T. Vassilakopoulos and B. J. Petrof, Ventilator-induced diaphragmatic dysfunction, Am J Respir Crit Care Med, vol.169, pp.336-341, 2004.

X. Capdevila, S. Lopez, N. Bernard, E. Rabischong, M. Ramonatxo et al., Effects of controlled mechanical ventilation on respiratory muscle contractile properties in rabbits, Intensive Care Med, vol.29, pp.103-110, 2003.

B. G. Le, N. Viires, J. Boczkowski, N. Seta, D. Pavlovic et al., Effects of mechanical ventilation on diaphragmatic contractile properties in rats, Am J Respir Crit Care Med, vol.149, pp.1539-1544, 1994.

C. S. Sassoon, V. J. Caiozzo, A. Manka, and G. C. Sieck, Altered diaphragm contractile properties with controlled mechanical ventilation, J Appl Physiol, vol.92, pp.2585-2595, 2002.

P. Radell, L. Edstrom, H. Stibler, L. I. Eriksson, and T. Ansved, Changes in diaphragm structure following prolonged mechanical ventilation in piglets, Acta Anaesthesiol Scand, vol.48, pp.430-437, 2004.

S. K. Powers, R. A. Shanely, J. S. Coombes, T. J. Koesterer, M. Mckenzie et al., Mechanical ventilation results in progressive contractile dysfunction in the diaphragm, J Appl Physiol, vol.92, pp.1851-1858, 2002.

L. Yang, J. Luo, J. Bourdon, M. C. Lin, S. B. Gottfried et al., Controlled mechanical ventilation leads to remodeling of the rat diaphragm, Am J Respir Crit Care Med, vol.166, pp.1135-1140, 2002.

N. Bernard, S. Matecki, G. Py, S. Lopez, J. Mercier et al., Effects of prolonged mechanical ventilation on respiratory muscle ultrastructure and mitochondrial respiration in rabbits, Intensive Care Med, vol.29, pp.111-118, 2003.

G. Z. Racz, G. Gayan-ramirez, D. Testelmans, P. Cadot, P. K. De et al., Early changes in rat diaphragm biology with mechanical ventilation, Am J Respir Crit Care Med, vol.168, pp.297-304, 2003.

A. Anzueto, J. I. Peters, M. J. Tobin, R. De-los-santos, J. J. Seidenfeld et al., Effects of prolonged controlled mechanical ventilation on diaphragmatic function in healthy adult baboons, Crit Care Med, vol.25, pp.1187-1190, 1997.

G. Gayan-ramirez, P. K. De, P. Cadot, and M. Decramer, Detrimental effects of short-term mechanical ventilation on diaphragm function and IGF-I mRNA in rats, Intensive Care Med, vol.29, pp.825-833, 2003.

A. C. Watson, P. D. Hughes, H. M. Louise, N. Hart, R. J. Ware et al., Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit, Crit Care Med, vol.29, pp.1325-1331, 2001.

F. Laghi, S. E. Cattapan, A. Jubran, S. Parthasarathy, P. Warshawsky et al., Is weaning failure caused by low-frequency fatigue of the diaphragm?, Am J Respir Crit Care Med, vol.167, pp.120-127, 2003.

A. T. Chang, R. J. Boots, M. G. Brown, J. Paratz, and P. W. Hodges, Reduced inspiratory muscle endurance following successful weaning from prolonged mechanical ventilation, Chest, vol.128, pp.553-559, 2005.

A. S. Knisely, S. M. Leal, and D. B. Singer, Abnormalities of diaphragmatic muscle in neonates with ventilated lungs, J Pediatr, vol.113, pp.1074-1077, 1988.

S. Levine, T. Nguyen, N. Taylor, M. E. Friscia, M. T. Budak et al., Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans, N Engl J Med, vol.358, pp.1327-1335, 2008.

R. A. Shanely, G. D. Van, K. C. Deruisseau, A. M. Zergeroglu, M. J. Mckenzie et al., Mechanical ventilation depresses protein synthesis in the rat diaphragm, Am J Respir Crit Care Med, vol.170, pp.994-999, 2004.

