Early Identification of Patients at Risk for Difficult Intubation in the Intensive Care Unit. Development and Validation of the MACOCHA Score in a Multicenter Cohort Study AT A GLANCE COMMENTARY Scientific Knowledge on the Subject
Audrey de Jong, Nicolas Molinari, Nicolas Terzi, Nicolas Mongardon, Jean-Michel Arnal, Christophe Guitton, Bernard Allaouchiche, Catherine Paugam-Burtz, Jean-Michel Constantin, Jean-Yves Lefrant, et al.

To cite this version:
Audrey de Jong, Nicolas Molinari, Nicolas Terzi, Nicolas Mongardon, Jean-Michel Arnal, et al.. Early Identification of Patients at Risk for Difficult Intubation in the Intensive Care Unit. Development and Validation of the MACOCHA Score in a Multicenter Cohort Study AT A GLANCE COMMENTARY Scientific Knowledge on the Subject. American Journal of Respiratory and Critical Care Medicine, American Thoracic Society, 2013, 187 (8), pp.832 - 839. 10.1164/rccm.201210-1851OC . hal-02549587

HAL Id: hal-02549587
https://hal.umontpellier.fr/hal-02549587
Submitted on 21 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Early Identification of Patients at Risk for Difficult Intubation in the Intensive Care Unit
Development and Validation of the MACOCHA Score in a Multicenter Cohort Study

Audrey De Jong1, Nicolas Molinari2, Nicolas Terzi3, Nicolas Mongardon4, Jean-Michel Arnal5, Christophe Guittton6, Bernard Allaouchiche7, Catherine Pauget-Burtz8,9, Jean-Michel Constantin10, Jean-Yves Lefrant11, Marc Leone12, Laurent Papazian13, Karim Asehnoune14, Nicolas Maziers15, Elie Azoulay15, Gael Pradel16, Boris Jung1,17, Samir Jaber1,17, and AzuRéa Network for the Frida-Réa Study Group*

1Intensive Care and Anesthesiology Department, University of Montpellier Saint Eloi Hospital, Montpellier, France; 2Department of Statistics, University of Montpellier Lapeyronie Hospital, UMR 729 MISTEA, Montpellier, France; 3INSERM, U1075, University of Caen, CHRU Caen, Service de Réanimation Médicale, Caen, France; 4Medical Intensive Care, Cochin Hospital, Assistance Publique des Hôpitaux de Paris Université Paris Descartes, Sorbonne Paris Cité, Paris, France; 5Intensive Care Department, Sainte Musse Hospital, Toulon, France; 6Medical Intensive Care Unit, Hôtel-Dieu Teaching Hospital, Nantes, France; 7Department of Anesthesiology and Critical Care Medicine, Edouard-Herriot Teaching Hospital, Hospices Civils de Lyon, Lyon, France; 8Intensive Care and Anesthesiology Department, University of Paris Diderot, Sorbonne Paris Cité, Paris, France; 9AP-HP, Hôpital Beaujon, Paris, France; 10Intensive Care and Anesthesiology Department, Hotel-Dieu Hospital, University Hospital of Clermont Ferrand, Clermont-Ferrand, France; 11Intensive Care and Anesthesiology Department, University of Montpellier, Nimes Hospital, Nimes, France; 12Intensive Care and Anesthesiology Department and 13Medical Intensive Care Unit, University Hospital, Nord Hospital, Marseille, France; 14Intensive Care and Anesthesiology Department, University of Nantes, Hotel-Dieu Hospital, Nantes, France; 15Medical Intensive Care Unit, University of Paris-Diderot, Saint Louis Hospital, Paris, France; 16Intensive Care Department, Centre Hospitalier d’Avignon, Avignon, France; and 17Unité U1046 de l’Institut National de la Santé et de la Recherche Médicale (INSERM), University of Montpellier, Montpellier, France

Rationale: Difficult intubation in the intensive care unit (ICU) is a challenging issue.

Objectives: To develop and validate a simplified score for identifying patients with difficult intubation in the ICU and to report related complications.

Methods: Data collected in a prospective multicenter study from 1,000 consecutive intubations from 42 ICUs were used to develop a simplified score of difficult intubation, which was then validated externally in 400 consecutive intubation procedures from 18 other ICUs and internally by bootstrap on 1,000 iterations.

Measurements and Main Results: In multivariate analysis, the main predictors of difficult intubation (incidence = 11.3%) were related to patient (Mallampati score III or IV, obstructive sleep apnea syndrome, reduced mobility of cervical spine, limited mouth opening); pathology (severe hypoxia, coma); and operator (nonanesthesiologist). From the β parameter, a seven-item simplified score (MACOCHA score) was built, with an area under the curve (AUC) of 0.89 (95% confidence interval [CI]: 0.85–0.94). In the validation cohort (prevalence of difficult intubation 8%), the AUC was 0.86 (95% CI: 0.76–0.96), with a sensitivity of 73%, a specificity of 89%, a negative predictive value of 98%, and a positive predictive value of 36%. After internal validation by bootstrap, the AUC was 0.89 (95% CI: 0.86–0.93). Severe life-threatening events (severe hypoxia, collapse, cardiac arrest, or death) occurred in 38% of the 1,000 cases. Patients with difficult intubation (n = 113) had significantly higher severe life-threatening complications than those who had a nondifficult intubation (51% vs. 36%; P < 0.0001).

