M. T. Madsen, Recent advances in SPECT imaging, J Nucl Med, vol.48, issue.4, pp.661-73, 2007.

G. Depuey and E. , Advances in cardiac processing software, Semin Nucl Med, vol.44, issue.4, pp.252-73, 2014.

J. A. Case and T. M. Bateman, Taking the perfect nuclear image: quality control, acquisition, and processing techniques for cardiac SPECT, PET, and hybrid imaging, J Nucl Cardiol, vol.20, issue.5, pp.891-907, 2013.

P. J. Slomka, D. S. Berman, and G. Germano, New cardiac cameras: single-photon emission CT and PET, Semin Nucl Med, vol.44, issue.4, pp.232-51, 2014.

E. V. Garcia, T. L. Faber, and F. P. Esteves, Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications, J Nucl Med, vol.52, issue.2, pp.210-217, 2011.

J. N. Aarsvold and M. N. Wernick, Emission tomography: the basics of PET and SPECT, 2004.

Y. Takahashi, Performance of a semiconductor SPECT system: comparison with a conventional Anger-type SPECT instrument, Ann Nucl Med, vol.27, issue.1, pp.11-17, 2013.

W. L. Duvall, Reduced isotope dose and imaging time with a highefficiency CZT SPECT camera, J Nucl Cardiol, vol.18, issue.5, pp.847-57, 2011.

M. Salerno and G. A. Beller, Noninvasive assessment of myocardial perfusion, Circ Cardiovasc Imaging, vol.2, issue.5, pp.412-436, 2009.

B. Hesse, EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology, Eur J Nucl Med Mol Imaging, vol.32, issue.7, pp.855-97, 2005.

S. Burrell and A. Macdonald, Artifacts and pitfalls in myocardial perfusion imaging, J Nucl Med Technol, vol.34, issue.4, pp.193-211, 2006.

F. G. Hage, The impact of viability assessment using myocardial perfusion imaging on patient management and outcome, J Nucl Cardiol, vol.17, issue.3, pp.378-89, 2010.

A. Moudi, M. Sun, and Z. H. , Diagnostic value of (18)F-FDG PET in the assessment of myocardial viability in coronary artery disease: a comparative study with (99m)Tc SPECT and echocardiography, J Geriatr Cardiol, vol.11, issue.3, pp.229-265, 2014.

L. Imbert, Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images, J Nucl Med, vol.53, issue.12, pp.1897-903, 2012.

H. Cochet, Absolute quantification of left ventricular global and regional function at nuclear MPI using ultrafast CZT SPECT: initial validation versus cardiac MR, J Nucl Med, vol.54, issue.4, pp.556-63, 2013.

H. Tanaka, Diagnostic performance of a novel cadmium-zinctelluride gamma camera system assessed using fractional flow reserve, Circ J, vol.78, issue.11, pp.2727-2761, 2014.

M. Mouden, Impact of a new ultrafast CZT SPECT camera for myocardial perfusion imaging: fewer equivocal results and lower radiation dose, Eur J Nucl Med Mol Imaging, vol.39, issue.6, pp.1048-55, 2012.

A. Verger, Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols, Eur J Nucl Med Mol Imaging, vol.40, issue.3, pp.331-371, 2013.

M. Fiechter, Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography, Eur J Nucl Med Mol Imaging, 2011.

A. Gimelli, High diagnostic accuracy of low-dose gated-SPECT with solid-state ultrafast detectors: preliminary clinical results, Eur J Nucl Med Mol Imaging, vol.39, issue.1, pp.83-90, 2012.

S. S. Husain, Myocardial perfusion imaging protocols: is there an ideal protocol?, J Nucl Med Technol, vol.35, issue.1, p.39, 2007.

B. A. Herzog, Nuclear myocardial perfusion imaging with a cadmiumzinc-telluride detector technique: optimized protocol for scan time reduction, J Nucl Med, vol.51, issue.1, pp.46-51, 2010.

R. R. Buechel, Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: first clinical validation, Eur J Nucl Med Mol Imaging, vol.37, issue.4, pp.773-781, 2010.

A. Ghatk, Role of imaging for acute chest pain syndromes, Semin Nucl Med, vol.43, issue.2, pp.71-81, 2013.

E. V. Garcia, Are SPECT measurements of myocardial blood flow and flow reserve ready for clinical use?, Eur J Nucl Med Mol Imaging, vol.41, issue.12, pp.2291-2294, 2014.

. Ziadi, Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease?, J Nucl Cardiol, vol.19, issue.4, pp.670-80, 2012.

. Murthy, Improved cardiac risk assessment with noninvasive measures of coronary flow reserve, Circulation, vol.124, issue.20, pp.2215-2239, 2011.

. Ben-haim, Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study, J Nucl Med, vol.54, issue.6, pp.873-882, 2013.

H. Bailing, Quantitation of myocardial blood flow and myocardial flow reserve with 99mTc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease, Eur J Nucl Med Mol Imaging, vol.41, pp.2294-300, 2014.

