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Abstract

Vector/Pest control is essential to reduce the risk of vector-borne diseases or losses in crop
fields. Among biological control tools, the sterile insect technique (SIT), is the most promis-
ing one. SIT control generally consists of massive releases of sterile insects in the targeted
area in order to reach elimination or to lower the pest population under a certain threshold.
The models presented here are minimalistic with respect to the number of parameters and
variables. The first model deals with the dynamics of the vector population while the second
model, the SIT model, tackles the interaction between treated males and wild female vectors.
For the vector population model, the elimination equilibrium 0 is globally asymptotically
stable when the basic offspring number, R, is lower or equal to one, whereas 0 becomes un-
stable and one stable positive equilibrium exists, with well determined basins of attraction,
when R > 1. For the SIT model, we obtain a threshold number of treated male vectors above
which the control of wild female vectors is effective: the massive release control. When the
amount of treated male vectors is lower than the aforementioned threshold number, the SIT
model experiences a bistable situation involving the elimination equilibrium and a positive
equilibrium. However, practically, massive releases of sterile males are only possible for a
short period of time. That is why, using the bistability property, we develop a new strategy
to maintain the wild population under a certain threshold, for a permanent and sustainable
low level of SIT control. We illustrate our theoretical results with numerical simulations, in
the case of SIT mosquito control.

Keywords: Sterile Insect Technique, Vector, Pest, Monotone system.

1. Introduction

In the last decades, the development of sustainable vector control methods has become
one of the most challenging issue to reduce the impact of human vector borne diseases, like
malaria, dengue, chikungunya or crop pests, like fruit flies.

Several control techniques have been developed or are under development. However, the
process to reach field applications is long and complex. Modeling, and in particular Math-
ematical Modeling has become a useful tool in Human Epidemiology since the pioneering
works of Sir R. Ross and his malaria model [16, 17]. Numerous models have been developed
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to understand the dynamics of diseases and pests to test ”in silico” the usefulness or not of
control strategies (and their combination).

In this paper, we focus on the Sterile Insect Technique (SIT). This is an old control
techniques that have been used more or less successfully on the field against various kind of
Pests or Vectors (see [11] for various examples). The classical SIT consists of mass releases
of males sterilized by ionizing radiation. The released sterile males transfer their sterile
sperms to wild females, which results in a progressive decay of the targeted population. For
mosquitoes, other sterilization techniques have been developed using either genetics (the
RIDL technique) or bacteria (wolbachia) [18]. For fruit flies, only ionizing radiation has
been used, so far [11].

Our work is a companion paper of [20], where SIT against mosquitoes only has been
considered. However, it is important to notice that the results obtained in [20] can be
used against crop Pest too. An important assumption in [20] is that the insect population
dynamics exhibit a strong Allee effect. Then, the application of SIT for an estimated finite
time is sufficient to drive the population below the minimum survival density. However, for
insect population the minimum survival density tends to be very close to extinction, that
is an area of the domain, where deterministic modelling is not considered adequate. Hence,
in this paper we do not make such assumption, but rather propose control which relies on
Allee effect generated by the SIT control. Indeed, in previous works, e.g. [2, 8, 10], it
has been shown that even low levels of SIT control produce a tangible minimum survival
density, below which the population declines to extinction. In this setting, if we need to
keep the insect population below certain level and/or to sustain the decay, the SIT cannot
be discontinued. In this sense we talk about ”permanent” SIT. The level of permanent SIT
control is determined by available resources. Once this level is known, higher level of releases
can be used in short term in order to bring the insect population density below the minimum
survival level associated with the lower, but long-term sustainable SIT level of control. The
aim of this paper is to show the feasibility of this type of SIT control strategy as well as
specific methods for calculating its essential parameters.

The outline of the paper is as follows. In the next section, we present a minimalistic
entomological model of wild insect population and the discussion of its global dynamical
properties. Section 3 deals with the study of the SIT mathematical model in the case of
constant and continuous SIT releases. The key finding is the identification of a threshold
number of sterile male vectors above which the control of the wild population is effective; that
is, the wild population declines to extinction. Section 4 is devoted to the characterization of
the minimal time necessary to reduce the amount of wild vector population under a given
threshold when using SIT releases, that is, by considering the SIT model studied in section
3. Section 5 deals with the study of the SIT mathematical model in the case of periodic
and impulsive SIT releases. Notably, by using suitable comparison arguments, we provide
condition of reaching elimination of wild vector population with periodic and pulse SIT
releases and, characterize the minimal time necessary to lower the wild vector population
under a given threshold in order to reduce the epidemiological risk. The theoretical results
are discussed and supported by numerical simulations in section 6. Concluding remarks as
to show how this work fits in the literature and can be extended are given in section 7.

2. A minimalistic entomological model

The model presented in this section is minimalistic in the sense that it uses smallest
possible number of compartments which allows for adequate modelling of the mechanism of
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SIT control. It is simpler than the models in [2] and [10]. Nevertheless, and we will see
in the sequel, it has the same asymptotic properties as the other mentioned models. The
advantages of using this simpler model are two fold: On the one hand, while the model
remains biologically accurate, it allows for a complete analysis to be carried out. On the
other hand, it is more generic and can be applied to a variety of insect populations.

The model is given as a system of ordinary differential equations as follows:



























dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
= rγA− µFF,

(1)

where the parameters and state variables are described in Table 1.

Symbol Description
A Aquatic stage (gathering eggs, larvae, nymph stages)
F Fertilized and eggs-laying females
M Males

φ Number of eggs at each deposit per capita (per day)
γ Maturation rate from larvae to adult (per day)
µA,1 Density independent mortality rate of the aquatic stage (per day)
µA,2 Density dependent mortality rate of the aquatic stage (per day× number)
r Sex ratio
1/µF Average lifespan of female (in days)
1/µM Average lifespan of male (in days)

Table 1: Description of parameters and state variables of model (1)

Contrary to [20], we assume a density-dependent mortality rate in the aquatic stage.
This may correspond to an intra-specific competition between the larvae stages, for instance.
However, the forthcoming methodology could be applied for a system where the non-linearity
stands for the birth-rate, like in [20, 8, 9].

We set x = (A,M, F )′ and D = R
3
+ = {x ∈ R

3 : x ≥ 0}. Then model (1) can be written
in the form

dx

dt
= f(x), (2)

where f : R3 → R
3 represents the right hand side of (1). Function f is continuous and

continuously differentiable on R
3. Thus, according to [22, Theorem III.10.VI], for any initial

condition a unique solution exists, at least locally. The vector field defined by f is either
tangential or directed inwards on ∂D. Therefore, for any initial condition in D the solution
of (2) remains in D for its maximal interval of existence [22, Theorem III.10.XVI]. In the
sequel we consider the vector population model in the form (1) or in the form (2) on the
domain D. In order to obtain existence of the solutions in D, it is sufficient to obtain a priori
upper bounds. This can be done as follows.

We observe that system (1) is monotone [19, Proposition 3.1.1]. Indeed, for any x ∈ D
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the Jacobian

J(x) =





−(γ + µA,1)− 2µA,2A 0 φ
(1− r)γ −µM 0

rγ 0 −µF



 (3)

is a Metzler matrix, i.e. all its off diagonal elements are non-negative. The inequality

rγ − µF

2φ
(γ + µA,1 + µA,2A) < 0 (4)

holds for all sufficiently large A. Let m > 0 and let Am be so large that in addition to (4)
the following inequalities also hold:

Am ≥ m,

Fm :=
(γ + µA,1 + µA,2Am)Am

2φ
≥ m,

Mm :=
2(1− r)γAm

µM

≥ m.