Conclusions: Difficult intubation in the ICU is strongly associated with severe life-threatening complications. A simple score including seven clinical items discriminates difficult and nondifficult intubation in the ICU. This score demonstrated good performance in the original cohort, after external validation in a validation cohort and internal validation with bootstrap. Moreover, difficult intubation was strongly associated with moderate and severe life-threatening complications related to intubation.

* A complete list of members may be found before the beginning of the REFERENCES.

Supported by University Hospital of Montpellier.

Author Contributions: A.D.J., study concept and design, site training, data analysis and interpretation, manuscript preparation, and drafting. N. Molinari, study design, statistical methods, statistical data analysis, and manuscript review. N.T., N. Mongardon, J.-M.A., C.C., B.A., C.P.-B., J.-M.C., J.-Y.L., M.L., L.P., K.A., N. Maziers, E.A., and C.P., acquisition of the data and manuscript critique and review. B.J., study concept and design, data analysis, and manuscript preparation. S.J., senior coordinator, study concept and design, site training and recruitment, data analysis, and manuscript preparation. All authors approved the manuscript submitted.

Correspondence and requests for reprints should be addressed to Samir Jaber, M.D., Ph.D., Unité de Réanimation-Département d’Anesthésie-Réanimation B, University Hospital, CHU de Montpellier Hospital Saint Eloi, 80, Avenue Augustin Fliche, 34295 Montpellier Cedex 5, France. E-mail: s-jaber@chu-montpellier.fr

AT A GLANCE COMMENTARY
Scientific Knowledge on the Subject
Risk factors for difficult intubation are well described in anesthesia. However, in the intensive care unit (ICU), they have yet to be identified in prospective multicenter studies and no prediction score has been validated. Additionally, association between difficult intubation and related complications has not been studied in prospective studies.

What This Study Adds to the Field
Seven clinical items available in the ICU were identified as independent risk factors for difficult intubation and constituted the MACOCHA score. This study develops and validates a prediction score for difficult intubation in the ICU. This score demonstrated good performance in the original cohort, after external validation in a validation cohort and internal validation with bootstrap. Moreover, difficult intubation was strongly associated with moderate and severe life-threatening complications related to intubation.

Keywords: difficult intubation; score; critical care; complications; mortality
In the intensive care unit (ICU), intubation is a challenging issue (1–3) because it may be associated with life-threatening complications in up to one-third of cases (1, 2). Difficult intubation is known to be associated with life-threatening complications in the operating room (4) and in emergent conditions (5–7). Although several predictive risk factors and scores for difficult intubation were identified in anesthesia practice, to our knowledge none have been identified for ICU patients. Such patients differ from those undergoing elective surgery, with a high rate of acute respiratory or hemodynamic failure and with worse intubation conditions than in the operative room. Early identification of risk factors for difficult intubation could allow for anticipation and preparation of adequate material, use of an alternative intubation strategy, and call on additional assistance before intubation and thus reduce morbidity (5, 8).

Only retrospective studies (9, 10) have assessed the relationship between complications and difficult intubation. A study performed outside the operative room (9) reported that hypoxemia was sevenfold higher in case of difficult intubation in comparison with nondifficult intubation. Another study (10) in the emergency area showed that difficult intubation was associated with airway complication. Furthermore, the incidence of difficult intubation the ICU is highly variable across studies, ranging from 1 to 23%, depending on the center and the definition of difficult intubation (10–13).

The main objective of this study was to identify specific risk factors for difficult ICU intubation so as to develop and validate a simplified score predicting difficult intubation. This score was intended to include items that are clinically easily identifiable, applicable at bedside, and simple and clear to use. The secondary objectives were to assess the relationship between difficult intubation and complications and to establish the incidence of difficult intubation in a representative sample of ICU patients.

METHODS

Study Design and Population

A prospective, observational, multicenter study was conducted in 42 ICUs to develop a predictive model for difficult intubation (original cohort), and in 18 ICUs to validate the model (validation cohort). All adult patients consecutively intubated in the ICU were included. Exclusion criteria were pregnancy, refusal to participate after information was provided, or age younger than 18 years. See the online supplement for more information.

Ethics and Consent

Because of the observational, noninvasive design of this study, the need for written consent was waived. The local ethics committee, Comité de Protection des Personnes Sud-Méditerranée III, approved the study design (code UF:8819, register:2011-A001122-39). See the online supplement for more information.

Data Collection

Clinical parameters were prospectively assessed before, during, and after intubation procedures (see the online supplement and tables).

Definition of Difficult Intubation and Complications

Difficult intubation was defined as three or more laryngoscopic attempts to place the endotracheal tube into the trachea or as lasting more than 10 minutes using conventional laryngoscopy (14). Severe life-threatening complications (1, 2) were defined as death; cardiac arrest; severe cardiovascular collapse, defined as systolic blood pressure less than 65 mm Hg recorded at least one time or less than 90 mm Hg that lasted 30 minutes despite 500–1,000 ml of fluid loading (crystalloids or colloids solutions) or requiring introduction of vasoactive support; or severe hypoxemia (decrease in oxygen saturation as measured by pulse oximetry <80% during attempts).