R. A. Shanely, M. A. Zergeroglu, S. L. Lennon, T. Sugiura, T. Yimlamai et al., Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity, Am J Respir Crit Care Med, vol.166, pp.1369-1374, 2002.

J. M. Mcclung, A. N. Kavazis, K. C. Deruisseau, D. J. Falk, M. A. Deering et al., Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy, Am J Respir Crit Care Med, vol.175, pp.150-159, 2007.

E. Zhu, C. S. Sassoon, R. Nelson, H. T. Pham, L. Zhu et al., Early effects of mechanical ventilation on isotonic contractile properties and MAF-box gene expression in the diaphragm, J Appl Physiol, vol.99, pp.747-756, 2005.

K. Maes, D. Testelmans, S. Powers, M. Decramer, and G. Gayan-ramirez, Leupeptin inhibits ventilator-induced diaphragm dysfunction in rats, Am J Respir Crit Care Med, vol.175, pp.1134-1138, 2007.

V. Solomon and A. L. Goldberg, Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts, J Biol Chem, vol.271, pp.26690-26697, 1996.

S. V. Scott and D. J. Klionsky, Delivery of proteins and organelles to the vacuole from the cytoplasm, Curr Opin Cell Biol, vol.10, pp.523-529, 1998.

D. Bechet, A. Tassa, D. Taillandier, L. Combaret, and D. Attaix, Lysosomal proteolysis in skeletal muscle, Int J Biochem Cell Biol, vol.37, pp.2098-2114, 2005.

C. Mammucari, G. Milan, V. Romanello, E. Masiero, R. R. Del et al., FoxO3 controls autophagy in skeletal muscle in vivo, Cell Metab, vol.6, pp.458-471, 2007.

J. Zhao, J. J. Brault, A. Schild, P. Cao, M. Sandri et al., FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells, Cell Metab, vol.6, pp.472-483, 2007.

G. Dobrowolny, M. Aucello, E. Rizzuto, S. Beccafico, C. Mammucari et al., Skeletal muscle is a primary target of SOD1G93A-mediated toxicity, Cell Metab, vol.8, pp.425-436, 2008.

M. Sandri, C. Sandri, A. Gilbert, C. Skurk, E. Calabria et al., Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy, Cell, vol.117, pp.399-412, 2004.

J. Bergstrom, Percutaneous needle biopsy of skeletal muscle in physiological and clinical research, Scand J Clin Lab Invest, vol.35, pp.609-616, 1975.

M. Mofarrahi, R. P. Brandes, A. Gorlach, J. Hanze, L. S. Terada et al., Regulation of proliferation of skeletal muscle precursor cells by NADPH oxidase, Antioxid Redox Signal, vol.10, pp.559-574, 2008.

E. Barreiro, J. Gea, D. Falco, M. Kriazhev, L. James et al., Protein carbonyl formation in the diaphragm, Am J Respir Cell Mol Biol, vol.32, pp.9-17, 2005.

P. Armitage, G. Berry, and J. Matthews, Statistical methods in medical research, 2008.

C. He and D. J. Klionsky, Regulation mechanisms and signaling pathways of autophagy, Annu Rev Genet, vol.43, pp.67-93, 2009.

J. A. Belperio, M. P. Keane, J. P. Lynch, . Iii, and R. M. Strieter, The role of cytokines during the pathogenesis of ventilator-associated and ventilator-induced lung injury, Semin Respir Crit Care Med, vol.27, pp.350-364, 2006.

J. A. Amado, F. Lopez-espadas, A. Vazquez-barquero, E. Salas, J. A. Riancho et al., Blood levels of cytokines in brain-dead patients: relationship with circulating hormones and acute-phase reactants, Metabolism, vol.44, pp.812-816, 1995.

J. M. Mcclung, G. D. Van, M. A. Whidden, D. J. Falk, A. N. Kavazis et al., Apocynin attenuates diaphragm oxidative stress and protease activation during prolonged mechanical ventilation, Crit Care Med, vol.37, pp.1373-1379, 2009.

K. C. Deruisseau, A. N. Kavazis, M. A. Deering, D. J. Falk, G. D. Van et al., Mechanical ventilation induces alterations of the ubiquitin-proteasome pathway in the diaphragm, J Appl Physiol, vol.98, pp.1314-1321, 2005.

