is computed from the whole
experimental and numerical responses. On this basis, in order to ensure a
description of the peak load with accuracy, a weight of 5/10 is given arbi-
trarly to the normalized square deviation linked to peak load value and 4/10
is given (arbitrarly) to the one linked to the displacement at peak loadif(e.

a weight of 9/10 for peak load) while a weight of 1/10 is considered for the
normalized square deviation corresponding to the whole response. The t-

(@) (b) (©)

Figure 14: Square deviation evolution for: (a) § =0:27 MPa, (b) G¢, =206 J/m 2 and
(c)p=11

ting method proposed here leads to a single combination solution as shown
in Figure 14 even if Mode |l cohesive energ®;, has a lesser impact on the
best response compared to shear strengtlf and exponentp of the power
function f (d). Cohesive parameters and frictional one are reported in Ta-
ble 2 while the shear stresss shear plane displacement of the block-mortar
interface obtained from FCZM [Eq. 32] are plotted as black color curves in
Fig. 13(a).

Finally, let us emphasize that the experimental shear stress shear plane dis-
placement responses of the block-mortar interface are described from FCZM
[Eq. 32] with a reasonable accuracy and especially from a single set of co-
hesive parametersi(e. independent of the normal stress applied on the
interface).

Moreover, note that the FCZM model presented here will be able to describe
the attening of the shear stressvs shear displacement response usually ob-
served in the case of high normal stress level as shown from Fig.13(a) (or
from Fig.10b in D'Altri et al, 2019). Indeed, as it can be deduced from Fig.
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13(a), for large critical frictional stress _ = | compared to the interfa-
cial shear strength [, it is expected that the peaked shape of the response
vanishes to the benet of a response close to the one associated with the
frictional stress. In the opposite casei.e. when the normal stress to the
interface is weak (Fig.10b in D'Altri et al, 2019), the FCZM proposed here
will be able to exhibit the peaked shape of the response because the cohesive
stress becomes predominant compared to the frictional ofe.
Note that the attening of the shear stressvs shear displacement response
with respect to the normal stress value (exhibited by the FCZM proposed
here) is not reachable byclassical FCZM (i.e. based on the superimposition
of the full friction stress and the cohesive one) because, whatever the normal
stress is, the dierence between the peak stress and the critical frictional
stress remains constant and equal to the cohesive shear strength.

The two characterization tests proposed here (direct tensile test
on duo and shear test on triplet) are designed to lead to almost
uniform loading along the block-mortar interface. In both tests,
the damage tends to spread uniformly over the entire surface of
the interface and hence allows to estimate the behavior of the as-
sembly block-joint-block and especially the one of the interface
block mortar at the mesoscopic scale. If from a theoretical point of
view, FCZM can be used at the microscopic scale (local response of
the material), the estimate of cohesive and frictional parameters of
FCZM obtained from both tests and given in Table 2 is performed
at the mesoscopic scale, with the aim of using it on this scale. Note
that, the notion of mesoscopic scale is important for the future use
of FCZM for masonry simulations and especially in a code based
on Discrete Element Method (DEM). Indeed, in the case of large
structure sizes simulations, only a few contact points are usually
considered on each face of the blocks and hence each contact point
is associated with a surface of the block-mortar interface of several
tens of square centimeters.

3The attening phenomenon experimentally observed on the shear stresss shear dis-
placement response with respect to the normal stress level is at the source of the underes-
timation of the cohesive behavior (and especially of the cohesive energy) when this one is
simply estimated by subtracting the full friction stress from the total shear stressvs shear
displacement response because the part supposed to correspond to the cohesive behavior
decreases with respect to normal stress level.
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In the following section, the ability of FCZM to describe an experimental
cyclic shear loading applied on the triplet specimen is shown and discussed.

6. Triplet shear test under unilateral cyclic loading: experimental
vsS numerical responses

In order to use the FCZM in the case of complex loading, the model
was implemented in the LMGC90 code (Dubois et al., 2011) based on the
Discrete Element Method (DEM) and more speci cally on theNon Smooth
Contact Dynamics (Moreau, 1988; Jean, 1999). As a rst attempt, FCZM
is used to describe the experimental response obtained from unilateral cyclic
shear loading applied on triplet specimen.

Figure 15: Experimental and simulated shear stresws shear plane displacement response
of the joint and block-mortar interface obtained from an unilateral cyclic loading.

Using the same experimental setup as the one described in Section 5.3, a
cyclic loading test leads to the typical shear stresgs shear plane displace-
ment response plotted in Figure 15. Note that the shear plane displacement
corresponds here to the one of the mortar joint and of the block-mortar in-
terface, i.e. only the contribution of the limestone is subtracted from the
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Designation Quantity Symbol Value Unit

Initial sti ness K 34 10" Pa/m
Mode Il Maximum stress ¥ 0:17 MPa
Cohesive energy Gfy, 83 J/m?
Frictional Frictional coe cient 0:71 1
parameters f (d) function exponent p 15 1
Normal stress | 0.59 MPa

Table 3: FCZM parameters tted to describe the typical response obtained from the
unilateral cyclic shear loading applied on triplet specimen (Fig. 15)

average displacement measured from the four extensometers. The experi-
mental response plotted in Fig.15 is obtained for a normal stress value of 0.6
MPa and exhibits jumps of the shear stress associated with each onset of
loading and unloading phases as theoretically expected from the discussion
proposed in Section 4.2.

A 2D simulation of the unilateral shear test is carried out using LMGC90
software considering rigid blocks and two mortar joints modelled by de-
formable elements meshed with 25 regular quadrangles in the height and
2 in the width as shown in Fig. 16. Young's modulus of joint elements is
E; = 3:95 GPa while Poisson's ratio = 0:2. Moreover, the experimental
joint failure being mainly interfacial, only the interfaces block-joint associated
with the central block are considered, the other two interfaces are coupled
at rigid blocks to prevent the relative displacement between ends block and
joints. Note that the blocks being modelled from rigid bodies, their geometry
is not relevant in this simulation, only the geometry and dimensions of the
joints need to correspond to experimental ones. Two contact points per nite
element are considered leading to a total of 50 contact points along each in-
terface. The modelling of the unilateral cyclic shear test from LMGC90 code
is performed by rst applying the normal force to the end blocks and then by
loading the central block through the contact of a rigid body (not shown in
Fig. 15) on which a vertical velocity-time function reproducing experimental
loading cycles is imposed. The shear loading procedure by contact allows
to lose contact with the central block and thus to achieve a complete shear
unloading of the specimen between two consecutive cycles.

Firstly, FCZM parameters are tted, according to the procedure described
in Section 5.3.2, to describe the envelope of the typical experimental shear
stressvs shear plane displacement response. The simulated, vs |, re-
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sponse is plotted in Figure 15 and its envelope appears to be consistent with
the experimental one. Note that FCZM parameters obtained to describe the
experimental response are given in Table 3 and dier from those given in
Table 2 because they correspond to a given experimental triplet specimen
while those given in Tab. 2 result from the tting procedure applied on a set

of triplets (Section 5.3.2).

In a second time, the cyclic loading is simulated and the obtained response
is plotted in Fig. 15. As shown from Fig. 15, the onset of experimental
loading and unloading phases and associated residual displacements are de-
scribed by the model with a reasonable accuracy. Let us remember that a

Figure 16: Numerical model of the triplet shear test (LMGC90)

jump of the total shear stress |;, associated with a blockage of the interface
displacement is expected at the onset of loading and unloading phases when
the cohesive stress,, becomes lesser than the critical frictional one _(d)
which is the case here for all the loading and unloading phases as shown from
the evolutions of cohesive stress and of the critical frictional one plotted in
red color and blue color respectively in Fig. 15. Moreover, as shown from the
inserted graph in Fig. 15 which corresponds to a zoom of the onset of load-
ing and unloading phases A-B, the experimental and numerical responses
are characterized by a slope which correspond to the sti ness of the joint
(the interface displacements being mainly blocked during loading-unloading
phases). The fact that the experimental sti ness of the joint di ers from the
numerical one (inserted graph in Fig.15) could be explained by the fact that,
experimentally, the damage is not fully located on the interfaces but also
di uses in the mortar joint inducing a decrease of the joint sti ness which is
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not taken into account in the simulation. Moreover, experimental cycles ex-
hibit more pronounced hysteresis loops than simulated ones which seems to
indicate the existence of dissipative mechanisms other than the only damage
and friction at the block-mortar interface. Finally, note that thin hysteresis
loops exhibited by the simulation are only due to the fact the contact points
along the interfaces do not show the same ((,; ; ) state at the same time

in the sense that, if the the majority of the contact points are blocking, some
of contact points are still sliding.