R. Klein and R. S. Beanlands, Quantification of myocardial blood flow and flow reserve: Technical aspects, J Nucl Cardiol, vol.17, issue.4, pp.555-70, 2010.

H. R. Schelbert, Anatomy and physiology of coronary blood flow, J Nucl Cardiol, vol.17, issue.4, pp.545-54, 2010.

B. Hesse, EANM/ESC guidelines for radionuclide imaging of cardiac function, Eur J Nucl Med Mol Imaging, vol.35, issue.4, pp.851-85, 2008.

D. Mariano-goulart, Diagnosis of diffuse and localized arrhythmogenic right ventricular dysplasia by gated blood-pool SPECT, J Nucl Med, vol.48, issue.9, pp.1416-1439, 2007.

M. Lalonde, SPECT gated blood pool phase analysis of lateral wall motion for prediction of CRT response, Int J Cardiovasc Imaging, vol.30, issue.3, pp.559-69, 2014.

M. Lalonde, Development and optimization of SPECT gated blood pool cluster analysis for the prediction of CRT outcome, Med Phys, vol.41, issue.7, p.72506, 2014.

M. M. Jensen, U. Schmidt, C. Huang, and B. Zerahn, Gated tomographic radionuclide angiography using cadmium-zinc-telluride detector gamma camera; comparison to traditional gamma cameras, J Nucl Cardiol, vol.21, issue.2, pp.384-96, 2014.

D. Mariano-goulart, Semi-automatic segmentation of gated blood pool emission tomographic images by watersheds:application to the determination of right and left ejection fractions, Eur J Nucl Med, vol.25, issue.9, pp.1300-1307, 1998.

C. Caderas-de-kerleau, Automatic generation of noise-free timeactivity curve with gated blood-pool emission tomography using deformation of a reference curve, IEEE Trans Med Imaging, vol.23, issue.4, pp.485-91, 2004.
URL : https://hal.archives-ouvertes.fr/lirmm-00108539

C. L. Hansen, Limitations of parametric modeling of the left ventricle using first harmonic analysis: possible role for gaussian modeling, J Nucl Cardiol, vol.21, issue.4, pp.723-732, 2014.

. Sibille, Comparative values of gated blood-pool SPECT and CMR for ejection fraction and volume estimation, Nucl Med Commun, vol.32, issue.2, pp.121-129, 2011.

. Sibille, Influence of CT-based attenuation correction in assessment of left and right ventricular functions with count-based gated blood-pool SPECT, J Nucl Cardiol, vol.18, issue.4, pp.642-651, 2011.

. Dercle, Is Tompool accurate to diagnose right and left ventricular dysfunction in a clinical setting?, J Nucl Cardiol, vol.21, issue.5, pp.1011-1033, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02344948

A. Flotats and I. Carrio, Cardiac neurotransmission SPECT imaging, J Nucl Cardiol, vol.11, issue.5, pp.587-602, 2004.

M. J. Boogers, Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients, J Am Coll Cardiol, vol.55, issue.24, pp.2769-70, 2010.

P. Merlet, Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure, J Nucl Med, vol.33, issue.4, pp.471-478, 1992.

D. Agostini, Cardiac 123I-MIBG scintigraphy in heart failure, Q J Nucl Med Mol Imaging, vol.52, issue.4, pp.369-77, 2008.

I. Matsunari, Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes, Circulation, vol.101, issue.22, pp.2579-80, 2000.

T. Klein, Three-dimensional 123I-meta-iodobenzylguanidine cardiac innervation maps to assess substrate and successful ablation sites for ventricular tachycardia: feasibility study for a novel paradigm of innervation imaging, Circ Arrythm Electrophysiol, vol.8, issue.3, pp.583-91, 2015.

A. Gimelli, Regional heterogeneity in cardiac sympathetic innervation in acute myocardial infarction: relationship with myocardial oedema on magnetic resonance, Eur J Nucl Med Mol Imaging, vol.41, issue.9, pp.1692-700, 2014.

P. J. Podrid, Role of the sympathetic nervous system in the genesis of ventricular arrhythmia, Circulation, vol.82, issue.2, pp.103-116, 1990.

Y. Du, Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMAR-TZOOM collimator, Phys Med Biol, vol.59, issue.11, pp.2813-2833, 2014.

K. Ogawa, A practical method for position-dependent Comptonscatter correction in single photon emission CT, IEEE Trans Med Imaging, vol.10, issue.3, pp.408-420, 1991.

T. Ichihara, Compton scatter compensation using the triple-energy window method for single-and dual-isotope SPECT, J Nucl Med, 1993.

J. T. Yang, Clinical value of triple-energy window scatter correction in simultaneous dual-isotope single-photon emission tomography with 123I-BMIPP and 201Tl, Eur J Nucl Med, vol.24, issue.9, pp.1099-100, 1997.

M. D. Cerqueira, Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association, Int J Cardiovasc Imaging, vol.18, issue.1, pp.539-581, 2002.