Mild to moderate complications (1, 2) were defined as esophageal intubation; aspiration of gastric contents (migration of stomach contents into the lung); supraventricular or ventricular arrhythmia (without pulseless rhythm) that required therapy; dangerous agitation (Richmond Agitation-Sedation Scale score >3); or dental injury.

Statistical Analysis

See the online supplement for more information. The number of subjects needed was calculated to obtain composite criteria of difficult intubation with a sensitivity of 80 ± 10% based on a 9% incidence of difficult intubation, resulting in an estimated 700 intubation procedures. We decided to include 1,000 intubation procedures to develop the model in the original cohort, taking into account missing data, and 400 intubation procedures to externally validate the model in the validation cohort.

A logistic regression was used to identify risk factors for difficult intubation in the original cohort. A multivariate model was established to predict difficult intubation. Variables were selected if P value was less than 0.20 in the univariate analysis and a stepwise procedure was used to select the final model. To establish a simplified score, we gave a score to each of the variables included in the final prediction model in relation to each one’s β parameter (regression coefficient) in that model (15). The discriminative ability of the score (sensitivity, specificity, positive predictive value, negative predictive value, positive and negative likelihood ratio) was estimated in both cohorts to externally validate the simplified score (15, 16), and receiver operating characteristic (ROC) curve was established to estimate the area under the curve (AUC) of the simplified score.

We used the bootstrap to internally validate the simplified score by sampling with replacement for 1,000 iterations (17). A P value of less than or equal to 0.05 was considered statistically significant.

RESULTS

See the online supplement for more information. During the study period, 1,400 intubation procedures were studied in 1,360 patients. From September 1, 2011 to January 31, 2012, 1,000 intubation procedures performed in 972 patients from 42 centers were included in the original cohort. All the intubation procedures were included. Twenty-eight patients (0.28%) were intubated twice. The median (interquartile range) number of intubation procedures included by center was 15 (10–20). Then, from February 1, 2012 to April 1, 2012, 400 intubation procedures performed in 388 patients from 18 other centers were included in the validation cohort. Twelve patients were intubated twice. The median (interquartile range) number of intubation procedures included by center was 15 (11–28). The flow chart of the study is shown in Figure 1.

Incidence of difficult intubation was 11.3% (113 of 1,000 intubation procedures) in the original cohort and 8% (32 of 400 intubation procedures) in the validation cohort (P = 0.07).

Tables 1 and E1 show the characteristics of patients in original and validation cohorts according to the difficulty of intubation. In both cohorts, there were significantly more patients with body mass index (BMI) greater than or equal to 30 kg/m² in difficult intubation groups. In the original cohort, increased Simplified Acute Physiology Score II score and coma as a reason for intubation was significantly associated with difficult intubation.

The operator status and main variables obtained before intubation are reported in Tables 2 and E2 (see Table E2 in the online supplement). In the original cohort, preintubation saturation less than 80% was significantly associated with difficult intubation, whereas noninvasive ventilation (NIV) was associated with the absence of difficult intubation. The drugs used for intubation, in particular neuromuscular blockers, did not differ between groups (see Table E3). However, midazolam use was more frequent in case of difficult intubation. The main parameters observed before
for intubation were significantly associated with difficult intubation. The nonanesthesiologist status of the operator was also associated with difficult intubation, whether an expert operator or not. No statistical interaction was found between nonanesthesiologist status and operator expertise (P = 0.84). Moreover, we performed a logistic regression to assess the risk factors of nonassessment of the Mallampati score in the original cohort (n = 234; 23%). The risk factors in the final multivariate model (see Table E5) were head and neck disease, limited mouth opening, the need to replace the endotracheal tube, and coma. Center effect was not significant in the final model. The main evaluated parameters and physiologic variables during the intubation procedure are presented in Table E6. In both cohorts, heart rate and oxygen saturation as measured by pulse oximetry during intubation were significantly decreased in difficult intubation groups. Components of the Intubation Difficulty Scale (IDS) score were also associated with difficult intubation.

In the final multivariate model constructed with the 694 intubation procedures and all available data, adjusted for age, the main predictors of difficult intubation were related to the patient (Mallampati score III or IV, OSAS, reduced mobility of cervical spine, limited mouth opening), the pathology (coma, severe hypoxia), and the operator (nonanesthesiologist) (Table 4). Center effect was assessed both as fixed and random effect, but was not significant in the final model. The goodness of fit, assessed by the Hosmer and Lemeshow test, was of 0.94. The AUC was at 0.90 (95% confidence interval [CI], 0.86–0.93).

