G. K. Owens, M. S. Kumar, and B. R. Wamhoff, Molecular regulation of vascular smooth muscle cell differentiation in development and disease, Physiol. Rev, vol.84, pp.767-801, 2004.

A. T. Nguyen, D. Gomez, R. D. Bell, J. H. Campbell, A. W. Clowes et al., Smooth muscle cell plasticity: fact or fiction?, Circ. Res, vol.112, pp.17-22, 2013.

R. L. Clifford, C. A. Singer, and A. E. John, Epigenetics and miRNA emerge as key regulators of smooth muscle cell phenotype and function, Pulm. Pharmacol. Ther, vol.26, pp.75-85, 2013.

M. Xin, E. M. Small, L. B. Sutherland, X. Qi, J. Mcanally et al., MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury, Genes Dev, vol.23, pp.2166-2178, 2009.

D. St-johnston, Moving messages: the intracellular localization of mRNAs, Nat. Rev. Mol. Cell Biol, vol.6, pp.363-375, 2005.

L. Zeng, A. D. Carter, and S. J. Childs, miR-145 directs intestinal maturation in zebrafish, Proc. Natl Acad. Sci. U.S.A, vol.106, pp.17793-17798, 2009.

C. Park, G. W. Hennig, K. M. Sanders, J. H. Cho, W. J. Hatton et al., Serum response factor-dependent MicroRNAs regulate gastrointestinal smooth muscle cell phenotypes, Gastroenterology, vol.141, pp.164-175, 2011.

C. Park, W. Yan, S. M. Ward, S. J. Hwang, Q. Wu et al., MicroRNAs dynamically remodel gastrointestinal smooth muscle cells, PLoS ONE, vol.6, 2011.

C. Notarnicola, C. Rouleau, L. Le-guen, A. Virsolvy, S. Richard et al., The RNA-binding protein RBPMS2 regulates development of gastrointestinal smooth muscle, Gastroenterology, vol.143, pp.687-697, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02542417

L. Le-guen, C. Notarnicola, and P. De-santa-barbara, Intermuscular tendons are essential for the development of vertebrate stomach, Development, vol.136, pp.791-801, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00359629

I. Hapkova, J. Skarda, C. Rouleau, A. Thys, C. Notarnicola et al., High expression of the RNA-binding protein RBPMS2 in gastrointestinal stromal tumors, Exp. Mol. Pathol, vol.94, pp.314-321, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02543718

P. S. Schmidt, C. T. Zhu, J. Das, M. Batavia, L. Yang et al., An amino acid polymorphism in the couch potato gene forms the basis for climatic adaptation in Drosophila melanogaster, Proc. Natl Acad. Sci. U.S.A, vol.105, pp.16207-16211, 2008.

E. A. Lundquist, R. K. Herman, T. M. Rogalski, G. P. Mullen, D. G. Moerman et al., The mec-8 gene of C. elegans encodes a protein with two RNA recognition motifs and regulates alternative splicing of unc-52 transcripts, Development, vol.122, pp.1601-1610, 1996.

A. Clery, M. Blatter, and F. H. Allain, RNA recognition motifs: boring? Not quite, Curr. Opin. Struct. Biol, vol.18, pp.290-298, 2008.

C. Maris, C. Dominguez, and F. H. Allain, The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression, FEBS J, vol.272, pp.2118-2131, 2005.

M. Coisy-quivy, O. Touzet, A. Bourret, R. A. Hipskind, J. Mercier et al., TC10 controls human myofibril organization and is activated by the sarcomeric RhoGEF obscurin, J. Cell Sci, vol.122, pp.947-956, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00366941

A. H. Shih and E. C. Holland, Notch signaling enhances nestin expression in gliomas, Neoplasia, vol.8, pp.1072-1082, 2006.

B. Moniot, S. Biau, S. Faure, C. M. Nielsen, P. Berta et al., SOX9 specifies the pyloric sphincter epithelium through mesenchymal-epithelial signals, Development, vol.131, pp.3795-3804, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00287635

F. W. Studier, Protein production by auto-induction in high density shaking cultures, Protein. Expr. Purif, vol.41, pp.207-234, 2005.

M. Sattler, J. Schleucher, and C. Griesinger, Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients, Prog. Nucl. Magn. Reson. Spectrosc, vol.34, pp.93-158, 1999.