S. S. Wing and D. Banville, 14-kDa ubiquitin-conjugating enzyme: structure of the rat gene and regulation upon fasting and by insulin, Am J Physiol, vol.267, pp.39-48, 1994.

Y. P. Li, Y. Chen, A. S. Li, and M. B. Reid, Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes, Am J Physiol Cell Physiol, vol.285, pp.806-812, 2003.

L. Voisin, D. Breuille, L. Combaret, C. Pouyet, D. Taillandier et al., Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca 21 -activated, and ubiquitin-proteasome proteolytic pathways, J Clin Invest, vol.97, pp.1610-1617, 1996.

J. M. Mcclung, A. R. Judge, S. K. Powers, and Z. Yan, p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting, Am J Physiol Cell Physiol, vol.298, pp.542-549, 2009.

M. A. Zergeroglu, M. J. Mckenzie, R. A. Shanely, D. Van-gammeren, K. C. Deruisseau et al., Mechanical ventilation-induced oxidative stress in the diaphragm, J Appl Physiol, vol.95, pp.1116-1124, 2003.

S. Jaber, M. Sebbane, C. Koechlin, M. Hayot, X. Capdevila et al., Effects of short vs. prolonged mechanical ventilation on antioxidant systems in piglet diaphragm, Intensive Care Med, vol.31, pp.1427-1433, 2005.

D. J. Falk, K. C. Deruisseau, D. L. Van-gammeren, M. A. Deering, A. N. Kavazis et al., Mechanical ventilation promotes redox status alterations in the diaphragm, J Appl Physiol, vol.101, pp.1017-1024, 2006.

M. Sandri, Signaling in muscle atrophy and hypertrophy, Physiology (Bethesda), vol.23, pp.160-170, 2008.

H. Tran, A. Brunet, E. C. Griffith, and M. E. Greenberg, The many forks in FOXO's road, Sci STKE, issue.172, p.5, 2003.

F. B. Favier, F. Costes, A. Defour, R. Bonnefoy, E. Lefai et al., Down-regulation of Akt/ mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia, Am J Physiol Regul Integr Comp Physiol, vol.298, pp.1659-1666, 2010.

S. C. Bodine, T. N. Stitt, M. Gonzalez, W. O. Kline, G. L. Stover et al., Akt/ mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo, Nat Cell Biol, vol.3, pp.1014-1019, 2001.

M. Sandri, J. Lin, C. Handschin, W. Yang, Z. P. Arany et al., PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription, Proc Natl Acad Sci, vol.103, pp.16260-16265, 2006.

S. M. Senf, S. L. Dodd, J. M. Mcclung, and A. R. Judge, Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy, FASEB J, vol.22, pp.3836-3845, 2008.

T. J. Mcloughlin, S. M. Smith, A. D. Delong, H. Wang, T. G. Unterman et al., FoxO1 induces apoptosis in skeletal myotubes in a DNAbinding-dependent manner, Am J Physiol Cell Physiol, vol.297, pp.548-555, 2009.

S. H. Lecker, R. T. Jagoe, A. Gilbert, M. Gomes, V. Baracos et al., Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression, FASEB J, vol.18, pp.39-51, 2004.

J. M. Mcclung, A. N. Kavazis, M. A. Whidden, K. C. Deruisseau, D. J. Falk et al., Antioxidant administration attenuates mechanical ventilation-induced rat diaphragm muscle atrophy independent of protein kinase B (PKB Akt) signalling, J Physiol, vol.585, pp.203-215, 2007.

Y. Kamei, S. Miura, M. Suzuki, Y. Kai, J. Mizukami et al., Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, downregulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control, J Biol Chem, vol.279, pp.41114-41123, 2004.

Y. Yamazaki, Y. Kamei, S. Sugita, F. Akaike, S. Kanai et al., The cathepsin L gene is a direct target of FOXO1 in skeletal muscle, Biochem J, vol.427, pp.171-178, 2010.

B. Levine and D. J. Klionsky, Development by self-digestion: molecular mechanisms and biological functions of autophagy, Dev Cell, vol.6, pp.463-477, 2004.