The simplified score (MACOCHA score) built from the final model is described in Table 5, ranging from 0 to 12. The goodness of fit, assessed by the Hosmer and Lemeshow test, was of 0.94. The AUC was at 0.89 (95% CI, 0.85–0.94). When the score was applied to the validation cohort, the goodness of fit assessed

![Figure 1. Patient flow diagram. ICU = intensive care unit.](image)

to the intubation procedure are shown in Tables 3 and E4. In the original cohort, Guedel use, difficult mask ventilation, plastic laryngoscope blade, Mallampati score, previous documented difficult intubation, limited mouth opening, elevated neck circumference, reduced mobility of cervical spine, obstructive sleep apnea syndrome (OSAS), head and neck pathology, presence of teeth, snoring, and need to release the Sellick maneuver

<table>
<thead>
<tr>
<th>TABLE 1. PATIENT CHARACTERISTICS AND REASONS FOR ICU ADMISSION AND INTUBATION IN ORIGINAL AND VALIDATION COHORTS ACCORDING TO DIFFICULT INTUBATION</th>
<th>Original Cohort</th>
<th>Validation Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (n=1,000)</td>
<td>Difficult Intubation (n=113)</td>
</tr>
<tr>
<td>Age, yr</td>
<td>62 (51–73)</td>
<td>62 (51–73)</td>
</tr>
<tr>
<td>Sex, male</td>
<td>624/979 (64)</td>
<td>624/979 (64)</td>
</tr>
<tr>
<td>SOFA</td>
<td>5 (3–8)</td>
<td>5 (3–8)</td>
</tr>
<tr>
<td>SAPS2</td>
<td>48 (36–61)</td>
<td>48 (36–61)</td>
</tr>
<tr>
<td>Height, cm</td>
<td>169 (160–175)</td>
<td>169 (160–175)</td>
</tr>
<tr>
<td>Body mass index, >30 kg/m²</td>
<td>219/933 (23)</td>
<td>219/933 (23)</td>
</tr>
<tr>
<td>Medical type of admission</td>
<td>734 (73)</td>
<td>734 (73)</td>
</tr>
<tr>
<td></td>
<td>Total (n=400)</td>
<td>Difficult Intubation (n=32)</td>
</tr>
<tr>
<td>Acute respiratory failure</td>
<td>455 (46)</td>
<td>455 (46)</td>
</tr>
<tr>
<td>Trauma</td>
<td>42 (4)</td>
<td>42 (4)</td>
</tr>
<tr>
<td>Postoperative</td>
<td>95 (10)</td>
<td>95 (10)</td>
</tr>
<tr>
<td>Cardiac arrest</td>
<td>24 (2)</td>
<td>24 (2)</td>
</tr>
<tr>
<td>Neurologic</td>
<td>250 (25)</td>
<td>250 (25)</td>
</tr>
<tr>
<td>Shock</td>
<td>264 (26)</td>
<td>264 (26)</td>
</tr>
<tr>
<td>Ascitic decompensation</td>
<td>29 (3)</td>
<td>29 (3)</td>
</tr>
<tr>
<td>Acute renal failure</td>
<td>95 (10)</td>
<td>95 (10)</td>
</tr>
<tr>
<td>Others</td>
<td>82 (8)</td>
<td>82 (8)</td>
</tr>
</tbody>
</table>

Definition of abbreviations: ICU = intensive care unit; SAPS2 = Simplified Acute Physiologic Score; SOFA = Sequential Organ Failure Assessment.

Data are summarized as number (%) or median (interquartile range). One patient can have more than one reason for ICU admission or for intubation.
Five deaths, 0.5%; 274 severe collapses, 27.4%; 155 severe complications occurred in 437 of 1,000 intubation procedures (43.7%).

Vasopressors use 210 (21) 22 (19) 188 (21) 0.67 78 (20) 4 (13) 74 (20) 0.30
Nonperceived blood pressure 33 (3) 5 (4) 28 (3) 0.41 11 (3) 0 (0) 11 (3) 0.32
Number of operators 0.007 0.40
Anesthesiologist 683 (68) 68 (60) 615 (69) 0.04 249 (62) 18 (56) 231 (63) 0.47
Expert operator 370 (37) 45 (40) 325 (37) 0.57 178 (45) 10 (31) 162 (44) 0.11
First intubation 643 (64) 67 (59) 576 (65) 0.24 250 (63) 15 (47) 235 (64) 0.06
Daytime intubation 380/965 (39) 76% (3) 54) 658 (74) 0.71 232 (58) 20 (63) 212 (58) 0.59
Full stomach 740 (74) 82 (73) 658 (74) 0.71 232 (58) 20 (63) 212 (58) 0.59

When considering Mallampati score alone, the AUC was at 0.80 (95% CI, 0.74–0.86), significantly lower than the AUC of the MACOCHA score (0.89; 95% CI, 0.85–0.94; P < 0.0001) (see Figure E2). Furthermore, the Hosmer and Lemeshow test demonstrated statistical evidence of lack of fit with data when using Mallampati score alone (P = 0.001). Therefore, using MACOCHA score permitted detection of 11 additional difficult intubations that would not have been detected by Mallampati score alone. The relative sensitivity of Mallampati score to MACOCHA score was 82% (51 of 62). Indeed, with the Mallampati score alone, 51 of 82 difficult intubation procedures were predicted at a cutoff point of three (sensitivity of 62%), versus 62 of 82 at a cutoff point of three for the MACOCHA score (sensitivity of 76%) (P = 0.002).