(5)

For every m > 0 let
bm = (Am,Mm, Fm)

′ (6)

be a vector with coordinates satisfying (4) and (5). Then

f(bm) =







−φFm

−(1− r)γAm

Am(rγ − µF

2φ
(γ + µA,1 + µA,2Am))






< 0. (7)

Using [19, Proposition 3.2.1], the solution initiated at bm is decreasing. Then, using again
the monotonicity of the system, see [19, Proposition 3.2.1], for any solution of (1) initiated
in D we have

x(t) ≤ b||x(0)||∞ . (8)

The a priori upper bound given in (8) provides for existence of the solution for all t ≥ 0.
Therefore, (1) defines a dynamical system on D.

The stability properties of the extinction equilibrium 0 = (0, 0, 0)′ are usually described
in terms of the basic offspring number R of the population, i.e. the self-reproduction of
an individual (number of females produced by a single female) during its lifetime, assuming
that the population is so small that the density dependent mortality can be ignored. The
basic offspring number related to model (1) is defined as follows

R =
rγφ

µF (γ + µA,1)
. (9)

The Jacobian of system (1) computed at the extinction equilibrium is

J(0) =





−(γ + µA,1) 0 φ
(1− r)γ −µM 0

rγ 0 −µF



 . (10)

Its eigenvalues are −µM and the roots of the equation

λ2 + (γ + µA,1 + µF )λ+ (γ + µA,1)µF (1−R) = 0. (11)

4



It is easy to see that if R < 1, all eigenvalues of J(0) are either negative or have negative real
parts, that is 0 is asymptotically stable. If R > 1, the Jacobian has two negative eigenvalues
and a positive one. Hence, 0 is unstable.

The existence of an endemic equilibrium also depends on the value ofR. Setting the right
hand side of (1) to zero we obtain the equilibrium 0 and the equilibrium E∗ = (A∗,M∗, F ∗)′

given by






























A∗ =
(γ + µA,1)

µA,2
(R− 1),

M∗ =
(1− r)γA∗

µM
,

F ∗ =
rγA∗

µF
.

(12)

Clearly, E∗ ∈ D and E∗ 6= 0 if and only if R > 1. We summarize these results with some
more details related to basins of attraction of equilibria in the following theorem.

Theorem 1. Model (1) defines a forward dynamical system on D. Furthermore,

1) If R ≤ 1 then 0 is globally asymptotically stable on D.

2) If R > 1 then E∗ is stable with basin of attraction

D \ {x = (A,M, F )′ ∈ R
3
+ : A = F = 0},

and 0 is unstable with the non negative M−axis being a stable manifold.

Proof. As mentioned, it remains to prove the statements regarding the basins of attraction.
We use an approach similar to the approach in [1] for the analysis of bi-stable monotone
systems. 1) Let R ≤ 1. Let x = x(t) be any solution initiated in D. Denote by y = y(t)
the solution of (1) with initial condition y(0) = b||x(0)||∞ . It follows from the inequality (7)
that the function y is decreasing and, therefore, it converges. The limit is necessarily an
equilibrium (see also [19, page 35]). Considering that there is only one equilibrium in D,
we conclude that lim

t→+∞
y(t) = 0. Using that (1) is a monotone system, the inequalities

0 ≤ x(0) ≤ b||x(0)||∞ , we have
0 ≤ x(t) ≤ y(t), t ≥ 0.

Therefore, lim
t→+∞

x(t) = 0, which proves the global asymptotic stability of 0 on D.

2) To prove the stability and basin of attraction we use [19, Theorem 2.2.2]. This theorem
applies to strongly monotone systems. We recall that if the Jacobian of f is a Metzler
irreducible matrix for every x ∈ D, then (2) is strongly monotone [19, Theorem 4.1.1].
The Jacobian (3) associated with (1) is not irreducible, since the equation for M can be
decoupled. We consider the subsystem for A and F , that is,











dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dF

dt
= rγA− µFF,

(13)

which defines a dynamical system on R
2
+. The Jacobian

J̃(A, F ) =

(

−(γ + µA,1)− 2µA,2A φ
rγ −µF

)

(14)
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is clearly irreducible. We apply [19, Theorem 2.2.2] to the two dimensional interval

{(A, F )′ ∈ R
2
+ : 0 ≤ A ≤ A∗, 0 ≤ F ≤ F ∗}.

It follows that, all solutions initiated in this interval, excluding the end points, converge either
all to (0, 0)′ or all to (A∗, F ∗)′. The characteristic equation of J̃(0, 0) is exactly (11), which
produces one positive and one negative root. Considering that J̃(0, 0) is a Metzler matrix, it
has a strictly positive eigenvector corresponding to the positive eigenvalue. Hence, it is not
possible that all solutions converge to (0, 0)′. Therefore, they all converge to (A∗, F ∗)′. The
implication for the three dimensional system (1) is that all solutions initiated in the interval
[0, E∗], excluding the M-axis, converge to E∗.

Using similar argument as in 1), any solution initiated at a point larger than E∗ converges
to E∗. Since any point in D \ {x = (A,M, F )′ ∈ R

3
+ : A = F = 0} can be placed

between a point below E∗, but not on M-axis and a point above E∗, all solutions initiated
in D \ {x = (A,M, F )′ ∈ R

3
+ : A = F = 0} converge to E∗. The monotone convergence of

the solutions initiated below and above E∗ implies the asymptotic stability of E∗ as well.
The basin of attraction cannot be extended further, since the nonnegative M-axis is the
attractive manifold corresponding to the eigenvalue −µM of J(0).

3. The SIT model in the case of constant and continuous releases

In the sequel, we assume that R > 1. We take into account the constant release of sterile
male vectors MT by adding to model (1) an equation for MT . Altogether, the SIT model
reads as











































dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
=

M

M +MT
rγA− µFF,

dMT

dt
= Λ− µTMT .

(15)

The quantity Λ is the number of sterile insects released per unit of time. Assuming t large
enough, we may assume that MT (t) has reached its equilibrium value M∗

T := Λ/µT . Thus,
model (15) reduces to



























dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
=

M

M +M∗
T

rγA− µFF,

(16)

where parameters and state variables are described in Table 1. Model (16) defines a monotone
dynamical system on D.
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3.1. Equilibria of the SIT model (16): existence and stability

Equilibria of the SIT model (16) are obtained by solving the system















φF − (γ + µA,1 + µA,2A)A = 0,
(1− r)γA− µMM = 0,
M

M +M∗
T

rγA− µFF = 0.
(17)

From (17)1 and (17)2 we have

A =
µM

(1− r)γ
M (18)

and

F =
(γ + µA,1 + µA,2A)A

φ
=

(γ + µA,1)

φ

µM

(1− r)γ
M +

µA,2

φ

(

µM

(1− r)γ
M

)2

. (19)

Substituting in (17)3 leads to M = 0 or

rγM

M +M∗
T

− µF (γ + µA,1)

φ
− µFµA,2

φ

µM

(1− r)γ
M = 0. (20)

Let us set α = MT /M then in term of α, equation (20) can be written as

α2 − a1α + a0 = 0, (21)

where

a1 =
rγφ

µF (γ + µA,1)
− 1− µA,2µM

(γ + µA,1)(1− r)γ
M∗

T ,

a0 =
µA,2µM

(γ + µA,1)(1− r)γ
M∗

T .