7. Conclusions

In this paper, a general Frictional Cohesive Zone Model dedicated to
guasi-brittle failure is proposed. The model is based on pure Mode | and
Mode Il cohesive behaviors whose softening part is described from an expo-
nential function and on Coulomb's law for the frictional behavior.

Under combined traction and shear loadings, the coupling between Mode
I and Mode Il cohesive behaviors is obtained from two criteria (damage
initiation criterion and failure criterion) proposed by Camanho et al. (2003).
The analytical study of the cohesive energy dissipated as function of loading
path emphasizes that proposed FCZM exhibits a load path dependency which
is in agreement with the one observed in quasi-brittle fracture.

Under combined compression and shear loadings, taking inspiration of
several preceding works which revised the assumption of simple superposi-
tion of full friction and Mode Il cohesive behavior, a coupling between friction
e ect and cohesive behavior is proposed through the damage variable (single
internal variable of the FCZM). Indeed, the damage variable gives an esti-
mation of the e ective damage area of the interface and we assume here that
the e ective friction phenomenon takes place on part of all of the damage
area as a function of the damage level. On this basis, FCZM exhibits a pro-
gressive rising friction stress as a function of the shear plane displacement
which leads to a smooth transition from a cohesive zone to a pure contact
zone.

Applied to the context of masonry, FCZM can be fully characterized from
two fracture tests carried out on small masonry assemblages. Mode | cohe-
sive parameters are estimated from a tensile fracture test carried out on duo
of limestone blocks assembled by one lime mortar joint while the Mode I
cohesive parameters and the frictional ones are estimated from a shear test
performed on a triplet of limestone blocks assembled by two lime mortar
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joints. If the estimation of Mode | cohesive parameters is directly obtained
from the tensile stressss interface opening response, the estimation of Mode

Il and frictional parameters needs, rstly, the estimate of the friction co-

e cient from the residual shear stresses with regard to the normal stress
imposed on the joint, then, an indirect estimation procedure needs to be
used in order to simultaneously determine the Mode |l cohesive parameters
and the parameter driving the evolution of the friction stress as a function
of the damage variable value. The proposed methodology is discussed and
it is shown that this one leads to a single set of cohesive and frictional pa-
rameters to describe the shear stress shear plane displacement responses.
Moreover, FCZM describes the attening of the shear stresgs shear dis-
placement response as a function of the normal stress value usually observed
experimentally. Such a phenomenon is not possible to describe fratassical
FCZM (i.e. based on the superimposition of the full friction stress and the
cohesive one) because, whatever the normal stress is, the di erence between
the peak stress and the critical frictional stress remains constant and equal
to the cohesive shear strength in these models.

Finally, the FCZM is implemented in LMGC90 discrete element code and
is used to simulate the experimental response of an unilateral cyclic shear test
carried on a triplet of lime stone assembled by two lime mortar joints. The
envelope of a typical shear stresss shear plane displacement response is de-
scribed by the FCZM with a reasonable accuracy as well as the experimental
stress jumps and corresponding residual displacements associated with the
onset of the loading and unloading phases.

FCZM will be used shortly to simulate the mechanical behavior of ma-
sonry panels submitted to constant vertical load (three vertical load levels)
and to a progressive horizontal load up to failure of the panel. Indeed, this
kind of loading applied on masonry panels lead to various loading modes as
a function of the considered area of the panel (traction, compression, shear,
combined traction or compression and shear) and hence simulations of such
experiments should constitute a large base of validation of the model.
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Abstract

In this study, a general frictional cohesive zone model (FCZM) dedicated
to quasi-brittle fracture is proposed to describe the mechanical response of
an interface under combined traction or compression and shear loadings.
Under combined traction and shear loadings, mixed-mode+ Il cohesive
zone model, as proposed by Camanho et al. (2003), is used to express the
mixed-mode response of the interface and the dependence to the loading path
consistent to the one expected in quasi-brittle fracture. Under combined
compression and shear loadings, the novelty lies in the proposed coupling
between Mode Il cohesive behavior and frictional behavior based on the
damage level leading to a progressive rising of the frictional stress associated
with the softening part of the cohesive behavior of the interface. FCZM
thus describes a smooth transition from a cohesive zone to a pure frictional
contact zone. Applied to the masonry context, this general FCZM can be
fully characterized through two fracture tests carried out on small masonry
assemblages. Finally, FCZM is implemented in LMGC90 discrete element
code and used to simulate the experimental response of an unilateral cyclic
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1. Introduction

The basic hypothesis of cohesive zone models is that failure can be de-
scribed through a ctitious surface crack (which is usually characterized by
a zero thickness interface) which transmits normal and shear stresses. The
magnitudes of normal and shear stresses are described from functions (mono-
tonically decreasing) of the opening displacement (Mode I) and of the shear
plane displacement (Mode Il) of the interface.
In literature there is a large variety of Cohesive Zone Models (CZM) which
can be di erentiated according to the shape of their softening parts: rigid-
linear (Camacho and Ortiz, 1996; Snozzi and Molinari, 2013), bi-linear (Hille-
borg et al., 1976; Camanho et al., 2003; Hagberg, 2006), tri-linear (Morel et
al., 2010; Biso -Sauve et al., 2019) and exponential CZM (Xu and Needle-
man, 1993; van den Bosch et al., 2006). In those models, the cohesive stresses
decrease (after an elastic domain) according to the rising of a damage vari-
able (scalar) usually noted asl. Mode | and Modell cohesive behaviors
are generally described according to softening functions exhibiting a similar
shape.
In the case of combined traction and shear loadings, Modeand Modell
cohesive behaviors can be coupled or uncoupled. Uncoupled CZM are typi-
cally used when interface separation occurs in a single prede ned direction,
while coupled CZM are used for complex loading leading simultaneously to
opening and shear plane displacements of the interface. Coupled CZM gen-
erally di er according to the criteria used to describe the mixed-mode+ I
failure and the dependence (or not) to the loading path exhibited by the
material fracture (van den Bosch et al., 2006; Camanho et al., 2003; Dimitri
et al., 2015).
In the case of combined compression and shear loadings, the contribution of
the friction phenomenon complicates the analysis of the respective contri-
butions of the frictional and cohesive behaviors in the mechanical response
of the interface. As such, if the cohesive behavior is estimated by simply
subtracting the value of thefull friction stress from the total shear stress-
shear plane displacement response (Freddi et al., 2017; Baek and Park, 2018;
Biso -Sauve et al., 2019; Yuen et al., 2019), the resulting Mode |l cohesive
energy is usually underestimated and associated with a physically inconsis-
tent dependence to the normal stress. Note that such an assumption of



superimposition offull friction stress and cohesive stress leads to consider
that the cohesive behavior is only activated if the full friction threshold is
reached or, in other words, that the friction e ect takes place while the co-
hesive capacity of interface is still intact, which appears to be physically
inconsistent. To overcome this issue, several authors (Chaboche et al., 1997;
Snozzi and Molinari, 2013; Spring and Paulino, 2015; D'Altri et al, 2018)
have proposed phenomenological evolutions of the friction stress as a func-
tion of the shear plane displacement superimposed to the cohesive behavior.
Nevertheless, even if thesgictional cohesive zone models allow a better de-
scription of experimental stress-displacement responses, assuming a friction
stress function of the shear plane displacement is not physically based since
frictional e ect is expected to depend only on the normal stress, the friction
coe cient and the area of the surface on which it acts. A coupling based
on the damage part of the interface on which the frictional phenomenon can
physically act appears more relevant (Raous and Monerie, 2002; Acary and
Monerie, 2006; Alfano and Sacco, 2006).

On this basis, we propose a general Frictional Cohesive Zone Model dedi-
cated to quasi-brittle fracture describing the mechanical response of an inter-
face under combined traction or compression and shear loadings. In Section
2, the cohesive laws with exponential softening used for pure Mode | and
Mode Il fractures are presented and a reminder of the physical meaning of
the damage variable driving the softening part is proposed. On this basis,
under combined traction and shear loadings (Section 3), mixed-modte- 11
cohesive zone model proposed by Camanho et al. (2003) is used to express
the mixed-mode response of the interface and the dependence to the loading
path consistent to the one expected in quasi-brittle fracture. Under combined
compression and shear loadings (Section 4), the novelty lies in the proposed
coupling between cohesive and frictional behaviors which is obtained through
an estimate of the e ective frictional area, itself estimated from the damage
variable. A rstillustration of the response obtained from FCZM under cyclic
shear loading is proposed. In Section 5, the FCZM is used in the context
of masonry and two characterization tests allowing the estimation of all the
cohesive and frictional parameters of a block-mortar interface are described.
The methodology used to estimate simultaneously the frictional and Mode
Il cohesive parameters is particularly discussed. Finally, in Section 6, the
FCZM is implemented in LMGC90 discrete element code and used to simu-
late the experimental response of an unilateral cyclic shear test carried out
on a triplet of limestone blocks assembled by two mortar joints.
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2. Cohesive law with exponential softening

The accurate simulation of interfacial failure in quasi-brittle materials
needs to use an appropriate cohesive law allowing in particular the descrip-
tion of (i) the negative hardening expected for the tension and shear stress-
displacement responses of the interface, (ii) the dependence on the loading
path and of (iii) the strong dissymmetry of tensile and shear fracture prop-
erties.