In the development cohort, overall complications occurred in 437 of 1,000 intubation procedures (43.7%), with 381 (38.1%) severe complications (26 cardiac arrests, 2.6%; five deaths, 0.5%; 274 severe collapses, 27.4%; 155 severe hypoxemia, 15.5%) and 112 (11.2%) moderate complications (15 agitations, 1.5%; 32 cardiac arrhythmias, 3.2%; 23 aspirations, 2.3%; 48 esophageal intubations, 4.8%; six dental injuries, 0.6%). Figures 3A and 3B show the detailed percentage of complications according to the difficulty of intubation. Patients with difficult intubation in both (original and validation) cohorts (Figures 3A and 3B) had significantly higher severe life-threatening complications than those who had nondifficult intubation.

Mortality was 299 (30%) of 982 in the original cohort and was 35 (32%) of 109 in the difficult intubation groups and 264 (30%) of 873 in the nondifficult intubation groups (P = 0.69).

DISCUSSION

This is the first study to identify risk factors of difficult intubation in a large multicenter cohort of ICU patients. We developed and validated internally and externally a score for difficult intubation in the ICU (MACOCHA score). This study shows that a simple model easily applicable in clinical practice predicts absence of difficult intubation in the ICU. This study also reveals a high rate of severe morbidity related to difficult intubation in the ICU.

Anticipating difficult intubation is a challenging issue: in the present study, the complications of intubation were higher when intubation was difficult (65% vs. 41% overall, 51% vs. 36% considering severe life-threatening complications). As underlined by a recent report, 25% of major airway events in Great Britain occur in the ICU, revealing a poor identification of patients at risk. Rates of complications in the present study were in the range of previous studies, with the incidence of severe complications varying with the definitions used, but generally ranging between 20% (9) and 50% (13). Additionally, airway complications in the report by Martin and coworkers (10) are comparable...
TABLE 3. MAIN PARAMETERS IN ORIGINAL AND VALIDATION COHORTS ACCORDING TO DIFFICULT INTUBATION