Setting Q =
µA,2µM

(γ + µA,1)(1− r)γ
, (21) assumes the form

α2 − (R− 1−QM∗
T )α +QM∗

T = 0. (22)

The discriminant of (22) is

∆(M∗
T ) = ((

√
R− 1)2 −M∗

TQ)((
√
R+ 1)2 −M∗

TQ).

The equation ∆(M∗
T ) = 0 has two positive solutions MT1

and MT2
:

MT1
=

(
√
R− 1)2

Q
, MT2

=
(
√
R+ 1)2

Q
. (23)

Then, we have several possible cases to study:

• When M∗
T < MT1

, ∆(M∗
T ) > 0 and (22) has two positive solutions α+ and α−

α± =
(R− 1−QM∗

T )±
√

(R+ 1−QM∗
T )

2 − 4R

2
> 0, (24)

because R− 1−QM∗
T > R− 1−QMT1

= 2(
√
R− 1) > 0.
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• When M∗
T = MT1

then ∆(M∗
T ) = 0 and (22) has only one real solution α† such that

α† =
(R− 1−QM∗

T )

2
> 0. (25)

• When M∗
T ≥ MT2

then ∆(MT ) ≥ 0 and (22) has one or two real roots which are
negative because R− 1−QM∗

T ≤ R− 1−QMT2
= −2(1 +

√
R) < 0.

These results can be summarized as follows.

Proposition 1. Let MT1
given by (23).

1. If M∗
T ∈ (0;MT1

) then model (16) has two positive equilibria E1,2 = (A1,2,M1,2, F1,2)
′

with E1 < E2 and

A1,2 =
µM

(1− r)γ
M1,2,

F1,2 =
(γ + µA,1 + µA,2A1,2)A1,2

φ
,

M1 =
MT

α+
,

M2 =
MT

α−

,

where α± is given in (24).

2. If M∗
T = MT1

then model (16) has a positive equilibrium E† = (A†,M†, F†)
′ where

A† =
µM

(1− r)γ
M†,

F† =
(γ + µA,1 + µA,2A†)A†

φ
,

M† =
MT

α†

,

where α† is given by (25).

3. If M∗
T > MT1

then model (16) has no positive equilibria.

Before going further, let us make the following remark about the graphical analysis that
also leads to a similar result as in Proposition 1.

Remark 1. Let us consider the following functions of M , defined on R
+ by

f1(M) =
M

M +M∗
T

,

f2(M) =
µF (γ + µA,1)

rγφ
+

µFµA,2

rφ

µM

(1− r)γ2
M.

Hence, solve (20) is equivalent to solve

f1(M) = f2(M). (26)

Graphical analysis lead to the following three cases.
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1. Equation (26) has zero solution. That is, the SIT model (16) does not have positive
equilibrium.

2. Equation (26) has two positive solutions M1 and M2 with M1 < M2. In that case, the
SIT model (16) has two positive equilibria. In addition, by a direct comparison of the
slopes of functions f1 and f2 at M1,2 one deduces that:

M∗
T

(M1 +M∗
T )

2
− µFµA,2

rφ

µM

(1− r)γ2
> 0 (27)

and

M∗
T

(M2 +M∗
T )

2
− µFµA,2

rφ

µM

(1− r)γ2
< 0. (28)

3. Equation (26) has one positive solution M† and, therefore, the SIT model (16) has also
one positive equilibrium. In addition, it holds that

M∗
T

(M† +M∗
T )

2
− µFµA,2

rφ

µM

(1− r)γ2
= 0. (29)

Remark 1 will be helpful in the sequel.
The stability analysis is summarized in the following

Theorem 2. System (16) defines a forward dynamical system on D for any MT ∈ (0; +∞).
Moreover,

(1) If M∗
T > MT1

then equilibrium 0 is globally asymptotically stable on D.

(2) If M∗
T = MT1

then system (16) has two equilibria 0 and E† with 0 < E†. The set
{x ∈ R

3 : 0 ≤ x < E†} is in the basin of attraction of 0, while the set {x ∈ R
3 : x ≥ E†}

is in the basin of attraction of E†.

(3) If 0 < M∗
T < MT1

then system (16) has three equilibria 0, E1 and E2 with 0 < E1 < E2.
The set {x ∈ R

3 : 0 ≤ x < E1} is in the basin of attraction of 0 while the set
{x ∈ R

3 : x > E1} is in the basin of attraction of E2.

Proof. Let us set x = (A,M, F )′ ∈ D and Φ a vector-valued function such that Φ(M∗
T , x) =

f(x) where f is the right hand side of system (16). In compact form, we can therefore write
system (16) as follows:

dx

dt
= Φ(M∗

T , x). (30)

Denote by xM∗

T
(z, t) the solution of (30) satisfying xM∗

T
(z, 0) = z. Consider the point bm as

given by (5). Using (7) we have

Φ(M∗
T , bm) ≤ Φ(0, bm) = f(bm) < 0. (31)

Then the solution initiated at bm is decreasing and, again by the monotonicity of the
system, for any solution of (30) initiated in D we have

xM∗

T
(z, t) ≤ b||z||∞. (32)

The a priori upper bound given in (32) provides for existence of the solution for all t ≥ 0.
Therefore, (30) defines a dynamical system on D.
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(1) Suppose that M∗
T > MT1

. According to Proposition 1, system (30) has only one
equilibrium, namely 0. The global asymptotic stability of 0 is proved as in point 1) of
Theorem 1.

(3) Assume that 0 < M∗
T < MT1

. In this case, the dynamical system (30) has three equi-
libria 0, E1 and E2. Since the eigenvalues, ξ1 = −(γ+µ), ξ2 = −µM , ξ3 = −µF , of the
Jacobian matrix of the SIT model (16) at 0 are all negative, then the elimination equi-
librium 0 is locally asymptotically stable. Let us consider the order interval [0, E1].
According to [19, Theorem 2.2.2], the solutions initiated in this interval, excluding
the end points, either all converge to 0 or all converge to E1. Since 0 is asymptoti-
cally stable, this implies that all solutions converge to 0. Moreover, straightforward
computations lead that the Jacobian matrix, JE1

, of the SIT model (16) at E1 is an
irreducible Metzler matrix. Hence, it follows from the theory of nonnegative matrices
[13, Theorems 11 and 17], [12, Proposition 3.4] that JE1

has an eigenvector v with
positive coordinates and associated eigenvalue ξ, which is real and has an algebraic
multiplicity equal to one. Since E1 is repelling in [0, E1], then ξ ≥ 0. In fact, ξ > 0.
Indeed, straightforward computations and, taking into account (27), lead that

det(JE1
) = (1− r)rγ2φA

(

M∗
T

(M1 +M∗
T )

2
− µFµA,2

rφ

µM

(1− r)γ2

)

> 0.

Therefore, ξ > 0 since det(JE1
) is the product of eigenvalues of JE1

. Next, we consider
the order interval [E1, E2]. Again following [19, Theorem 2.2.2], we deduce that the
solutions initiated in this interval, excluding the end points, all converge to E2 since E1

is repelling in the direction of the positive vector v. Now, let x = x(t) be any solution
of the SIT model (16) such that x(0) ≥ E2. Denote by y = y(t) the solution of (16)
with initial data y(0) = b‖x(0)‖∞ . It follows from inequality (31) that the function y is
decreasing and, therefore, it converges. The limit is necessarily an equilibrium greater
or equal to E2. However, there is no other equilibrium greater than E2. Thus, the
limit of y(t), as t goes to infinity, is E2. Using that model (16) is a monotone system,
E2 ≤ x(0) ≤ y(0) implies that E2 ≤ x(t) ≤ y(t). Hence lim

t→+∞
x(t) = E2.