Among the dierent functions used to describe the softening behavior in
CZM, exponential softening allows tting, with a reasonable accuracy, of the
negative and concave hardening function expected in quasi-brittle fracture
as shown in Figure 1. In this study, one proposes to describe the Mobe
and Modell cohesive behaviors from the same shape of cohesive law (expo-
nential softening) as shown in Figure 1 where= fl;1l g. The initial elastic
behavior is characterized by the sti nesK ° [N/m 3] and the tensile { = I)

or shear { = Il ) strength & [N/m?]. The stress ; as well as the sti ness

K; decrease continuously re ecting the softening behavior of the interface
(Fig. 1). The decrease of the stinesK; from its initial value K? (and

Figure 1: Cohesive law with exponential softening

consequently, the one of the cohesive stressfrom the strength ) is driven
by a damage variabled (scalar variable). The damage variablel re ects the



level of the mechanical degradation of the interface which can be described
through the development of crack surface. In this way and particularly in
Mode I, d is de ned as the ratio of the cracked surfacé 4 [m?] over the whole
interfacial surface areaAy [m?], i.e., d = Ag=Ao. ThusO0 d 1,d=0
corresponding to an intact interface A4 = 0) while d = 1 re ects the overall
failure of the interface Ay = Ap). Thus, for a given damage levedl, the load

F; transmitted by the interface can be expressed either with thapparent
stress ; applied on the whole interface surfac, or with the e ective stress

~ applied on the healthy surface of the interfac&:

Fi=~A= iAo (1)

where the healthy surfaceX can be related to the whole surfacé and the
damage surfacé\y as:

A=Ay Ad= Aol d (2)

Thus, from Equations (1) and (2), the apparent cohesive stress can be
expressed as a function of the e ective ong 4as:

=@ d~ 3)

Anyway, the displacement ; is the same for the apparent and e ective be-
haviors of the interface, such as:

= —=; (4)

Thus, introducing Eq.(4) into Eq.(3) leads to the expression of the apparent
sti ness 1
Ki=(1 dK?2 (5)

hence, the apparent cohesive stress yields:

= KL d) (6)

in case of zero thickness interface, the initial sti nessK ° must tend towards in nity
if the adhesion at the interface is perfect K ? is then quali ed as a penalty sti ness) while
K 2 will take a nite value in the case of a lack of cohesion of the interface which can be
described from an initial damage surfaceAy or, in a equivalent way, from an initial value
of the damage variabled according to Eq.(5).
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as shown in Figure 1.

According to Eq.(6), the softening behavior of the interface is related to
the increase of the damage variable while the apparent stress ; follow an
exponential function:

()= fert ()
where & = £=K? [m] corresponds to the displacement at the endﬁf the elas-

tic reglme and such as the cohesive ener@y; [J/m ?] verify Gy, = id
which leads to:

0

2K0 e
i 8
S KG, (P ®)

According to Equations (6) and (7), the damage variable can be expressed
as:

— i ko 1
d=1 co e " 9)
Note that, according to the second law of the thermodynamics of irreversible
processes, the evolution of the damage parameter is always positide (0,
d= max(dhistory )

To resume, for each fracture modei(= |: Mode | andi = Il : Mode
I1), the cohesive law of the interface is described with only three cohesive
parameters: the initial stiness K?, the tensile or shear strength £ and the
cohesive energy;, . Thus, the pure Modei cohesive law can be summarized
as:

8 :
(D=, fet it e i<y (10)
0 if o

where ; has been previously de ned from Eq.(8) and;" corresponds to
an upper cut-o of the displacement which can be introduced in order to
indicate arti cially the total failure of the interface (i.e., i =0andd=1
for | I') because the exponential function de ned in Eq.(7) tends to
i = 0 asymptotically as a function of displacement ;. For instance, the
upper cut-o of the displacement ! can be estimated from a percentage
of the strength £ that leads, in the case of an exponential softening, to:

i= e Lingy (11)



3. Combined traction and shear loading: mixed-mode I+II CZM

3.1. Mixed-model + Il

First CZMs (Hilleborg et al., 1976; Xu and Needleman, 1993; Camacho
and Ortiz, 1996) have been developed for single mode fracture processes (
for pure Mode | or pure Mode Il fractures). Nevertheless, an interface is
generally loaded in Mode | and in Mode Il simultaneously (Zucchini and
Lourerco, 2002) leading tomixed-model + |l fracture process. Therefore,
various mixed-model + Il cohesive zone models have been proposed in or-
der to describe such a complex fracture process (van den Bosch et al., 2006;
Hegberg, 2006; Snozzi and Molinari, 2013; Biso -Sauve et al., 2019) which
are mostly inspired by the pioneering model due to Camanho et al. (2003).
The mixed-model + Il CZM proposed by Camanho et al. (2003) is formu-
lated from the pure modes (Modd and Modell ) cohesive laws (as detailed
in the preceding Section) and leads to the expression of a mixed-mode cohe-
sive law which has a form similar to those used for pure modes (Fig. 1g.,
characterized by an initial sti nessK?’,,, , a strength &, ,, (or a limit elastic
displacement f, ) and a cohesive energgs ., as shown in Figure 2.

The mix of modes is obtained on the basis of a coupling parametercor-
responding to the ratio of the shear plane component of the displacement

i,,, overthe normal one,,, :

= L —tan( ); (12)

li+n

and from two criteria, the rst one relating to the damage initiation and the
second one corresponding to the interface failure.

Damage initiation criterion. It is assumed that the mixed-mode limit
elastic stress y,, corresponding to the damage onset and especially its
Mode | and Modell components, respectively noted as®  —and  ,
must satisfy the quadratic stress criterion:

e 2 e 2
(T + Iy

e e
| 1

=1, (13)
where, [ corresponds to the tensile strength in pure Mode and [ is the
shear strength in pure Moddl previously de ned in Section 2.

On this basis, the initial sti ness of the Model and Modell components
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Figure 2: Mixed-mode cohesive law

of the mixed-mode being equal to the initial sti ness of the pure modesg.

KP,, = KpPandK{ == K, the quadratic stress criterion [Eq.(13)] can
be rewritten in terms of displacements as:

e 2 e 2

[ T _

| eII + Ie 1 — 1 (14)

Thus, using the relationships between the displacement. |, , its Mode |
and Modell components (f , and {  respectively) and the coupling
parameter [Eq.(12)], the mixed-mode limit elastic displacementf,, can

be obtained from Equation (14) such as:
s

e — e e 1+ 2
I+ = 1 1 (|e|)2+( Ie )2 (15)

where 7 and | are the limit elastic displacements of the pure moddsand
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Il respectively [Eg.(10)]. Note that, according to Equation (15), a Modé
loading corresponding to a value of the coupling parameter = O leads to

‘. =  while a Modell loading, inducing !1 ,leadsto 7, = |-
Finally, the expression of the mixed-mode + Il limit elastic stress ,
yields: S

Kloz + ZKHZ

TR (16)
T

Note that pure Mode | loading and pure Mode Il loading correspond also

to particular cases of Equation (16) insofar as?,,, = [ for =0 and

Fen = G for 11 (Figure 3).

e — ee
1+ 11 |

Failure criterion.  The failure of an interface under mixed-mode loading is
governed by the mixed-mode cohesive ener@y , , . This cohesive energy
can be expressed from the sum of its Mode and Mode Il components,
Gt,,,, and Gy, respectively, such as:

Gf|+|| = Gf||+|| + Gf|||+|| (17)

On this basis, a second criterion, named dailure criterion is necessary to
estimate the value of mixed-mode cohesive ener@,,, (van den Bosch
et al., 2006; Heagberg, 2006; Snozzi and Molinari, 2013; Biso -Sauve et al.,
2019). This failure criterion is usually expressed through a power law of the
Mode | and Modell components of the cohesive energy, such as:

n
Gf||+|| + Gf|||+||

Gfl Gfll

=1 (18)

where G¢, and G, are the cohesive energies relative to the pure modes
and Il respectively (Section 2).

As a rst approximation, a linear relationship is usually chosen from Eq.(18),
i,e. n = m =1 (Biso-Sauve et al.,, 2019). Such a linear relationship
(n = m=1) will be also assumed in this study.