J. L. Pons, T. E. Malliavin, and M. A. Delsuc, Gifa V. 4: a complete package for NMR data set processing, J. Biomol. NMR, vol.8, pp.445-452, 1996.

M. V. Berjanskii, S. Neal, and D. S. Wishart, PREDITOR: a web server for predicting protein torsion angle restraints, Nucleic Acids Res, vol.34, pp.63-69, 2006.

P. Guntert, Automated NMR structure calculation with CYANA, Methods Mol. Biol, vol.278, pp.353-378, 2004.

A. J. Nederveen, J. F. Doreleijers, W. Vranken, Z. Miller, C. A. Spronk et al., RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank, Proteins, vol.59, pp.662-672, 2005.

R. A. Laskowski, D. S. Moss, and J. M. Thornton, Main-chain bond lengths and bond angles in protein structures, J. Mol. Biol, vol.231, pp.1049-1067, 1993.

R. Koradi, M. Billeter, and K. Wuthrich, MOLMOL: a program for display and analysis of macromolecular structures, J. Mol. Graph, vol.14, pp.29-32, 1996.

P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. Koch, and D. I. Svergun, PRIMUS--a Windows-PC based system for small-angle scattering data analysis, J. Appl. Cryst, vol.36, pp.1277-1282, 2003.

D. I. Svergun, C. Barberato, and M. H. Koch, CRYSOL--a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Cryst, vol.28, pp.768-773, 1995.

E. Formstecher, S. Aresta, V. Collura, A. Hamburger, A. Meil et al., Protein interaction mapping: a Drosophila case study, Genome Res, vol.15, pp.376-384, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00118429

O. Soderberg, K. J. Leuchowius, M. Gullberg, M. Jarvius, I. Weibrecht et al., Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay, Methods, vol.45, pp.227-232, 2008.

T. A. Farazi, C. S. Leonhardt, N. Mukherjee, A. Mihailovic, S. Li et al., Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets, RNA, vol.20, pp.1090-1102, 2014.

L. P. Kozlowski and J. M. Bujnicki, MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins, BMC Bioinformatics, vol.13, p.111, 2012.

J. L. Pons and G. Labesse, @TOME-2: a new pipeline for comparative modeling of protein-ligand complexes, Nucleic Acids Res, vol.37, pp.485-491, 2009.

Z. Zhang, A. A. Schaffer, W. Miller, T. L. Madden, D. J. Lipman et al., Protein sequence similarity searches using patterns as seeds, Nucleic Acids Res, vol.26, pp.3986-3990, 1998.

A. Cléry, R. Sinha, O. Anczuków, A. Corrionero, A. Moursy et al., Isolated pseudo-RNA-recognition motifs of SR proteins can regulate splicing using a noncanonical mode of RNA recognition, Proc. Natl Acad. Sci. U.S.A, vol.110, pp.2802-2811, 2013.

G. Toba and K. White, The third RNA recognition motif of Drosophila ELAV protein has a role in multimerization, Nucleic Acids Res, vol.36, pp.1390-1399, 2008.

S. Pedrotti, R. Busa, C. Compagnucci, and C. Sette, The RNA recognition motif protein RBM11 is a novel tissue-specific splicing regulator, Nucleic Acids Res, vol.40, pp.1021-1032, 2012.

C. Clerte and K. B. Hall, Characterization of multimeric complexes formed by the human PTB1 protein on RNA, RNA, vol.12, pp.457-475, 2006.

F. Besse and A. Ephrussi, Translational control of localized mRNAs: restricting protein synthesis in space and time, Nat. Rev. Mol. Cell Biol, vol.9, pp.971-980, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00437646

A. J. Rose and E. A. Richter, Regulatory mechanisms of skeletal muscle protein turnover during exercise, J. Appl. Physiol, vol.106, pp.1702-1711, 2009.

N. Simonis, J. F. Rual, A. R. Carvunis, M. Tasan, I. Lemmens et al., Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network, Nat. Methods, vol.6, pp.47-54, 2009.

D. Ray, H. Kazan, K. B. Cook, M. T. Weirauch, H. S. Najafabadi et al., A compendium of RNA-binding motifs for decoding gene regulation, Nature, vol.499, pp.172-177, 2013.