The proof of point (2) is done in a similar way but by considering E1 := E† to construct
the basin of attraction of the elimination equilibrium and, E2 := E† to construct the
basin of attraction of E†.

Fig. 1, page 11, depicts a rough illustration of the bistable case obtained in the last part
of Theorem 2. In Fig. 1, the black bullet is the wild equilibrium E∗ = (A∗,M∗, F ∗)′, the
blue bullet is the positive unstable equilibrium (E1) while the red bullet is the positive stable
equilibrium (E2). The dashed black box is the set [0, E1) which is contained in the basin of
attraction of 0 while the solid black box is the set {x ∈ R : x > E1} which is contained in
the basin of attraction E2.
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Figure 1: Rough illustration of the bistable case obtained in the last part of Theorem 2. The black bullet is
the wild equilibrium E∗, the blue bullet is the positive unstable equilibrium (E1) while the red bullet is the
positive stable equilibrium (E2).

Our aim, with a permanent SIT control is to drive, starting from the equilibrium E∗ and
using massive releases, the solution of the SIT system inside the set [0, E1), for a given MT1

.
Once inside, the LAS property of 0 in [0, E1) will maintain the solution inside the set [0, E1).
In fact, the solution will slowly, but surely, continue to decay to 0.

4. Characterization of the time necessary to reduce the amount of vector popu-

lation

SIT control generally consists of massive releases in the targeted area in order to reach
elimination or to lower the population under a certain threshold, to reduce the nuisance
(bites) or/and the epidemiological risk. However, according to our theoretical results, once
SIT is stopped, the system will recover. Thus, SIT always needs to be maintained. However,
from a practical point of view, massive releases can only occur for a limited period of time,
such that it should be followed by small releases. The objective of this section is to study
such a strategy: first, massive releases, followed by small releases. To do that, we define
the size of the small releases, M∗

T , we want to reach, and thus define the subdomain (which
belong to the basin of attraction of 0) we need to reach in order to start the small releases,
such that the wild population stays inside the targeted subdomain and slowly but surely
even converges to 0. Our results are based on the fact that our system is monotone and
bi-stable, such that we are able to build part of the basin of attraction of 0, defined by
[0, E1) (see Theorem 2). Then, we provide lower and upper bounds for the time, τ(M∗

T ),
needed to reach the subdomain [0, E1).

As previously stated, the aim of this section is therefore to estimate the minimal time
τ(M∗

T ) necessary for solution of system (16) to be in the box [0, E1) which ensures the
elimination of vectors in the long term dynamic. Here E1 is the unstable positive equilibrium
of system (16) defined in Proposition 1 when the size of the release M∗

T is such that 0 <
M∗

T < MT1
. Therefore in the sequel we assume that 0 < M ∗

T < MT1
. Let us consider
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E1 = (A1,M1, F 1)
′ the unstable positive equilibrium of system (16) that corresponds to

M ∗
T . Let ε > 0, we define Y = (A,M, F )′ by







A = A1 − ε,
M = M 1 − ε,
F = F 1 − ε.

(33)

Recall that, the wild vectors equilibrium is E∗ = (A∗, F ∗,M∗)′ > E1 with































A∗ =
(γ + µA,1)

µA,2

(R− 1),

M∗ =
(1− r)γA∗

µM

,

F ∗ =
rγA∗

µF
.

(34)

We denote, for t ≥ t0, a, b ∈ R, Xt0(t, a, b) the solution of system (16) with MT = b such
that Xt0(t0, a, b) = a. The following result holds true.

Theorem 3 (Minimal entry time). Assume that M∗
T > MT1

with a targeted release M ∗
T ,

such that 0 < M∗
T < MT1

. Consider 0 < Y = (A,M, F )′ < E1, defined by (33). Then, there
exists τ > 0 such that:

(i) X0(τ, E
∗,M∗

T ) = Y .

(ii) For all t ≥ τ , Xτ (t, Y ,M∗
T ) < E1 and lim

t→+∞
Xτ (t, Y ,M ∗

T ) = 0.

Proof. When MT = M∗
T > MT1

, it follows from Theorem 2 that 0 is globally asymptotically
stable for system (16) in R

3
+. That is, for all α > 0 there exist tα > 0 such that for all t ≥ tα

‖X0(t, E
∗,M∗

T )‖R3 ≤ α. In particular, for α =
1

10n
‖Y ‖R3, with n ∈ N

∗ sufficiently large, such

tα exists. Since 0 < Y < E∗ and by the continuity of X0(t, E
∗,M∗

T ) we deduce that there
exist a finite sequence (τi)i=1,...,p such that 0 < τ1 < τ2 < ... < τp and X0(τi, E

∗,M∗
T ) = Y .

We therefore set
τ := min

i=1,...,p
τi

and part (i) of Theorem 3 holds.
When MT = M∗

T ∈ (0,MT1
), part (ii) follows from the fact that 0 is LAS and the set

[0, E1) is contained in its basin of attraction (Theorem 2)

Remark 2. It is important to observe that if the massive release is stopped before the pre-
scribed period of time, τ , obtained in Theorem 3, system (16) will converge towards the
positive stable equilibrium.

Under certain conditions we can derive an analytic approximation for the minimal time,
τ , defined in Theorem 3. We deal with that issue in the sequel. In this section, we assume
that

µF < min{µM , γ + µA,1}. (35)

Assumption (35) is also supported by parameter values considered, for the case of Aedes
spp., in [2, 4, 5].
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The following inequalities holds

0 ≤ A∗ ≤ (γ + µA,1)

µA,2

R := A0
e,

0 ≤ M∗ ≤ (1− r)γ

µM

(γ + µA,1)

µA,2
R := M0

e ,

0 ≤ F ∗ ≤ rγ

µF

(γ + µA,1)

µA,2
R := F 0

e .

(36)

Let us consider the solution X(t) = (A(t),M(t), F (t))′ of system (16) with initial data E∗.
In order to estimate the (minimal) time needed to drive the vector population under a given
value Y = (A,M, F )′ < E∗, we will look for an analytical upper bound of X(t), Xupper(t).

According to system (16), we have



























dA

dt
≤ φF − (γ + µA,1)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
=

M

M +MT

rγA− µFF,

(37)

that is
dX

dt
≤ ZX

where

Z =





−(γ + µA,1) 0 φ
(1− r)γ −µM 0
rγǫ(M∗

T ) 0 −µF





and ǫ(M∗
T ) = M∗/(M∗ +M∗

T ) < 1. Let us set Xe(t) = (Ae(t),Me(t), Fe(t))
′, the solution of

dXe

dt
= ZXe. (38)

Before going further, let us give the following result that is deduced from Proposition
1.4 and Corollary 1.6 in [14] thanks to the fact that systems (16) and (38) are cooperative
systems.

Lemma 1. Solution of systems (16) and (38) with initial data such that

(A0,M0, F 0)′ ≤ (A0
e,M

0
e , F

0
e )

′ := X0
e

satisfy
∀t ≥ 0, X(t) ≤ Xe(t).

In the sequel, we follow the idea of [20] in our computations. The sub-matrix Z0 of Z
that reads as

Z0 =

(

−(γ + µA,1) φ
rγǫ(M∗

T ) −µF

)

has negative trace. Moreover, Z0 has a positive determinant if and only if 1/R > ǫ(M∗
T ).