Let us express the Modd and Mode Il components of the mixed-mode
cohesive energy as:

1 = lsn C;f| (19)
Gf” 1+ 11 = e C;fll (20)



where ,,,, [1]and ., [1] correspond respectively to the fractions of the
pure Model and Modell cohesive energies in the correspondent components
of the mixed-mode cohesive energy. Therefore, according to Equations (19)
and (20), the failure criterion de ned in Eq.(18) yields :

en t 1y =1 (21)
Moreover, a given cohesive energ$;, can be expressed as the sum of the
energy associated with the elastic parG;” = 7 =2 and the one related to
the softening part G¢ =", i.e., G¢, = G¢®+ G;*°". On this basis, the ratio
of the elastic energy over the whole cohesive energy energy of a given mode
must be maintained in the corresponding component of the mixed-mode such
as:

Gfle Gf |e| I e

= = = cte 22
Gf' Gf||+|| | ( )
Gfﬁ Gfﬁl I e

= = = cte 23
Gy Grus ! 239

Note that such ratio could be also expressed from the softening part of the
cohesive behaviors. Finally, the parameters describing the elastic part of the
cohesive behavior in pure modes (Section 2) and those of the mixed-mode
(obtained from the damage initiation criterion) being known, the fraction of

the Mode | cohesive energy in the mixed-mode cohesive energy,, can
be expressed, according to Equations (19) and (22), as:

— Gf||+|| — Gf?wn — ﬁ 2 24

lren — Gf| - fo - Ie|2_|. 2|82 ( )

while, according to Equations (20) and (23), the fraction of the Modél
cohesive energy in the mixed-mode cohesive energy,,, Yields:

Gf” Gfﬁ 2 e2
— 1+ 11 — 1+ 11 = | (25)
Iy Gf” Gf|e| Iel 2 4 2|e2

Note that, according to Equations (24) and (25), a Modéd loading corre-
sponding to a value of the coupling parameter = 0 leads to fractions of the
Model and Modell cohesive energiessuchas,,, =l1and ,,, =0and
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hence, according to Equations (17) and (19), the mixed-mode cohesive en-

ergy is then equal to the Mode | cohesive enerdy;,,, = G;, as expected

intuitively. Conversely, a Mode |l loading inducing a coupling parameter
'l leads to fractions of the Modd and Modell cohesive energies such

as ,,, =0and y,,, =1 and so, according to Equations (17) and (20),
to mixed-mode cohesive energ®;,,, = Gt , i.e., the Mode Il cohesive
energy.

(a) (b)

Figure 3: Mixed-mode CZM as a function of the angle: (a) Cohesive behaviovs and
(b) Mixed-mode cohesive energy and its Modd and Modell componentsvs obtained
for G¢, =200J=m? and Gy, =400J=m?.

Figure 3(a) exhibits the response of the mixed-mode CZM when the in-
terface is subjected to a monotonically rising displacement.,, up to the
ultimate displacement }',,, according to various angles (Fig. 2) ranged
between 0 and 90 degrees. It can be observed from Figure 3(b) that mixed-
mode cohesive energs ., (Equation 17) increases from the Mode | cohe-
sive energyGs ,,,, = G| = Gr, when the interface is loaded according to

= 0deg (for this example, the valueGs, has been xed to 200=m?) to the
Mode Il cohesive energy when = 90deg, i.e.,G;,,, = = Gy,

with here G, =400J=m?.

Gf|||+||

3.2. Inuence of the mixed-mode coupling on the dissipated energy

As previously mentioned, the quasi-brittle damage being caused by ex-
tension, the dissipated energy is expected to be di erent if the interface is
rstly loaded in pure traction then in pure shear and conversely. A way of
studying the behavior of a coupled cohesive zone law is to analyze the dissi-
pated energy under combined normal and shear loading as proposed by van
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den Bosch et al. (2006).

In a rst case, the interface is loaded in the directionl (i.e., = 0deg) up
to a displacement |~ whose value is a percentage of the ultimate ong¢
then, | ., Iis kept constant and a displacement is applied in the direction
[l up to the corresponding ultimate one ., = |, (Fig. 4(a)). This rst
case of non-proportional loading is applied for various ratiq, ., = ' ranged
between 0 and 1.

In the second case (Fig. 4(b)), the interface is rstly loaded in the direction
Il (i.e., =90deg) up to adisplacement, _  corresponding to a percent-
age of the ultimate one ; then, ,;  is keptconstant and a displacement is
applied in the direction| up to the ultimate one ,,,, = }'. As for the rst
case, the second loading case is applied for various ratio 0,, =, 1.
The mixed-mode energyGs , ,, dissipated during both cases as well as the

(a) (b)

Figure 4: Loading sequence to study the inuence of the coupling parameters on the
work-of-separation: as proposed by van den Bosch et al. (2006)

Mode | and Mode Il components of this energyGr, =~ and G, = re-
spectively, are plotted in Figure 5 as a function of the ratio, ., =} relative
to the rst case (Fig. 5(a)) and =1 corresponding to the second case
(Fig. 5(b)).

In the rst case (Fig. 5(a)), as expected, the dissipated energs , |,

Gty ., = Gr, whentheratio |, =" = 0 which corresponds to a pure
shear loading of the interface whileG¢ |, , = G¢| =~ = Gf, when | ==

1 corresponding to pure traction loading. Moreover, the dissipated energy
decreases monotonically as a function of the ratig . = ' from G, to Gy,
exhibiting a consistent physical behavior.

In the second case (Fig. 5(b)), the dissipated enerdy; ,,,, increases mono-
tonically as a function of the ratio ,, ,, = from G¢ ,, = G, == G,
when = =0 which corresponds to pure traction loading of the inter-

Iy

I+ 11
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face, oGy, = Gt ., = Gr,, when , = =1 corresponding a pure
shear loading of the interface.

As a conclusion, the monotonous evolutions of the mixed-mode dissipated
energy observed from both loading cases in Figures 5(a) and 5(b) seems to
be consistent with the expected behavior of a quasi-brittle interface.

(a) (b)

Figure 5: Energy dissipated from non proportionnal loading (with Gf; = 200J=m? and
Gf, = 400J=m2)

In the following part, cases of combined compression and shear loadings
applied to the interface are studied. In these cases, friction e ect strongly
in uences the mechanical response of the interface and hence, a coupling
between frictional and Modell cohesive behaviors based on an estimation
of the e ective frictional area is proposed.

4. Combined compression and shear loading: Frictional Mode I
CzZM

4.1. Monotonically loading

When the interface is subjected to shear and compression loading, the
contribution of the friction must be taken into account to describe accu-
rately the interface behavior. As mentioned in Introduction, in most models,
the full friction stress is usually considered from the onset of cohesive be-
havior and leads to consider that the friction e ect takes place while the
cohesive capacity of the interface is still intact. To overcome this physical
inconsistency, several authors (Chaboche et al., 1997; Snozzi and Molinari,
2013; Spring and Paulino, 2015; D'Altri et al, 2018) introduce, in their CZM,

a phenomenological progressive rising of the friction stress as a function of

13



the shear plane displacement which allow a better description of experimen-
tal stress-displacement responses. Nevertheless, assuming a friction stress
depending of shear plane displacement is not physically based because fric-
tion stress is expected to depend only on normal stress, on friction coe cient
and on the surface area on which acts the friction e ect. Thus, as proposed
by Raous and Monerie (2002), Acary and Monerie (2006) and Alfano and
Sacco (2006), a coupling based on the damage part of the interface on which
the frictional phenomenon can physically act appears more relevant.

In the following, taking inspiration from these latter works, a frictional Mode

Il cohesive zone model founded on a physically based coupling of cohesive
and frictional behaviors is proposed. The coupling is here introduced from
the damage variable, single internal variable of the model, which gives an
estimate of the e ective damage area of the interface.

(@) (b)

Figure 6: Combined compression and shear loading, based on apparent stresses: (a) rhe-
ological model, and on e ective stresses: (b) evolution of e ective areas against interface
areaAg

Let us consider the rheological model shown in Figure 6(a) which consists
in a cohesive spring and a friction pad in parallel in order to describe the
interface mechanical behavior. According to this rheological model, the shear
stress |;, can be expressed as the sum of the cohesive stregsand the
frictional stress

ne= 0+ (26)

Note that all stresses in Eq.(26) correspond tapparent stressesi.e., stresses
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acting on the whole surface of the interfacé,.

Moreover, according to Eq.(1), the apparent cohesive stresg [EQ.(26)] can
be expressed from the e ective cohesive stresg -acting on the e ective
cohesive aredR = Ap(1 d) and yields:

A
1 AO

An example of the cohesive stress, vs ;; behavior is plotted in Figure 7
(red curve).

In the same way, the apparent frictional stress [EQ.(26)] can be expressed,
according to Eq.(1), from the e ective cohesive stress -acting on the e ec-
tive frictional area A such as:

=~ (l d) = K|O| (1 d) T (27)

A
=~ — 2
A (28)
where the e ective frictional stress ~ is de ned, according to the Coulomb's
law, as:
Oj~j ~c= (29)

[

where is the friction coe cient and ~ _ = | corresponds to the shear
sliding resistance.