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Total (n = 1,000)</th>
<th>Difficult Intubation (n = 113)</th>
<th>No Difficult Intubation (n = 887)</th>
<th>P Value</th>
<th>Total (n = 400)</th>
<th>Difficult Intubation (n = 32)</th>
<th>No Difficult Intubation (n = 368)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoxygenation</td>
<td>946 (95)</td>
<td>106 (94)</td>
<td>840 (93)</td>
<td>0.69</td>
<td>374 (94)</td>
<td>31 (97)</td>
<td>343 (97)</td>
<td>0.71</td>
</tr>
<tr>
<td>Preoxygenation by NIV</td>
<td>407 (40)</td>
<td>37 (33)</td>
<td>370 (42)</td>
<td>0.07</td>
<td>158 (40)</td>
<td>14 (44)</td>
<td>144 (39)</td>
<td>0.61</td>
</tr>
<tr>
<td>Guerel use</td>
<td>94 (9)</td>
<td>17 (15)</td>
<td>77 (9)</td>
<td>0.03</td>
<td>35 (9)</td>
<td>6 (19)</td>
<td>29 (8)</td>
<td>0.05</td>
</tr>
<tr>
<td>Difficult mask ventilation</td>
<td>73/392 (19)</td>
<td>20/64 (31)</td>
<td>53/328 (16)</td>
<td>0.005</td>
<td>22/184 (12)</td>
<td>4/26 (15)</td>
<td>18/158 (11)</td>
<td>0.52</td>
</tr>
<tr>
<td>Laryngoscope blade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastic single-use</td>
<td>70/965 (7)</td>
<td>14/107 (13)</td>
<td>56/858 (7)</td>
<td>0.006</td>
<td>121/384 (31)</td>
<td>6/32 (19)</td>
<td>115/352 (33)</td>
<td>0.27</td>
</tr>
<tr>
<td>Metal single-use</td>
<td>525/965 (54)</td>
<td>99/107 (88)</td>
<td>831/858 (94)</td>
<td></td>
<td>192/384 (50)</td>
<td>19/32 (59)</td>
<td>173/352 (49)</td>
<td></td>
</tr>
<tr>
<td>Metal reusable</td>
<td>370/965 (38)</td>
<td>48/107(45)</td>
<td>322/858 (38)</td>
<td></td>
<td>71/184 (19)</td>
<td>7/32 (22)</td>
<td>64/352 (18)</td>
<td></td>
</tr>
<tr>
<td>Mallampati score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><.000001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous documented difficult intubation</td>
<td>23 (2)</td>
<td>9 (8)</td>
<td>14 (2)</td>
<td>0.0005</td>
<td>14 (4)</td>
<td>5 (16)</td>
<td>9 (3)</td>
<td>0.003</td>
</tr>
<tr>
<td>Limited mouth opening</td>
<td>120 (9)</td>
<td>25 (22)</td>
<td>67 (8)</td>
<td><.000001</td>
<td>28 (7)</td>
<td>6 (19)</td>
<td>22 (6)</td>
<td>0.02</td>
</tr>
<tr>
<td>Low thyromental distance</td>
<td>107 (11)</td>
<td>15 (13)</td>
<td>92 (10)</td>
<td><.35</td>
<td>44 (11)</td>
<td>4 (13)</td>
<td>40 (11)</td>
<td>0.77</td>
</tr>
<tr>
<td>Elevated neck circumference</td>
<td>141 (14)</td>
<td>33 (29)</td>
<td>108 (12)</td>
<td><.000001</td>
<td>37 (9)</td>
<td>6 (19)</td>
<td>31 (8)</td>
<td>0.10</td>
</tr>
<tr>
<td>Reduced mobility of cervical spine</td>
<td>83 (8)</td>
<td>23 (20)</td>
<td>60 (7)</td>
<td><.000001</td>
<td>31 (8)</td>
<td>5 (16)</td>
<td>26 (7)</td>
<td>0.09</td>
</tr>
<tr>
<td>Obstructive apnea syndrome</td>
<td>78 (8)</td>
<td>33 (29)</td>
<td>45 (5)</td>
<td><.000001</td>
<td>20 (5)</td>
<td>8 (25)</td>
<td>12 (3)</td>
<td>0.00004</td>
</tr>
<tr>
<td>Head and neck disease</td>
<td>53 (5)</td>
<td>18 (16)</td>
<td>35 (4)</td>
<td><.000001</td>
<td>18 (5)</td>
<td>3 (9)</td>
<td>15 (4)</td>
<td>0.17</td>
</tr>
<tr>
<td>Beard</td>
<td>78 (8)</td>
<td>12 (11)</td>
<td>66 (7)</td>
<td>0.24</td>
<td>17 (4)</td>
<td>2 (6)</td>
<td>15 (4)</td>
<td>0.64</td>
</tr>
<tr>
<td>Toothless</td>
<td>283 (28)</td>
<td>21 (19)</td>
<td>262 (30)</td>
<td>0.01</td>
<td>87 (22)</td>
<td>9 (28)</td>
<td>78 (21)</td>
<td>0.36</td>
</tr>
<tr>
<td>Snoring</td>
<td>116 (12)</td>
<td>25 (22)</td>
<td>91 (10)</td>
<td>0.0002</td>
<td>28 (7)</td>
<td>5 (16)</td>
<td>23 (6)</td>
<td>0.06</td>
</tr>
<tr>
<td>Diabetes</td>
<td>177 (18)</td>
<td>21 (19)</td>
<td>156 (18)</td>
<td>0.79</td>
<td>48 (12)</td>
<td>6 (19)</td>
<td>42 (11)</td>
<td>0.25</td>
</tr>
<tr>
<td>Mallampati score</td>
<td>448 (45)</td>
<td>58 (51)</td>
<td>390 (44)</td>
<td>0.14</td>
<td>128 (32)</td>
<td>10 (31)</td>
<td>118 (32)</td>
<td>0.92</td>
</tr>
<tr>
<td>Mallampati score</td>
<td>105/448 (23)</td>
<td>29/58 (50)</td>
<td>76/390 (19)</td>
<td><.000001</td>
<td>18/128 (14)</td>
<td>4/10 (40)</td>
<td>14/118 (12)</td>
<td><.000001</td>
</tr>
</tbody>
</table>

Definition of abbreviation: NIV = noninvasive ventilation.
Data are summarized as number (%) or median (interquartile range).

TABLE 4. RESULTS OF MULTIVARIATE LOGISTIC REGRESSION FOR FINAL DIFFICULT INTUBATION PREDICTION MODEL FROM ORIGINAL COHORT (N = 694)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio (95% Confidence Interval)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>–2.83</td>
<td></td>
</tr>
<tr>
<td>Mallampati score III or IV</td>
<td>2.87 (9.28-33.30)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Obstructive apnea syndrome</td>
<td>1.79 (2.68-13.23)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Reduced mobility of cervical spine</td>
<td>1.35 (1.58-9.52)</td>
<td>0.003</td>
</tr>
<tr>
<td>Limited mouth opening</td>
<td>1.17 (1.34-7.70)</td>
<td>0.009</td>
</tr>
<tr>
<td>Severe hypoxemia (<80%)</td>
<td>0.90 (1.23-4.92)</td>
<td>0.01</td>
</tr>
<tr>
<td>Coma</td>
<td>0.81 (1.16-4.39)</td>
<td>0.02</td>
</tr>
<tr>
<td>Nonanesthesiologist</td>
<td>0.71 (1.07-3.85)</td>
<td>0.03</td>
</tr>
<tr>
<td>Age</td>
<td>–0.02 (0.96-1.00)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

The model has an area under the curve of 0.90.
Hypoxia, Anesthesiologist nontrained.