Therefore, if ǫ(M∗
T )R < 1 then 0 is globally asymptotically stable for system (38). In this
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case, its eigenvalues are real, negative and equal to κ± (κ− < κ+) associated respectively

with eigenvectors

(

1
x±

)

where, with assumption (35) x− < 0 < x+ and

κ± =
−(γ + µA,1 + µF )±

√

(γ + µA,1 − µF )2 + 4φrγǫ(M∗
T )

2
,

x± =
γ + µA,1 − µF ±

√

(γ + µA,1 − µF )2 + 4φrγǫ(M∗
T )

2φ
.

Hence for real numbers (a0±, b
0
±)

′ ∈ R
4, we have





Ae(t)
Me(t)
Fe(t)



 =









a0+e
κ+t + a0−e

κ−t

e−µM tM0
e + (1− r)γ

∫ t

0

e−µM (t−s)(a0+e
κ+s + a0−e

κ−s)ds

b0+e
κ+t + b0−e

κ−t









where a0±, b
0
± are computed by using the overestimation (A0

e, F
0
e )

′ in (36) as initial condition.
In details, we found















a0+ =
x−A

0
e − F 0

e

x− − x+
, a0− =

−x+A
0
e + F 0

e

x− − x+
,

b0+ =
x+x−A

0
e − x+F

0
e

x− − x+
, b0− =

−x+x−A
0
e + x−F

0
e

x− − x+
.

Note that

x− − x+ = −
√

(γ + µA,1 − µF )2 + 4φrγǫ(M∗
T )

φ
< 0,

a0+ > 0, b0+ > 0, a0− < 0 and b0− = x−a
0
− > 0. Indeed, for ∆ = (γ + µA,1 − µF )

2 + 4φrγǫ(M∗
T )

we have

a0− < 0 ⇔ x+A
0
e < F 0

e

⇔ ((γ + µA,1)− µF +
√
∆)

2φ

(γ + µA,1)R

µA,2
<

rγ(γ + µA,1)R

µFµA,2

⇔ (γ + µA,1)− µF +
√
∆ <

2φrγ

µF

⇔
√
∆ < (γ + µA,1)(2R− 1) + µF

⇔ rγφǫ(M∗
T ) < (γ + µA,1)

2R(R− 1) + rγφ
⇔ rγφ(ǫ(M∗

T )− 1) < 0 < (γ + µA,1)
2R(R− 1).

In addition, by using assumption (35) we also have

κ+ + µM =
2(µM − µF )− (γ + µA,1 − µF ) +

√
∆

2
> 0.

Moreover, assuming κ− 6= −µM (which most holds generally) leads that

Me(t) = e−µM tM0
e + (1− r)γ

(

a0+
eκ+t − e−µM t

µM + κ+

+ a0−
eκ−t − e−µM t

µM + κ−

)

=

(

M0
e − (1− r)γa0+

µM + κ+
− (1− r)γa0−

µM + κ−

)

e−µM t +
(1− r)γa0+
µM + κ+

eκ+t +
(1− r)γa0−
µM + κ−

eκ−t.
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Before going further, recall that

0 < Y < E∗ < X0
e .

Since a0− < 0, Ae(t) ≤ A if a0+e
κ+t ≤ A. That is if

t ≥ tAmin :=
1

κ+

log

(

A

a0+

)

. (39)

By using the fact that b0+ + b0− = F 0
e , we deduce that Fe(t) ≤ F if F 0

e e
κ+t ≤ F . That is if

t ≥ tFmin :=
1

κ+
log

(

F

F 0
e

)

. (40)

We proved that κ+ + µM > 0 but we need to discuss the two cases κ− + µM > 0 and
κ− + µM < 0.

In the case that κ− + µM > 0, with a0− < 0 we have

Me(t) ≤
(

M0
e − (1− r)γa0−

µM + κ−

)

e−µM t +
(1− r)γa0+
µM + κ+

eκ+t.

Since κ+ > µM , we obtain

Me(t) ≤
(

M0
e − (1− r)γa0−

µM + κ−

+
(1− r)γa0+
µM + κ+

)

eκ+t := λ−e
κ+t

where λ− = M0
e − (1− r)γa0−

µM + κ−

+
(1− r)γa0+
µM + κ+

> 0. Therefore, Me(t) ≤ M if λ−e
κ+t ≤ M.

That is if

t ≥ tMmin :=
1

κ+
log

(

M

λ−

)

. (41)

In the case that κ− + µM < 0, with a0− < 0 we have

Me(t) ≤ M0
e e

−µM t +
(1− r)γa0+
µM + κ+

eκ+t +
(1− r)γa0−
µM + κ−

eκ−t.

Since κ+ > µM and κ+ > κ−, we obtain

Me(t) ≤
(

M0
e +

(1− r)γa0−
µM + κ−

+
(1− r)γa0+
µM + κ+

)

eκ+t := λ+e
κ+t

where λ+ = M0
e +

(1− r)γa0−
µM + κ−

+
(1− r)γa0+
µM + κ+

> 0. Therefore, Me(t) ≤ M if λ+e
κ+t ≤ M.

That is if

t ≥ tMmin :=
1

κ+
log

(

M

λ+

)

. (42)

Hence, we have proved the following result.

Proposition 2. Let (A(t),M(t), F (t))′ be a solution of system (16) initiated at the wild
equilibrium E∗ = (A∗,M∗, F ∗)′. Assume that ǫ(M∗

T )R < 1 where ǫ(M∗
T ) = M∗/(M∗ +M∗

T ).
The necessary time τ(M∗

T ) to lower the vector population from E∗ to Y = (A,M, F )′ defined
in (33) with A < A∗, M < M∗ and F < F ∗ is such that

τ(M∗
T ) ≥ max(tAmin, t

M
min, t

F
min)

where tAmin is given by (39), tFmin is given by (40) and tMmin is given by (41) or (42).
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5. SIT with periodic impulsive releases

Continuous releases, while mathematically very convenient, are not realistic. In general
releases are periodic and instantaneous. That is why, we consider the following SIT model
with periodic impulsive releases



















































dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
=

M

M +MT
rγA− µFF,

dMT

dt
= −µTMT ,

MT (nτ
+) = MT (nτ) + τΛ, n = 1, 2, ...

(43)

where τ (in unit of time) is the pulse release period. The right-hand side of system (43) is
locally Lipschitz continuous on R

4. Thus, using a classic existence theorem (Theorem 1.1, p.
3 in [3]), there exists T ∗ > 0 and a unique solution defined from (0, T ∗) → R

4. Then, using
standard arguments, we show that the positive orthant R4 is an invariant region for system
(43).

From the last two equations of system (43), we deduce that, as t → +∞, MT converges
toward the periodic solution

Mper
T (t) =

τΛ

1− e−µT τ
e−µT (t−⌊t/τ⌋τ). (44)

Thus, solutions of system (43) converges, in the sense of L∞(0,+∞) norm, to solutions
of the following system



























dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
=

M

M +Mper
T (t)

rγA− µFF.

(45)

System (45) is a periodic monotone dynamical system that admits one solution X . Substi-
tuting

MT := min
t∈[0,τ ]

Mper
T (t) =

τΛ

1− e−µT τ
e−µT τ , (46)

in system (45) leads to the following constant SIT model



























dA

dt
= φF − (γ + µA,1 + µA,2A)A,

dM

dt
= (1− r)γA− µMM,

dF

dt
=

M

M +MT

rγA− µFF.