Regarding the e ective frictional areaA [EQ.(28)], it is assumed that this
area corresponds to a part or all of the damage aréey = d Ag through the
function f (d) = d° with p 1, as shown in Fig. 6(b):

A = f(d)Ag = dPA, (30)

Indeed, at the onset of interface damaga.€., d' 0), combination to both
compression and shear loading leads to extension (strain) approximately ori-
ented at 45 with respect to the interface plane which, in a case of a quasi-
brittle material, generates microcracks oriented perpendicularly to the exten-
sion direction. Due to this preferential orientation of microcracks, the shear
loading tends to open the microcraks and consequently to cancel the friction
e ects on the damage area (fod' O,A ' Oandso ' 0). Then, with
the increase of interface damage.¢., 0 <d < 1), the number of microcracks
increases (X A 4 < Ay) and the microcracks progressively coalesce towards
a main crack oriented in parallel to the interface plane on which compression
and shear loadings act simultaneously. This progressive change in the orien-
tation of cracking (from 45 to O with respect to the interface plane) coupled
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Figure 7: Total shear stressvs shear plane displacement response obtained from FCZM
and its frictional and cohesive components.

to the increase of damage area lead to an increase of the e ective frictional
areaA (but A  Ay) and hence of the frictional stress . Finally, when
the failure of interface occursi(e., d = 1), the e ective frictional area A
equals the damage areA4 and both correspond to the whole interface area
Ao which leads to an apparent frictional stress such as: = . Note
that the function f (d) = d° which corresponds to the ratio of the e ective
frictional area A over the damage areaAy must correspond to a concave
form as shown in Fig. 6(b) since the e ective frictional area must not exceed
the damage one &  Ay). Nevertheless, another form of concave function
could be used to describé(d) = A =Aq instead off (d) = d° with p 1.

Thus, according to Egs.(29) and (30), the apparent frictional stress
[EQ.(28)] yields:

0j | J[d)=f(d) (31)

where _(d) corresponds to theapparent friction sliding threshold which

increases as a function of the damage variabieas shown in Figure 7 (blue

curve) and leads to the classical value of the sliding stress, = | when

d = 1, i.e. when the interface is totally failed. Note that, according to

Eq.(31), the apparent friction sliding stress _(d) can be also expressed as
(d)= (d) , where (d)= f (d)= dP can be seen as the apparent
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friction coe cient evolving as a function of the damage level.
Finally, according to Egs.(27) and (28), the apparent shear stress,
[Eq.(26)] yields:
= KQ@ d) o+ (32)

where the frictional stressj | .(d) and where _(d) = d® | corre-
sponds to the apparent sliding resistance. According to Eq.(32), an example
of the shear stress |, ,, resulting from the sum of the cohesive stress, and

of the shear one , is plotted in Figure 7 (black curve). The shape of the
obtained |, vs | response is in agreement that those usually observed
experimentally for interfacial failure and describes a smooth transition from
a cohesive zone to a pure frictional contact zone.

Moreover, regarding the general shear behavior of the interface given
by Eq.(32), when the apparent frictional stresg j < _(d), the interface
displacement is blocked (due to blocking on the e ective frictional are& )
and hence the cohesive part is no longer loaded (but the cohesive stress

i1 remains its value before blocking). Conversely, whgn j = _(d), the
interface displacement is possible due to sliding o& and both cohesive
and frictional parts are loaded. This consequences of the rheological model
(cohesive spring and a friction pad in parallel as shown Fig. 6(a)) are detailed
in the following section from cyclically loading of the interface.

4.2. Response obtained under cyclic loading

In this section, the simulation of a cyclic loading test (obtained from an
analytical computation) is carried out to show, from a qualitative point of
view, the main features of the proposed constitutive model. The cyclic shear
response of the FCZM model is shown in Figure 8. The interface is sub-
jected to a constant compressive normal stress and to tangential cyclic stress
through an imposed tangential displacement. Figure 8 shows the evolution
of total shear stress ;, = | + as a function of shear displacement;,
while the evolution of damage variabled is plotted on the secondary axis.
The cyclic path is characterized by two loading-unloading cycles (cycle 1:
ABCD and cycle 2: EFG). In order to ensure an easier description of the
loading-unloading behavior, the damage level is kept constant during both
cycles.

At the onset of the loading, as long as the cohesive shear stress is lower
than the shear strength (;; < | ), the model remains in the elastic domain
(phase OQO') and damage variabled = 0. When the shear strength [} is
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Figure 8: FCZM response expected in the case of two load-unload cycles performed during
an unilateral shear test under compression. Inserted graph: example of expected response
from a bilateral shear test.

reached (pointQ'), the cohesive stress,, decreases following the softening
exponential law [Eq. (7)] and frictional stress begins to increase according
to the rising of damage variabled, i.e., = .(d). Note that during the
phaseO'A the imposed shear displacement is positivg- > 0 which implies
that cohesive stress as well as the frictional one are positive.

Cycle ABCD-unilateral shear test : From point A, the displacement
1 Is no longer imposed and the interface is unloaded under the sole e ect of
the cohesive part (this situation corresponds to the realization of an unilateral
shear test). This induces a change in the sign of frictional stress (< 0)
while the cohesive one remains positive. The fact that = .(d) leads
to a vertical jump of the total shear stress up to point8 such asj ,j =
2 _(d) while the value of the cohesive stress remains constant. From point
B, a decrease of the total shear stress is observed up to pdihfwith 4 < 0)
which corresponds to a sliding phase of the interface since the value of the
cohesive stress is greater than the one of the frictional ong > j | where

= .(d) with d = cte. The slope of theBC part corresponds to the

stiness of the cohesive springk;, = K3 (1 d). At point C, the total
shear stress value is equal to zero which corresponds to the balance between
cohesive and frictional residual stresses such ag = = .(d).

From point C, the displacement |, is again imposed with 4 > 0 and then
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the value of frictional stress becomes again positive. Thus, the change in
loading direction again induces a jump of the total shear stress up to the
point D whose magnitude corresponds tp ;,j =2 (d) (since the value
of changes from _(d) to _(d)) then an interface sliding occurs from
the point D to the point A since the value of the cohesive stress becomes
greater to the one of the frictional stress is | > with = (d).
The slope of the partDA corresponds to the sti ness of the cohesive part
Ki =Kj@ d).

Thus, the cycleABCD exhibits an hysteresis e ect induced by the interface
sliding along the part BC and DA and associated dissipated energy from
friction e ect.

Then, from point A a monotonically loading (i.e., + > 0 where |, is
imposed) is carried out from pointA to point E. The branch AE highlights
the rising of damage variable which leads to a softening of the cohesive law
and an increase of the frictional stress.

Cycle EFG-unilateral shear test : From point E, the displacement

1 is no longer imposed again and, as from poi#t, the interface is unloaded
according to an unilateral shear test in which the displacement can be also
induced by the cohesive part of the model. This unloading leads to a change
in the sign of frictional stress ( < 0) and induces atheoretical vertical
jump of the total shear stress such ag ,J =2 .(d) while the value of
the cohesive stress remains constant and positive.

However, the unloading being carried out under the sole e ect of the co-
hesive spring (unilateral shear test), the fact that the cohesive stress is lesser
than the frictional one leads only to a jump of the total shear stress up to

1, =0 (point F) which corresponds to residual stresses such as= I
with j j< _(d) meaning the blockage of the interface.

If the interface is then re-loaded from poinF ( 4 > 0 where ,, is imposed),
the value of frictional stress becomes again positive and leads to a jump of
the total shear stress up to pointG induced by the increase of the frictional
stress magnitude up to the value _(d) (while the cohesive stress value re-
mains constant) from which the interface can slide again but with an increase
of the damage variabled.

Thus, from an unilateral shear test, when the cohesive stress becomes lesser
than the frictional one, an unloading-loading cycle takes place without hys-
teresis e ect because the sole e ect of the cohesive part is not su cient to
induce a sliding of the interface. Conversely, when the cohesive stress is
greater than the frictional one, an unloading-loading cycle will exhibit an
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hysteresis e ect (cycleABCD ).