greater duration before hypoxemia occurrence compared with
with a lower rate of difficult intubation, perhaps related to the
bation (2, 3). It is the first study to show that NIV is associated
NIV before intubation has been demonstrated to prevent hypox-
emia and was associated with less airway complications of intu-
bation (1), previous studies were not powered enough to
show this association. A recent study (13) performed in Scot-
land, where almost all operators had a formal anesthetic train-
greater than 24 months, revealed a very low rate of difficult
intubation and complications, in accordance with our study. In
previous studies, the presence of two operators to perform the
intubation was found as a protective factor for complications
related to intubation (1, 27). In our opinion, the standard of care
changed in France more than 8 years after these studies: the
increase of number of operators when difficult intubation occurred
in the current study was more a consequence of difficult intuba-
tion (30). This could be explained by the risk factors of non-
Mallampati score is sometimes difficult to assess in an emergency
context (30). This might mean that the risk factors associated with obesity, rather than obesity itself, are probably associated with difficult intubation in this study, as
Lundstrom and coworkers (23) revealed in the anesthesiology area, where high BMI was a weak predictor for difficult and failed tracheal intubation.

NIV failure was associated with a lower risk of difficult intuba-
tion in univariate analysis, but not in multivariate analysis. NIV before intubation has been demonstrated to prevent hypox-
emia and was associated with less airway complications of intuba-
tion (2, 5). It is the first study to show that NIV is associated
with a lower rate of difficult intubation, perhaps related to the
greater duration before hypoxemia occurrence compared with
other patients (3).

Mallampati score alone was less effective than MACOCHA
to predict difficult intubation. Two factors specific to
ICU patients were recognized in this study and are included in
the score: severe hypoxemia before intubation and coma (Glasgow score < 8 as a reason for intubation). Severe hypox-
emia as a risk factor can be explained by a shortness of time to
be adequately prepared for the intubation and perhaps by in-
creased stress for physicians performing the procedure. Like-
wise, patients intubated for coma often present increased oropharyngeal secretions, limiting view of the glottis.

Moreover, the simplified score contains a factor related to the
operator: a formal anesthetic training of at least 24 months. Con-
sidering the link between anesthesiology formation and difficult
intubation (1), previous studies were not powered enough to
show this association. A recent study (13) performed in Scot-
land, where almost all operators had a formal anesthetic train-
greater than 24 months, revealed a very low rate of difficult
intubation and complications, in accordance with our study. In
previous studies, the presence of two operators to perform the
intubation was found as a protective factor for complications
related to intubation (1, 27). In our opinion, the standard of care
changed in France more than 8 years after these studies: the
increase of number of operators when difficult intubation occurred
in the current study was more a consequence of difficult intuba-
tion. It is noteworthy that BMI was assessed as a risk factor for
difficult intubation in univariate analysis but not in multivariate
analysis. This might be explained by the important clinical over-
lap of BMI with other risk factors more associated with difficult
intubation in the final model, such as Mallampati score, mouth opening, OSAS, or severe hypoxemia before intubation. For
example, in the study by Holmberg and coworkers (28), BMI
greater than 40 kg/m² in prehospital tracheal intubation was asso-
ciated with difficult intubation, but other risk factors for dif-
cult intubation were not assessed. In fact, this might mean that
the risk factors associated with obesity, rather than obesity itself, are probably associated with difficult intubation in this study, as
Lundstrom and coworkers (23) revealed in the anesthesiology area, where high BMI was a weak predictor for difficult and failed tracheal intubation.

As expected, the patients with difficult intubation had a signifi-
cantly higher IDS score (6 [4–8] vs. 1 [0–2]; P < 0.0001). It
should be noted that IDS score is a surrogate of the difficulty
of intubation a posteriori and not a predictive score, as the
MACOCHA score validated in this study.

Capnography was used only in 46% of intubations, whereas it
is recommended (8) to be always used after intubation to assess
the endotracheal position of the tracheal tube. Recent studies
also found a similar result, reporting capnography use between
25% (29) and 54% (13). Systematic use of capnography could
reduce the rate of complications related to intubation (2).

The study has some limitations. First, because data collection
and intubation were sometimes performed by the same person,
the degree of difficulty of intubation could have been overesti-
imated or underestimated. Second, the Mallampati score was
only available in 77% of the original cohort. The reasons for this
might be an ignorance of the score by some operators. Moreover,
Mallampati score is sometimes difficult to assess in an emergency
context (30). This could be explained by the risk factors of non-
assessment of Mallampati score determined in this study by
multivariate logistic regression. Indeed, the need to replace
the endotracheal tube is often done in emergency conditions,
leaving no time to assess Mallampati score. More often, limited
mouth opening, head and neck disease, or coma do not allow
Mallampati score assessment. Accordingly, the modest bias in-
duced by the lack of Mallampati score data does not influence
the main results of the study. The main message remains that

TABLE 5. MACOCHA SCORE CALCULATION WORKSHEET

<table>
<thead>
<tr>
<th>Factors related to patient</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallampati score III or IV</td>
<td>5</td>
</tr>
<tr>
<td>Obstructive sleep apnea syndrome</td>
<td>2</td>
</tr>
<tr>
<td>Reduced mobility of cervical spine</td>
<td>1</td>
</tr>
<tr>
<td>Limited mouth opening < 3 cm</td>
<td>1</td>
</tr>
<tr>
<td>Factors related to pathology</td>
<td>1</td>
</tr>
<tr>
<td>Coma</td>
<td>1</td>
</tr>
<tr>
<td>Severe hypoxemia (< 80%)</td>
<td>1</td>
</tr>
<tr>
<td>Factor related to operator</td>
<td>1</td>
</tr>
<tr>
<td>Nonanesthesiologist</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>

Definition of abbreviation: MACOCHA = Mallampati score III or IV, Apnea syndrome (obstructive), Cervical spine limitation, Opening mouth < 3 cm, Coma, Hypoxia, Anesthesiologist nontrained.