(47)

whose solution XM is such that XM ≥ X for all time t > 0, using a comparison principle.
Thus applying to system (47) the results obtained in Theorems 2 and 3, we obtain conditions
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on the size and the periodicity of the releases to get GAS or LAS of 0. Using MT1
defined

in (23), we set
Mper

T1
= MT1

(eµT τ − 1) . (48)

Mper
T1

is not the best release value for the periodic case. Most probably the best release value
should depend on 1

τ

∫ τ

0
1

Mper

T
(t)
dt, like in [4]. Then, following Theorem 2, we deduce

Proposition 3. For τ and Λ given, and

(i) Assuming
τΛ > Mper

T1
, (49)

then 0 is globally asymptotically stable in (45).

(ii) Assuming
τΛ = Mper

T1
, (50)

then 0 is locally asymptotically stable in (45), and [0, E†(MT )) lies in its basin of
attraction.

(iii) Assuming
0 < τΛ < Mper

T1
, (51)

then 0 is locally asymptotically stable in (45), and [0, E1(MT )) lies in its basin of
attraction.

Using Theorem 3, we deduce

Theorem 4. Let 0 < Y = (A,M, F )′ < E1(M
∗
T ), as defined in (33), for a given target

release amount, M∗
T < Mper

T1
. The following results hold

• First, assuming massive releases, with τΛ∗ > Mper
T1

, then Mper
T converges from E∗ to

Y in a finite time t∗ > 0.

• Second, assuming small releases, with τΛ∗ = M ∗
T , then, for t > t∗, Mper

T (t) < Y and
lim

t→+∞
Mper

T (t) = 0.

Theorems 4 and 3 give us a strategy to drive, in a finite time, and keep the wild vector
population under a given threshold value Y , for a targeted amount of sterile male releases,
namely M ∗

T : first, massive releases for several weeks, and then small releases according
to M ∗

T . They are illustrated in the forthcoming section, both for constant and periodic
impulsive releases.

6. Numerical simulations

In this part, we consider a specific application of SIT against mosquito, like anopheles or
aedes spp. We consider mosquito parameter values given in Table 2.

Symbol φ µA,1 µA,2 r µF µM µT

Value 10 0.05 2×10−4 0.49 0.1 0.14 0.14

Table 2: Entomological parameter values
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In Table 3 we provide several computations, related to the maturation rate, γ. We derive
the wild (positive) equilibrium E∗ = (A∗,M∗, F ∗)′ according (12). These wild equilibria will
be used as the initial data for forthcoming simulations. In addition, we also display in Table
3 the thresholds related to the global asymptotic stability of 0 with constant release (MT1

)
and periodic pulse release (Mper

T1
).

γ 0.04 0.06 0.08 0.1

R 21.78 26.73 30.15 32.67

A∗ 9350 14150 18950 23750
M∗ 1335 3031 5412 8479
F ∗ 1834 4160 7428 11637

MT1
863.9 2048 3745 5954

Mper
T1

1484.5 3519.8 6434.3 10230

Table 3: Wild equilibrium E∗ = (A∗,M∗, F ∗)′ and Threshold values for γ with periodic treatment τ = 7
days.

We now compute the minimal time τ(M∗
T ) necessary for the solution of system (16)

initiated at the wild equilibrium E∗ to enter in the box [0, E1) (see Figure 2-(b) and figure
3-(b)). Existence of such time was proved in Theorem 3.

In Table 4, for a given amount of sterile males to release, M∗
T , we provide the values

of the positive unstable equilibrium E1 = (A1,M1, F1)
′. This is needed to define Y =

(A1 − ε, F1 − ε,M1 − ε)′, for a given ε > 0, and thus to estimate the minimal time. In the
forthcoming simulations, we set ε = 0.1.

❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 800

0.04 (36.59,5.2,0.36)’ (283.11,40.43,4.15)’ (878.68,125.48,23.35)’
0.06 (18.79,4.03,0.21)’ (109.67,23.49,1.45)’ (201.11,43.1,3.02)’
0.08 (12.24,3.5,0.16)’ (66.42,18.97,0.95)’ (113.54,32.4,1.7)’
0.1 (8.95,3.2,0.14)’ (47.1,16.8,0.75)’ (78.4,27.9,1.3)’

Table 4: Values of the positive (unstable) equilibrium E1 = (A1,M1, F1)
′ that corresponds to the targeted

release M∗

T and γ.

The next simulations are done using standard odes routines, implemented in Matlab.

6.1. Minimal time in the case of continuous and constant releases

We consider massive constant releases, M∗
T = k×MT1

(see Table 3 forMT1
). The minimal

entry time for different values of k, γ, and M ∗
T are summarized in Tables 5 and 6.

k = 1.001 k = 1.01 k = 1.1
❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 800 100 500 800 100 500 800

0.04 6959 6889 6719 2159 2090 1929 656 592 479
0.08 7151 7123 7112 2224 2196 2184 685 658 647

Table 5: The case of continuous and constant release. Numerical estimates of the minimal times (in days)
to reach Y We set ε = 0.1 using massive releases, M∗

T = k ×MT1
.
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k = 1.2 k = 2 k = 5 k = 10
❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 800 100 500 800 100 500 800 100 500 800

0.04 460 399 311 217 169 126 141 103 76 123 88 65
0.06 476 442 426 232 201 188 155 128 117 137 111 101
0.08 485 458 447 239 214 205 162 139 131 144 122 114
0.1 489 465 457 244 221 213 167 146 139 149 129 122

Table 6: The case of continuous and constant release. Numerical estimates of the minimal times (in days)
to reach Y , using massive releases, M∗

T = k ×MT1
.

For different values of M ∗
T , an increase in the size of the massive releases implies a decay

of the minimal time to enter [0, E1). Of course lower is the value of M ∗
T , longer is the

duration of the massive releases. However, it is interesting to notice that between k = 5
(where M∗

T ∈ [4320, 29770]) and k = 10 (where M∗
T ∈ [8640, 59540]), the gain of time is very

weak if we take into account the cost and, eventually, a possible limitation in the production
capacity of the sterile males. Last but not least, when M ∗

T = 100 the impact of γ on the
minimal time, is limited.

To illustrate the trajectory of the SIT system in the constant release case, we provide in
a 3D-view, the trajectory related to γ = 0.04 and k = 5 (see Figure 2).
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Figure 2: The case of continuous and constant release. (a): 3D plot of the trajectory of system (16) initiated
at the wild equilibrium E∗ = (9350, 1335, 1834)′ (black dot). (b): Zoom in around the box delimited by
the positive unstable equilibrium E1 = (878.68, 125.48, 23.35)′ (red dot). The green dot with coordinates
(633.2,121.2,10.85)’ corresponds to the start of the targeted release M∗

T . γ = 0.04, k = 5, MT1
= 863.9 and

M∗

T = 800.

Note that the red trajectory continues to decay to 0 (because of the LAS of 0), but this is
very slow. However, the main objective is achieved: to maintain the wild population below
E1.

6.2. Minimal time in the case of periodic pulse releases

We consider that releases are done every week, i.e. τ = 7. Thus for a given τ , we choose
Λ such that τΛ > Mper

T1
. In Table 7, we provide the results for different values of k, γ, and

M ∗
T .
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k = 1.2 k = 2 k = 5 k = 10
❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 800 100 500 800 100 500 800 100 500 800

0.04 213 166 123 166 120 88 127 91 67 117 83 61
0.06 228 195 184 175 147 135 140 114 104 130 105 95
0.08 235 210 201 183 159 150 148 125 118 138 116 108
0.1 240 218 210 187 166 159 152 132 125 142 122 115

Table 7: Periodic impulsive releases are done every 7 days. Numerical estimates of the minimal times (in
days) to reach Y , using massive periodic impulsive releases, M∗

T = Λτ ≥ k ×M
per
T1

In Figure 3, we illustrate the periodic impulsive SIT control for γ = 0.04 and k = 5.
First, with massive periodic releases, followed by small periodic releases. Again, the red
trajectory indicates that the system converges (but very slowly) to 0.
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Figure 3: The case of periodic pulse release. Releases are done every 7 days. (a): Time-serie of the
trajectory of system (16) initiated at the wild equilibrium E∗. The solid vertical black line denotes the shift
from massive release to targeted release (b): Zoom in around the box delimited by the positive unstable
equilibrium E

1
= (878.68, 125.48, 23.35)′ (red dot). The green dot with coordinates ( 604.57,122.4, 9.57)’

corresponds to the start of the targeted release M∗

T . γ = 0.04, k = 5, Mper
T1

= 1484.5 and M∗

T = 800.