Cycle EF'G'H'-bilateral shear test (graph inserted in Fig. 8)
Now consider that the unloading is carried out from poinE through a bilat-
eral shear test rather than an unilateral one, i.e., the shear displacement is
imposed for 4 < 0, the total shear stress exhibits e ectively thetheoretical
vertical jump of magnitudej ,j =2 (d) up to the point F° From this
point, the interface is then able to slide since the frictional stress is equal

= .(d) and the interface exhibits a sti ness corresponding to the one
of the cohesive partk;; = K3 (1 d) (part F%GY. From point G° the in-
terface is re-loaded (4 > 0) and, as previously explained, the reverse of the
loading leads to a change in the sign of frictional stress (> 0) inducing a
jump of the total shear stress such as ,,j=2 _(d) up to point H°(while
the cohesive stress remains constant and positive) from which the interface is
again able to slide (since = _(d)) up to point G, exhibiting the sti ness
Ky = K2 (1 d). Note that the cycle EF %G™ © exhibits an hysteresis e ect
linked to the sliding of the interface along the parts= %G° and H% and the
associated dissipated energy.

5. Estimation of cohesive and frictional parameters in the context
of masonry : block-mortar interface

Frictional Cohesive Zone Model described in the previous sections is ap-
plied in the following in the context of masonry where the knowledge of the
mechanical behavior of interface between stone block and joint mortar is par-
ticularly relevant with regard to the accurate description of the mechanical
behavior of masonry.

FCZM parameters introduced in Sections 3 and 4 are identi ed on the in-
terface between limestone blocks and hydraulic lime mortar (NHL 35) In
the following, the rst part presents the main mechanical properties of the
masonry constituents: limestone blocks and mortar. Then, a direct ten-
sile test carried out on a duo of limestone blocks assembled by one mortar
joint and leading to an estimation of the FCZM Mode | cohesive parameters
(KP2 [N=m?3], ¢ [N=m?] and G;, [J=m?]) is presented. Finally, a shear test
performed on a triplet of limestone blocks assembled by two mortar joints
is described. This test allows estimating the Mode Il cohesive parameters

2Limestone blocks and hydraulic lime mortar (NHL 3.5) are traditionally used in west-
ern region of France for small residential buildings, buildings, churches and bridges
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Designation Quantity Symbol Value (CV) Unit
Limestone Youngs modulus Ep 11.1 (15%) GPa
blocks Compressive strength G 9.5 (26%) MPa

Hydraulic Youngs modulus Enm 3.95 GPa
lime Compressive strength cm 1.9 (14%) MPa
mortar Flexural strength fim 0.6 (6%) MPa

Table 1: Mechanical characteristics of limestone blocks and hydraulic lime mortar. The
Young's modulus of lime mortar E,;, has been estimated by Biso -Sauve (2016) for the
same mixture of lime mortar.

(K3 [N=m3], §& [N=m?] and Gy, [J=m?]) and frictional parameters ( [1]
and p [1]).

5.1. Characterization of constituents materials

Limestone blocks. The limestone used in this study is typical of the south-
west of France and stem fromPierres de Frontenacstone quarry. Their
compressive properties are determined, according to EN 1926 (2006), from
20 specimens. The blocks tested of nominal dimensions of 1000 100 mn?

are positioned between steel plates and 4 extensometers attached directly to
the specimen allow to measure strains. Average compressive strength and
Youngs modulus obtained from the compression tests are reported in Table
1.

Mortar joints.  The lime mortar used in this study is composed of sand,
hydraulic lime (NHL 3.5) and water. Proportions by volume of the lime,
sand and water in the mixture are estimated by a master stonemason on the
basis to 1 part of lime and 3 parts of sand. After that, water is added in
the mixture until reaching desired traditional workability. Finally, measured
proportions in grams are: 1 (NHL3.5): 6.5 (sand 0-2 [mm]): 1.5 (water).
Flexural strength and compressive strength were obtained according to EN
1015-11 (2007) on 8 specimens (44 16 cn?). Average exural strength
and compressive strength obtained from lime mortar are reported in Tab. 1.

5.2. Estimation of Mode | cohesive parameters: direct tensile test

5.2.1. Experimental set-up
The cohesive parameters characterizing the Mode | fracture behavior of
a block-mortar interface are usually estimated from a direct tensile test (van
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Mier, 1996; van der Pluijm, 1999; Almeida et al., 2002; Biso -Sauve, 2016;
Sandoval and Arnau, 2017; Biso -Sauve et al., 2019). Despite some dif-
ferences between the tensile tests proposed in the literature, they can be
categorized as a function of their boundaries conditions: rotating supports
or xed supports. Experimental set-up using xed supports leads to a higher
value of the cohesive energy and the tensile strength compared to the one us-
ing rotating supports insofar as xed supports limit exure e ects and induce

a more uniform damage of the interface (van Mier, 1996). On this basis, an
experimental set-up using xed supports is chosen in this study to character-
ize the block-mortar interface in Mode | (Biso -Sauve, 2016; Biso -Sauve

et al., 2019).

According to experimental set-up proposed Biso -Sauve et al. (2019), duo of
limestone blocks (10 10 7 cn?®) assembled by one mortar joint (10 10 0:7
cm?®) are directly glued (epoxy resin) inside steel boxes xed on universal test-
ing machine of 100 kN maximum load capacity thus restricting rotations of
blocks during tensile test as shown in Figure 9(b). Experiments are controlled
by the opening rate of the mortar joint obtained from the average of displace-
ments measured by four extensometers located on each side of the sample (in
the vicinity of corners as proposed by van der Pluijm, 1999) (Figure 9(a)),
imposing a opening displacement at constant velocity (8 m/min). In order

to limit long term mechanical e ects, the opening rate is gradually increased
in the post-peak regime to reach 100m/min at the end of the test.

(a) (b)

Figure 9: Tensile test setup: (a) location of extensometers measuring the opening dis-
placement of the mortar joint and (b) picture of test setup
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5.2.2. Estimation of Mode | cohesive parameters

As usually observed from direct tensile test, the failure of mortar joint is
mainly located at the block-mortar interface. As a consequence, if the tensile
stress obtained from the ratio of the tensile load over the specimen nominal
cross section is characteristic of the tensile stress applied on the interface,
the average displacement measured from the extensometers does not re ect
the single opening of the interface. Indeed, as the extensometers are xed on
stone blocks in the immediate vicinity of the joint as shown from Fig. 9(a),
the measured displacement value also includes the extension of the mortar
joint and, to a lesser extent, the extension of limestone. Thus, knowing the
Young's moduli of lime mortar (3.95 GPa, Biso -Sauve, 2016) and limestone
(11.1 GPa, Tab. 1), the interface opening is estimated from the average dis-
placement measured from the extensometers in substracting the limestone
and joint extensions and this for all values of the tensile stress.
Figure 10(a) exhibits experimental tensile stresys interface opening re-
sponses obtained from the tensile test. As previously shown in several studies
(van der Pluijm, 1999; Biso -Sauve, 2016; Sandoval and Arnau, 2017; Biso -
Sauve et al., 2019), the initial elastic response is followed after the peak stress
by a strain negative hardening phase characteristic of the quasi-brittle frac-
ture behavior of the mortar joint and especially the fracture energy required
to completely separated the two limestone blocks.

() (b)

Figure 10: Direct tensile test results: (a) experimental | | responses and (b) Mode |
cohesive behavior obtained from Eq.(10) compared to the average experimental response
more or less one standard deviation

The Mode | cohesive parameters are directly estimated from the tensile
stressvs opening displacement responses plotted in Fig.10(a). The initial
sti ness K is estimated from a linear regression of the elastic regime before
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Designation Quantity Symbol Value Unit

Initial sti ness K? 121 10% Pa/m
Mode | Maximum stress ¥ 0:05 MPa
Cohesive energy Gf, 3 J=m?
Initial sti ness K3 282 10" Pa/m
Mode I Maximum stress M 0:27 MPa
Cohesive energy Gfy, 206 J/m?
Frictional Frictional coe cient 0:81 1
parameters Exponent off (d) function p 110 1

Table 2: FCZM parameters obtained from experimental campaign

the peak stress, the maximum tensile stress is directly obtained from the
experimental peak stress while the cohesive enerG@y, is estimated from the
area under the response. The average of each cohesive parameters is
given in Table 2. On this basis and according to Eq.(10), the Mode | cohesive
response corresponding to these average parameters is plotted in Figure 10(b)
and exhibits a fairly good agreement with the average experimental tensile
stress-opening displacement response more or less one standard deviation.