Coded from 0 to 12: 0 = easy; 12 = very difficult.
Mallampati scores should be evaluated as often as possible. In our study, Mallampati score was assessed in recumbent patients. Performance of Mallampati score with a recumbent patient is at least as good as in a sitting position, according to previous studies (31–34). The only situation where such an assessment is not possible is when the patient presents a much altered consciousness, which is also a risk factor for difficult intubation according to the current study. Besides, other missing data were very low. Third, it is a multicenter study, which is a strength because the result can be better extrapolated to the general population, and a limit because of unequal distribution intubation numbers among centers. However, the center effect was assessed and not retained. Fourth, the external validation was performed in French ICUs and not in other countries, which could limit the extrapolation of the results. Fifth, a statistical model for repeated data was not used despite several intubation procedures for a same patient included in the analysis. Yet, the number of patients who have been intubated at least twice was low in both cohorts (<1%). As a consequence, the bias is very limited. Sixth, neck circumference was estimated rather than measured. This parameter has to be considered with caution. Finally, intubation is a procedure that depends greatly on the intrinsic quality of the operator, which is hardly assessable in clinical studies.

To conclude, this is the first study to develop and validate a score predicting the difficulty of intubation procedure in the ICU with a high discriminative ability. The MACOCHA score is very easy to perform and to memorize. However, if the score does not predict a difficult intubation, one should remain vigilant because there is still a small possibility that it will be difficult. Mallampati score is the highest predictor of difficult intubation and should be evaluated as often as possible before intubation in the ICU. Complications of intubation are strongly associated with difficult intubation. Further studies are needed to appreciate if applying the MACOCHA score in daily practice helps to anticipate and further reduce complications of intubation.

Acknowledgment: The authors thank Valérie Macioce (Statistic Department of Montpellier Hospital) for the English editing; and Ericka Nogue and Audrey Jaussent for their methodologic advice (Statistic Department of Montpellier Hospital). Members of the Frida-Rea Study Group: Dr. Ammenouche, Amiens; Pr. Dupont, Amiens; Dr. Crombes, CH Arles; Dr. Courant, Avignon; Dr. Padel, Avignon; Dr. Closon, Bourg en Bresse; Dr. Desmeules, Caen; Dr. Terzi, Caen; Dr. Doise, Chalon; Dr. Constantine-Cayot, Clermont-Ferrand; Pr. Constantine, Clermont-Ferrand; Dr. Mehdou, Fort de France; Dr. Poton, Grenoble; Dr. Timsit, Grenoble; Dr. Durand, Grenoble; Dr. Payen, Grenoble; Dr. Winer, La Réunion; Dr. Roussiaux, La Réunion; Dr. Claud, Le Puy en Velay; Pr. Guerin, Lyon; Pr. Allauuchiche, Lyon; Dr. Wallet, Lyon; Dr. Mokart, Marseille; Dr. Hraiech, Marseille; Pr. Papazian, Marseille; Dr. Hammoud, Marseille; Pr. Leon, Marseille; Dr. Michelet, Marseille; Dr. Gainnier, Marseille; Dr. Jung, Montpellier; Dr. Chianqu, Montpellier; Dr. De Jong, Montpellier; Pr. Jaber, Montpellier; Dr. Corne, Montpellier; Pr. Capdevila, Montpellier; Dr. Lahal, Montpellier; Dr. Perrigault, Montpellier; Dr. Triné, Montpellier; Pr. Mertes, Nancy; Pr. Aeshnoune, Nantes; Dr. Guilhot, Nantes; Dr. Larcher, Nantes; Pr. Ichai, Nice; Pr. Lefrant, Nîmes; Dr. Muller, Nîmes; Dr. Benguer, Nîmes; Dr. Bonneux, Papeete; Pr. Paugam, Paris; Dr. Bremond, Paris; Pr. Vigue, Paris; Dr. Raux, Paris; Pr. Langeron, Paris; Dr. Mongardon, Paris; Dr. Demoule, Paris; Dr. Garrouste, Paris; Dr. Maziers, Paris; Dr. Azoulay, Paris; Dr. Marret, Paris; Dr. Fartoukh, Paris; Dr. Blot, Paris; Dr. Quintard, Perpignan; Pr. Mimoz, Poitiers; Dr. Frat, Poitiers; Dr. Seguin, Rennes; Dr. Beuret, Roanne; Dr. Molte, Salon-de-Provence; Dr. Mahul, Saint-Etienne; Dr. Ramakers, Saint-Lo; Dr. Pottecher, Strasbourg; Dr. Amal, Toulon; Dr. Goutorbe, Toulon; and Dr. Riu, Toulouse.
References