Comparing the results between Table 7 and Table 6, clearly shows similar results. In fact,
the periodic impulsive case is strongly related to the constant release case, thanks to the
fact that < Mper

T >= 1
τ

∫ tn+τ

tn
Mper

T (t)dt = Λ
µT

= M∗
T . Thus, releasing τΛ sterile individuals

every τ days is equivalent of releasing a constant amount, MT , of sterile males over the same
period. Thus, since Mper

T1
= k× (eµT τ −1)MT1

, as long as k× (eµT τ −1) > 1, choosing Λ such
that τΛ > k(eµT τ − 1)MT1

, is equivalent of choosing M∗
T = k ×MT1

. That is why values of
k smaller than 1 can be considered too. In Tables 8-9, we provide estimates of the minimal
time for k < 1. When k < 0.58, we did not observe (numerically) convergence towards 0.

However, like for the constant releases case, the larger the value of k, the lowest the time
necessary to enter [0, E1). Values of k chosen between 2 and 5 seem the most interesting
ones.
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k = 0.58 k = 0.6 k = 0.7
❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 800 100 500 800 100 500 800

0.04 3073 3003 2827 1065 997 852 449 388 300
0.06 3732 3696 3677 1111 1075 1057 467 433 416
0.08 4322 4294 4282 1137 1109 1098 477 450 439
0.1 ∞ ∞ ∞ 1215 1191 1182 486 462 454

Table 8: Periodic impulsive releases are done every 7 days. Numerical estimates of the minimal times (in
days) to reach Y , using massive periodic impulsive releases, M∗

T = Λτ ≥ k ×M
per
T1

. The symbol ∞ denotes

that the result is greater than 106.

k = 0.8 k = 0.9 k = 1
❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 800 100 500 800 100 500 800

0.04 335 278 210 282 228 171 250 199 148
0.06 351 318 302 297 265 250 265 234 219
0.08 359 333 323 305 279 269 273 247 237
0.1 366 343 334 311 288 279 278 255 247

Table 9: Periodic impulsive releases are done every 7 days. Numerical estimates of the minimal times (in
days) to reach Y , using massive periodic impulsive releases, M∗

T = Λτ ≥ k ×M
per
T1

6.3. Mechanical control or not?

In general, using SIT alone is not efficient. It is preferable to consider other bio-control
tools. Against mosquito, it has been showed that mechanical control (MC), which consists
of removing the breeding sites, can be an additional efficient control tool [10, 7], and in
particular coupled with SIT [8]. This is a cheap control, but it requires the support of the
local population.

We now assume that the MC leads an increase of µA,2, that is a decrease of the wild
aquatic stage equilibrium A∗ (see Table 3 for values of A∗). According to relation (12), page
5, we deduce that reducing A∗ for MC% corresponds to an increase of µA,2 as follows

µA,2,MC =
(γ + µA,1)

(1− MC
100

)A∗
(R− 1). (52)

In Table 10, we provide µ2,A,MC and the wild equilibrium E∗
MC , for MC = 0, 20% and 40%

in (52).

MC = 0 MC = 20 MC = 40

µA,2,MC 2× 10−4 2.5× 10−4 3.3333× 10−4

γ 0.04 0.06 0.08 0.1 0.04 0.06 0.08 0.1 0.04 0.06 0.08 0.1
A∗ 9350 14150 18950 23750 7480 11320 15160 19000 5610 8490 11370 14250
M∗ 1335 3031 5412 8479 1068 2425 4330 6783 801 1819 3247 5087
F ∗ 1834 4160 7428 11637 1466 3328 5943 9310 1010 2496 4457 6983

Table 10: Impact of MC on the wild equilibrium E∗

MC
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Clearly, the impact of MC on the wild equilibrium is quite obvious. However, MC can
be limited in space and time.

Since the objective of massive SIT release is to enter (rapidly) in [0, E1), it is also inter-
esting to see the impact of MC treatment on the unstable equilibrium, E1,MC , for a given
targeted amount of sterile males, M∗

T . This is summarized in Tables 11 and 12. In fact,
and this is a good news, we have E1,MC > E1 = E1,0. Thus, with MC, the wild equilibrium,
E∗

MC , decreases and the size of [0, E1) increases, such that we can expect a good gain in
terms of minimal time to enter in [0, E1), using massive releases.

❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500

0.04 (37.39,5.34,0.37)’ (347.57,49.56,6.14)’
0.06 (18.96,4.06,0.22)’ (115.79,24.8,1.6)’
0.08 (12.3,3.51,0.163)’ (68.24,19.49,1)’
0.1 (8.98,3.21,0.137)’ (47.88,17.09,0.78)’

Table 11: Values of E1,MC for different values of the targeted releases amount, M∗

T , and various values of
γ, when MC = 20%.

❍
❍
❍
❍
❍
❍

γ
M∗

T 100 500

0.04 (38.82,5.54,0.4)’ (646.33,92.3,19.7)’
0.06 (19.25,4.12,0.22)’ (127.8,24.37,1.9)’
0.08 (12.4,3.54,0.166)’ (71.5,20.4,1.1)’
0.1 (9.03,3.22,0.138)’ (49.2,17.58,0.82)’

Table 12: Values of E1,MC for different values of the targeted releases amount, M∗

T , and various values of
γ, when MC = 40%.

Minimal time results are given in Tables 13-14, when we consider that MC has started
before SIT and goes on once SIT starts. Clearly, the gain in time is ”small”, indicating that
MC does not drastically decay the minimal time to reach [0, E1).
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The case of continuous and constant release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 100 500 100 500

0.04 213(4) 155(14) 137(4) 93(10) 120(3) 80(8)
0.06 228(4) 195(6) 152(3) 123(5) 134(3) 107(4)
0.08 236(3) 210(4) 160(2) 136(3) 141(3) 118(4)
0.1 241(3) 218(3) 164(3) 143(3) 146(3) 125(4)

The case of periodic pulse release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 100 500 100 500

0.04 157(9) 109(11) 123(4) 82(9) 113(4) 75(8)
0.06 172(3) 142(5) 137(3) 110(4) 127(3) 101(4)
0.08 180(3) 155(4) 145(3) 122(3) 135(3) 112(4)
0.1 185(2) 162(4) 150(2) 129(3) 140(2) 119(3)

Table 13: The case when 20% of MC takes place all over the time. Numerical estimates of the minimal times
(in days) to reach Y , using massive releases, M∗

T = k×MT1
. The values in the brackets indicate the gain in

days compared to SIT alone.