5.3. Mode Il characterization: triplet shear test

In literature, there is a large variety of experimental setups allowing com-
bined compression and shear loadings. Among the di erent proposed setups,
one can note (i) the direct shear test used by van der Pluijm (1999) (Fig.
11(a)), (ii) the couplet test (Fig. 11(b)) and (iii) the triplet test requested
by EN 1052-3 (2007) shown in Fig. 11(c). The rst test (van der Pluijm,
1999) requires very sti supports to prevent exure e ects while the second
one (Lourerco and Ramos, 2004; Abdou et al., 2006) is not symmetrical and
can lead to a non homogeneous loading on the mortar joint if the boundary
conditions are not perfectly controlled. On this basis, the triplet test ap-
pears as the most appropriate insofar as it is symmetric and does not require
excessively sti supports. Furthermore, the simultaneous test of two mortar
joints, which may exhibit scattered mechanical properties, leads to the me-
chanical characterization of asingle joint whose response corresponds to the
average responses of the two joints (Zhang et al., 2008).
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(@) (b) (€)

Figure 11: Dierent types of combined compression and shear test setups: (a) van der
Pluijm (1999), (b) couplet test and (c) triplet test (Figure extracted from Lourerco and
Ramos, 2004)

5.3.1. Experimental setup

The triplet test is chosen in this study to characterize the frictional and
Mode Il cohesive properties; this test can exhibits more or less pronounced
parasitic loadings. Indeed, a bending loading may appear on the sample
especially if the blocks dimension is not su cient in the direction of the
transverse loading (shear loading) as well as a parasitic torsion loading can
act on the sample due to the atness defects of the reference face (supported
face) of sample. Improvements of the triplet test (EN 1052-3, 2007) have been
recently proposed by Biso -Sauve et al. (2019). The rst one, inspired by the
EN 13733 (2002) test, is to x the two end blocks by means of clamping rods
in order to prevent bending loading (Fig. 12(b)). The second improvement
consists in the modi cation of one of the supports by the introduction of a
degree of freedom in rotation with respect to the axis perpendicular to the
joints in order to adapt to atness defects of the sample supported face.
According to experimental set-up proposed by Biso -Sauve et al. (2019),
triplet of limestone blocks (10 10 10 cn?) assembled by two mortar joints
(10 10 0:7 cn?) are initially submitted to a compression loading leading
to a normal stress on the mortar joint and then xed on universal testing
machine of 100 kKN maximum load capacity at the end blocks. Three normal
stress levels are applied on the mortar joint: 0.4 MPa, 0.6 MPa and 0.8 MPa.
Specimens are tested by imposing a vertical displacement to the central block
leading to shearing of the mortar joints. Experiments are controlled by the
shear plane displacement rate of the mortar joints obtained from the average
of displacements measured by four extensometers located on both sides of
the sample in the immediate vicinity of the joints (Fig. 12(a)). At the onset
of the test, the velocity of the average shear plane displacement is imposed
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to 0:5 m/min then is gradually increased in the post peak regime to reach
100 m/min at the end of the test.

(@) (b)

Figure 12: Combined compression and shear test setup: (a) position of extensometers and
(b) picture of the triplet test

5.3.2. Estimation of frictional and Mode Il cohesive parameters
As previously observed from tensile test, shear test exhibits also failures

mainly located of the block-mortar interface. Thus, the shear plane displace-
ment corresponding to the interface needs to be estimated from the average
displacement measured from the four extensometers by substracting the con-
tributions of the mortar joint and of the limestone knowing the shear moduli
of materials (G = E=[2(1 + )] with a Poisson's ratio of 0.2). Moreover, the
shear stress is obtained by dividing the vertical load applied on the central
block by the nominal cross section of both joints while the normal stress is
estimated from the compression load divided by the nominal cross section of
one joint. As the e ective section of the joints gradually decreases according
to the shear plane displacement, the values of the shear and normal stresses
are updated as a function the shear displacement value.
Six to seven specimens have been tested for each normal stress level (0.4, 0.6
and 0.8 MPa). From the experimental shear stresses shear displacement
responses of the block-mortar interface (i.e.,;;, vs ) obtained for each
normal stress level, the average shear stress and the standard deviation of
this one ;, are computed as a function of the shear plane displacement

i and are plotted in Figure 13(a): blue color for experimental ( )
vS | response obtained for y = 0:4 MPa, green color for y = 0:6 MPa
and red color for y = 0:8 MPa.

First of the mechanical parameters estimated from the experimental re-
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(@) (b)

Figure 13: Experimental results obtained from improved triplet shear tests: (a) average
experimental shear stressvs shear displacement responses of the block-mortar interface
and (b) estimation of friction coe cient linear regression

sponses plotted in Fig. 13(a), the friction coe cient is obtained from a
linear regression of the residual stress.€., the constant stress observed for
large shear plane displacements and for which there is no longer cohesion
of the interface) as a function of the normal stress with a y-intercept forced
to zero as shown in Figure 13(b). Indeed, when there is no longer cohesion
of the block-mortar interface (i.e.,d = 1 for the whole interface area), the
residual stress is expected to be equal to the e ective frictional stress such
as | = =~ _= . As shown from Fig. 13(b), the friction coe cient
of the interface limestone block-lime mortar is estimated to = 0:81 and
reported in Table 2.
The second parameter which can be directly estimated from the experimental
responses plotted in Fig. 13(a) is the initial stinesK ? of the block-mortar
interface. The initial stiness K} is estimated from linear regression of the
initial elastic part of the experimental responses and the value obtained is
reported in Table 2.
Contrarily to initial stiness K and friction coe cient , the shear strength

i » the total cohesive energyGs, and the exponentp of the power function
f (d) cannot be directly identi ed from the experimental responses. Latter
cohesive and frictional parameters are estimated by matching the experi-
mental responses according to the theoretical behavior expected from FCZM
described in EqQ.(32). Nevertheless, in the mechanical response of the block-
mortar interface, the accurate description of the stress and displacement at
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peak load appear relevant while the accuracy of the description of the re-
sponse as a whole appears less important. Thus, a large quantity ¢f, G,

and p combinations are tested and, for each combination, a rst normalized
square deviation between experimental and numerical peak loads (stress and
displacement) are computed and a second one is computed from the whole
experimental and numerical responses. On this basis, in order to ensure a
description of the peak load with accuracy, a weight of 5/10 is given arbi-
trarly to the normalized square deviation linked to peak load value and 4/10
is given (arbitrarly) to the one linked to the displacement at peak loadif(e.

a weight of 9/10 for peak load) while a weight of 1/10 is considered for the
normalized square deviation corresponding to the whole response. The t-

(@) (b) (©)

Figure 14: Square deviation evolution for: (a) § =0:27 MPa, (b) G¢, =206 J/m 2 and
(c)p=11

ting method proposed here leads to a single combination solution as shown
in Figure 14 even if Mode |l cohesive energ®;, has a lesser impact on the
best response compared to shear strengtlf and exponentp of the power
function f (d). Cohesive parameters and frictional one are reported in Ta-
ble 2 while the shear stresss shear plane displacement of the block-mortar
interface obtained from FCZM [Eq. 32] are plotted as black color curves in
Fig. 13(a).

Finally, let us emphasize that the experimental shear stress shear plane dis-
placement responses of the block-mortar interface are described from FCZM
[Eq. 32] with a reasonable accuracy and especially from a single set of co-
hesive parametersi(e. independent of the normal stress applied on the
interface).

Moreover, note that the FCZM model presented here will be able to describe
the attening of the shear stressvs shear displacement response usually ob-
served in the case of high normal stress level as shown from Fig.13(a) (or
from Fig.10b in D'Altri et al, 2019). Indeed, as it can be deduced from Fig.
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13(a), for large critical frictional stress _ = | compared to the interfa-
cial shear strength [, it is expected that the peaked shape of the response
vanishes to the benet of a response close to the one associated with the
frictional stress. In the opposite casei.e. when the normal stress to the
interface is weak (Fig.10b in D'Altri et al, 2019), the FCZM proposed here
will be able to exhibit the peaked shape of the response because the cohesive
stress becomes predominant compared to the frictional ofe.

Note that the attening of the shear stressvs shear displacement response
with respect to the normal stress value (exhibited by the FCZM proposed
here) is not reachable byclassical FCZM (i.e. based on the superimposition
of the full friction stress and the cohesive one) because, whatever the normal
stress is, the dierence between the peak stress and the critical frictional
stress remains constant and equal to the cohesive shear strength.

The two characterization tests proposed here (direct tensile test on duo
and shear test on triplet) are designed to lead to almost uniform loading
along the block-mortar interface. In both tests, the damage tends to spread
uniformly over the entire surface of the interface and hence allows to estimate
the behavior of the assembly block-joint-block and especially the one of the
interface block mortar at the mesoscopic scale. If from a theoretical point of
view, FCZM can be used at the microscopic scale (local response of the ma-
terial), the estimate of cohesive and frictional parameters of FCZM obtained
from both tests and given in Table 2 is performed at the mesoscopic scale,
with the aim of using it on this scale. Note that, the notion of mesoscopic
scale is important for the future use of FCZM for masonry simulations and
especially in a code based on Discrete Element Method (DEM). Indeed, in
the case of large structure sizes simulations, only a few contact points are
usually considered on each face of the blocks and hence each contact point
is associated with a surface of the block-mortar interface of several tens of
square centimeters.

In the following section, the ability of FCZM to describe an experimental
cyclic shear loading applied on the triplet specimen is shown and discussed.