The case of continuous and constant release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 100 500 100 500

0.04 206(11) 116(53) 132(9) 70(33) 114(10) 60(28)
0.06 224(8) 186(15) 147(8) 116(12) 129(8) 100(11)
0.08 232(7) 204(10) 156(6) 130(9) 138(6) 114(8)
0.1 237(7) 213(8) 161(6) 138(8) 143(6) 121(8)

The case of periodic pulse release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 100 500 100 500

0.04 151(15) 82(38) 118(9) 62(29) 108(9) 57(26)
0.06 167(8) 134(13) 133(7) 103(11) 123(7) 94(11)
0.08 176(7) 149(10) 141(7) 117(8) 131(7) 107(9)
0.1 181(6) 158(8) 146(6) 125(7) 136(6) 115(7)

Table 14: The case when 40% of MC takes place all over the time. Numerical estimates of the minimal times
(in days) to reach Y , using massive releases, M∗

T = k×MT1
. The values in the brackets indicate the gain in

days compared to SIT alone.

MC is a useful tool. However, to be really efficient, whatever the type of releases, MC
needs to reduce the potential breeding site by 40%.

In fact, the combination of control strategies needs to be considered according to the
location. In la Réunion, a french overseas department in the Indian Ocean where a SIT
project is ongoing, there is a seasonal effect on the wild mosquito population [6], such that
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the best period to start SIT is in September, when the size of the wild mosquito population
is low. In general there is a factor 10 in the population estimates between the wet season
(February-March) and the dry season (September) (see for instance [15]). In Cali (Colombia),
there is no seasonal effect, such that the wild population is more or less constant along the
year. In order to use the SIT in an efficient manner in Cali, a population reduction is
necessary.

One possible way, and also recommended by IAEA (the International Atomic Energy
Agency) for SIT control, is to first use insecticide to reduce the population by a factor 5 or
10, and then to use SIT control. This is what we consider now: during one week, before SIT
starts, we combine MC and an adulticide treatment, assuming 100% efficiency.

In Tables 15 and 16, we provide the values obtained after one week of adulticide treatment
without and with MC.

Adulticide during one week
MC = 0

γ 0.04 0.06 0.08 0.1
A7 1897.9 2645.1 3387.1 4114
M7 46.2 98.3 169.5 258.6
F7 49.3 105.4 182.2 278.2

Table 15: Solution (A7, M7,F7)’ of the model after one week of adulticide treatment only

Adulticide during one week
MC = 20 MC = 40

γ 0.04 0.06 0.08 0.1 0.04 0.06 0.08 0.1
A7 1518.4 2116 2709.7 3291.2 1138.9 1587.2 2032.5 2468.6
M7 37 78.6 135.6 206.9 27.7 59 101.7 155.2
F7 39.5 84.3 145.7 222.5 29.6 63.2 109.3 166.9

Table 16: Solution (A7, M7,F7)’ of the model after one week of adulticide treatment combined with MC.

Clearly, according to the tables above, after one weak of adulticide treatment, the size
of the mosquito population has been drastically reduced, such that the SIT treatment will
now start at the point X7 = (A7,M7, F7)

′. That is why an impact on the minimal time to
enter the basin [0, E1,MC) is expected.

Indeed, Table 17, page 25, clearly confirms that the gain in the entry time is rather
important for the adulticide treatment only: it ranges from 35 to 95 days.
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The case of continuous and constant release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 100 500 100 500

0.04 122(95) 74(95) 92(49) 54(49) 85(38) 50(38)
0.06 137(95) 107(94) 106(49) 79(49) 98(39) 72(39)
0.08 146(93) 121(93) 113(49) 90(49) 105(39) 83(39)
0.1 150(94) 128(93) 118(49) 97(49) 110(39) 90(39)

The case of periodic pulse release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 100 500 100 500

0.04 101(65) 60(60) 87(40) 51(40) 82(35) 48(35)
0.06 115(60) 87(60) 100(40) 74(40) 95(35) 70(35)
0.08 123(60) 99(60) 107(41) 85(40) 103(35) 81(35)
0.1 127(60) 106(60) 112(40) 91(41) 107(35) 87(38)

Table 17: Numerical estimates of the minimal times (in days) to reach Y , using massive releases, M∗

T =
k ×MT1

. The values in the brackets indicate the gain in days compared to SIT alone.

In Tables 18 and 19, we present the results when MC is combined with the adulticide
treatment. As, expected, the results are improved. However, the gain, compared to the
adulticide treatment alone is small, such that the best combination would be ”adulticide
treatment for seven days, followed by permanent SIT treatment”.

The case of continuous and constant release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 100 500 100 500

0.04 116(101) 68(101) 89(52) 50(53) 82(41) 47(41)
0.06 131(101) 101(100) 102(53) 75(53) 95(42) 70(41)
0.08 139(100) 114(100) 110(52) 87(52) 103(41) 80(42)
0.1 144(100) 122(99) 115(52) 94(52) 107(42) 87(42)

The case of periodic pulse release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 100 500 100 500

0.04 97(69) 56(64) 84(43) 48(43) 80(37) 46(37)
0.06 111(64) 83(64) 97(43) 71(43) 93(37) 68(37)
0.08 119(64) 95(64) 104(44) 82(43) 100(38) 78(38)
0.1 124(63) 102(64) 109(43) 89(43) 105(37) 85(37)

Table 18: Combination of adulticide and 20% of MC, followed by SIT. Numerical estimates of the minimal
times (in days) to reach Y , using massive releases, M∗

T = k ×MT1
. The values in the brackets indicate the

gain in days compared to SIT alone.
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The case of continuous and constant release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 100 500 100 500

0.04 107(110) 59(110) 85(56) 46(57) 79(44) 43(45)
0.06 123(109) 93(108) 98(57) 71(57) 92(45) 66(45)
0.08 132(107) 107(107) 106(56) 83(56) 99(45) 77(45)
0.1 137(107) 114(107) 110(57) 90(56) 104(45) 84(45)

The case of periodic pulse release
k = 2 k = 5 k = 10

❍
❍
❍
❍
❍
❍

γ
M ∗

T 100 500 100 500 100 500

0.04 92(74) 50(70) 80(47) 44(47) 77(40) 42(41)
0.06 106(69) 78(69) 93(47) 67(47) 90(40) 64(41)
0.08 114(69) 90(69) 101(47) 78(47) 97(41) 75(41)
0.1 118(69) 97(69) 105(47) 85(47) 102(40) 81(41)

Table 19: Combination of adulticide and 40% of MC, followed by SIT. Numerical estimates of the minimal
times (in days) to reach Y , using massive releases, M∗

T = k ×MT1
. The values in the brackets indicate the

gain in days compared to SIT alone.

7. Conclusion

In this manuscript we complete the work done in [20], when no Allee effect can be
exploit in the SIT treatment strategy. We know that without Allee effect, a permanent SIT
treatment is necessary to maintain the population under a certain threshold and eventually
to drive it to extinction, at a minimal cost. Last but not least, we also prove that reducing
the size of the mosquito population using adulticide or using a seasonality effect, really
improve the efficiency of SIT, and, in addition its cost. Mechanical control, while useful to
reduce the wild population when no other treatments are available, can help to improve SIT,
but, in fact, its impact seems to be limited, such that, in terms of cost, it seems not to be
necessary or useful. In addition, we know that mechanical control is difficult to maintain,
and eventually can have a negative effect [9, 21].

Based on this work, several further extensions are possible: couple the SIT model with
an epidemiological model, to derive, for instance, the (epidemiological) threshold value to
reach, in order to reduce the epidemiological risk, as it was done in [8]; take into account the
costs of the different treatments in order to derive the most interesting combinations from
the economical point of view; another enhancement would be to take into account the spatial
component. Last but not least, comparison and links with SIT field experiments, against
mosquitoes or fruit flies, are needed to enhance the model and also SIT control strategies.
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