3The attening phenomenon experimentally observed on the shear stresss shear dis-
placement response with respect to the normal stress level is at the source of the underes-
timation of the cohesive behavior (and especially of the cohesive energy) when this one is
simply estimated by subtracting the full friction stress from the total shear stressvs shear
displacement response because the part supposed to correspond to the cohesive behavior
decreases with respect to normal stress level.
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6. Triplet shear test under unilateral cyclic loading: experimental
vs numerical responses

In order to use the FCZM in the case of complex loading, the model
was implemented in the LMGC90 code (Dubois et al., 2011) based on the
Discrete Element Method (DEM) and more speci cally on theNon Smooth
Contact Dynamics (Moreau, 1988; Jean, 1999). As a rst attempt, FCZM
is used to describe the experimental response obtained from unilateral cyclic
shear loading applied on triplet specimen.

Figure 15: Experimental and simulated shear stres¥s shear plane displacement response
of the joint and block-mortar interface obtained from an unilateral cyclic loading.

Using the same experimental setup as the one described in Section 5.3, a
cyclic loading test leads to the typical shear stresgs shear plane displace-
ment response plotted in Figure 15. Note that the shear plane displacement
corresponds here to the one of the mortar joint and of the block-mortar in-
terface, i.e. only the contribution of the limestone is subtracted from the
average displacement measured from the four extensometers. The experi-
mental response plotted in Fig.15 is obtained for a normal stress value of 0.6
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Designation Quantity Symbol Value Unit

Initial sti ness K 34 10" Pa/m
Mode Il Maximum stress ¥ 0:17 MPa
Cohesive energy Gfy, 83 J/m?
Frictional Frictional coe cient 0:71 1
parameters f (d) function exponent p 15 1
Normal stress | 0.59 MPa

Table 3: FCZM parameters tted to describe the typical response obtained from the
unilateral cyclic shear loading applied on triplet specimen (Fig. 15)

MPa and exhibits jumps of the shear stress associated with each onset of
loading and unloading phases as theoretically expected from the discussion
proposed in Section 4.2.

A 2D simulation of the unilateral shear test is carried out using LMGC90
software considering rigid blocks and two mortar joints modelled by de-
formable elements meshed with 25 regular quadrangles in the height and
2 in the width as shown in Fig. 16. Young's modulus of joint elements is
E; = 3:95 GPa while Poisson's ratio = 0:2. Moreover, the experimental
joint failure being mainly interfacial, only the interfaces block-joint associated
with the central block are considered, the other two interfaces are coupled
at rigid blocks to prevent the relative displacement between ends block and
joints. Note that the blocks being modelled from rigid bodies, their geometry
is not relevant in this simulation, only the geometry and dimensions of the
joints need to correspond to experimental ones. Two contact points per nite
element are considered leading to a total of 50 contact points along each in-
terface. The modelling of the unilateral cyclic shear test from LMGC90 code
is performed by rst applying the normal force to the end blocks and then by
loading the central block through the contact of a rigid body (not shown in
Fig. 15) on which a vertical velocity-time function reproducing experimental
loading cycles is imposed. The shear loading procedure by contact allows
to lose contact with the central block and thus to achieve a complete shear
unloading of the specimen between two consecutive cycles.

Firstly, FCZM parameters are tted, according to the procedure described
in Section 5.3.2, to describe the envelope of the typical experimental shear
stressvs shear plane displacement response. The simulated, vs |, re-
sponse is plotted in Figure 15 and its envelope appears to be consistent with
the experimental one. Note that FCZM parameters obtained to describe the
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experimental response are given in Table 3 and dier from those given in
Table 2 because they correspond to a given experimental triplet specimen
while those given in Tab. 2 result from the tting procedure applied on a set

of triplets (Section 5.3.2).

In a second time, the cyclic loading is simulated and the obtained response
is plotted in Fig. 15. As shown from Fig. 15, the onset of experimental
loading and unloading phases and associated residual displacements are de-
scribed by the model with a reasonable accuracy. Let us remember that a

Figure 16: Numerical model of the triplet shear test (LMGC90)

jump of the total shear stress |;, associated with a blockage of the interface
displacement is expected at the onset of loading and unloading phases when
the cohesive stress,, becomes lesser than the critical frictional one _(d)
which is the case here for all the loading and unloading phases as shown from
the evolutions of cohesive stress and of the critical frictional one plotted in
red color and blue color respectively in Fig. 15. Moreover, as shown from the
inserted graph in Fig. 15 which corresponds to a zoom of the onset of load-
ing and unloading phases A-B, the experimental and numerical responses
are characterized by a slope which correspond to the sti ness of the joint
(the interface displacements being mainly blocked during loading-unloading
phases). The fact that the experimental sti ness of the joint di ers from the
numerical one (inserted graph in Fig.15) could be explained by the fact that,
experimentally, the damage is not fully located on the interfaces but also
di uses in the mortar joint inducing a decrease of the joint sti ness which is
not taken into account in the simulation. Moreover, experimental cycles ex-
hibit more pronounced hysteresis loops than simulated ones which seems to
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indicate the existence of dissipative mechanisms other than the only damage
and friction at the block-mortar interface. Finally, note that thin hysteresis
loops exhibited by the simulation are only due to the fact the contact points
along the interfaces do not show the same ((,; | ) state at the same time

in the sense that, if the the majority of the contact points are blocking, some
of contact points are still sliding.

7. Conclusions

In this paper, a general Frictional Cohesive Zone Model dedicated to
quasi-brittle failure is proposed. The model is based on pure Mode | and
Mode Il cohesive behaviors whose softening part is described from an expo-
nential function and on Coulomb's law for the frictional behavior.

Under combined traction and shear loadings, the coupling between Mode
| and Mode Il cohesive behaviors is obtained from two criteria (damage
initiation criterion and failure criterion) proposed by Camanho et al. (2003).
The analytical study of the cohesive energy dissipated as function of loading
path emphasizes that proposed FCZM exhibits a load path dependency which
is in agreement with the one observed in quasi-brittle fracture.

Under combined compression and shear loadings, taking inspiration of
several preceding works which revised the assumption of simple superposi-
tion of full friction and Mode Il cohesive behavior, a coupling between friction
e ect and cohesive behavior is proposed through the damage variable (single
internal variable of the FCZM). Indeed, the damage variable gives an esti-
mation of the e ective damage area of the interface and we assume here that
the e ective friction phenomenon takes place on part of all of the damage
area as a function of the damage level. On this basis, FCZM exhibits a pro-
gressive rising friction stress as a function of the shear plane displacement
which leads to a smooth transition from a cohesive zone to a pure contact
zone.

Applied to the context of masonry, FCZM can be fully characterized from
two fracture tests carried out on small masonry assemblages. Mode | cohe-
sive parameters are estimated from a tensile fracture test carried out on duo
of limestone blocks assembled by one lime mortar joint while the Mode I
cohesive parameters and the frictional ones are estimated from a shear test
performed on a triplet of limestone blocks assembled by two lime mortar
joints. If the estimation of Mode | cohesive parameters is directly obtained
from the tensile stressss interface opening response, the estimation of Mode
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Il and frictional parameters needs, rstly, the estimate of the friction co-

e cient from the residual shear stresses with regard to the normal stress
imposed on the joint, then, an indirect estimation procedure needs to be
used in order to simultaneously determine the Mode Il cohesive parameters
and the parameter driving the evolution of the friction stress as a function
of the damage variable value. The proposed methodology is discussed and
it is shown that this one leads to a single set of cohesive and frictional pa-
rameters to describe the shear stress shear plane displacement responses.
Moreover, FCZM describes the attening of the shear stresgs shear dis-
placement response as a function of the normal stress value usually observed
experimentally. Such a phenomenon is not possible to describe frohassical
FCZM (i.e. based on the superimposition of the full friction stress and the
cohesive one) because, whatever the normal stress is, the di erence between
the peak stress and the critical frictional stress remains constant and equal
to the cohesive shear strength in these models.

Finally, the FCZM is implemented in LMGC90 discrete element code and
is used to simulate the experimental response of an unilateral cyclic shear test
carried on a triplet of lime stone assembled by two lime mortar joints. The
envelope of a typical shear stresss shear plane displacement response is de-
scribed by the FCZM with a reasonable accuracy as well as the experimental
stress jumps and corresponding residual displacements associated with the
onset of the loading and unloading phases.

FCZM will be used shortly to simulate the mechanical behavior of ma-
sonry panels submitted to constant vertical load (three vertical load levels)
and to a progressive horizontal load up to failure of the panel. Indeed, this
kind of loading applied on masonry panels lead to various loading modes as
a function of the considered area of the panel (traction, compression, shear,
combined traction or compression and shear) and hence simulations of such
experiments should constitute a large base of validation of the model.
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