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Abstract
Aims/hypothesis Intramyocellular lipids (IMCL) accumula-
tion is a classical feature of metabolic diseases. We
hypothesised that IMCL accumulate mainly as a conse-
quence of increased adiposity and independently of type 2
diabetes. To test this, we examined IMCL accumulation in
two different models and four different populations of
participants: muscle biopsies and primary human muscle
cells derived from non-obese and obese participants with or
without type 2 diabetes. The mechanism regulating IMCL
accumulation was also studied.
Methods Muscle biopsies were obtained from ten non-obese
and seven obese participants without type 2 diabetes, and
from eight non-obese and eight obese type 2 diabetic patients.
Mitochondrial respiration, citrate synthase activity and both

AMP-activated protein kinase and acetyl-CoA carboxylase
phosphorylation were measured in muscle tissue. Lipid
accumulation in muscle and primary myotubes was estimated
by Oil Red O staining and fatty acid translocase (FAT)/CD36
localisation by immunofluorescence.
Results Obesity and type 2 diabetes are independently
characterised by skeletal muscle IMCL accumulation and
permanent FAT/CD36 relocation. Mitochondrial function is
not reduced in type 2 diabetes. IMCL accumulation was
independent of type 2 diabetes in cultured myotubes and
was correlated with obesity markers of the donor. In obese
participants, membrane relocation of FAT/CD36 is a
determinant of IMCL accumulation.
Conclusions/interpretation In skeletal muscle, mitochon-
drial function is normal in type 2 diabetes, while IMCL
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accumulation is dependent upon obesity or type 2 diabetes
and is related to sarcolemmal FAT/CD36 relocation. In
cultured myotubes, IMCL content and FAT/CD36 reloca-
tion are independent of type 2 diabetes, suggesting that
distinct factors in obesity and type 2 diabetes contribute to
permanent FAT/CD36 relocation ex vivo.

Keywords Human myotubes . Lipid . Obesity .

Skeletal muscle . Type 2 diabetes

Abbreviations
ACC Acetyl-CoA carboxylase
AMPK AMP-activated protein kinase
FAT Fatty acid translocase
hs-CRP high-sensitive C-reactive protein
IMCL Intramyocellular lipids
MHC Myosin heavy chain
SSO Sulfo-N-succinimidyloleate
Vmax Maximal respiration rate

Introduction

Increased intramyocellular lipids (IMCL) content may be a
primary risk for developing diabetes [1]. IMCL levels are
already elevated in obese patients [2, 3] and similar IMCL
contents have been found in type 2 diabetic patients and
BMI-matched controls [4]. However, such study does not
provide information on the relative importance of obesity
vs type 2 diabetes for IMCL accumulation. The study of
IMCL accumulation in humans is limited by the small
amount of material available. Primary human myotubes
isolated from patients suffering from type 2 diabetes have
been shown to retain and display the majority of the defects
previously observed ex vivo [5–7]. This in vitro muscle
system provides an attractive model, in which lipid
accumulation can be evaluated independently of the
systemic influences of the in vivo environment. The
comparison of IMCL accumulation in skeletal muscle
tissue and in primary human myotubes isolated from obese
and non-obese participants (with or without type 2 diabetes)
would thus allow identification of intrinsic determinants of
IMCL in relation to obesity and/or type 2 diabetes.

The molecular mechanisms leading to excessive IMCL
accumulation in skeletal muscle could result from reduced
fatty acid oxidation [8, 9] and/or an increased rate of fatty
acid uptake across the plasma membrane [10]. Several
studies have provided evidence of mitochondrial dysfunc-
tion in skeletal muscle of type 2 diabetic and prediabetic
participants [1, 8, 9, 11, 12]. Moreover, beneficial effects of
physical activity in obese and type 2 diabetic patients are
associated with an increase in the oxidative capacity of

skeletal muscle potentially through activation of AMP-
activated protein kinase (AMPK) [13]. However, skeletal
muscle fatty acid oxidation can be regulated independently
of AMPK [14]. Moreover, the theory of mitochondrial
dysfunction in type 2 diabetes has been refuted by other
studies, which have shown that mitochondrial function was
not altered in type 2 diabetes skeletal muscle after normal-
isation to mitochondrial content [15] or when control and
type 2 diabetic participants were matched for body
composition [16]. The principal muscle fatty acid trans-
porter, fatty acid translocase (FAT)/CD36, is involved in
regulating uptake of long-chain fatty acids into skeletal
muscle [17, 18]. Sarcolemmal FAT/CD36 relocation was
observed in obese and type 2 diabetic participants [10]. In
obese rats, increased IMCL accumulation was associated
with an increased rate of fatty acid transport (mainly by
FAT/CD36) that exceeded the concurrently increased
capacity for mitochondrial fatty acid oxidation [19]. It
remains to be determined whether similar mechanisms
occur in human participants.

This study examined the metabolic defects in obesity
and type 2 diabetes that contribute to IMCL accumulation.
Its novelty resides in the fact that we evaluated IMCL
content in four different groups of participants: non-type 2
diabetic participants (obese or non-obese) and type 2
diabetic patients (obese or non-obese). These participant
groups allowed us to determine the respective influence of
obesity and type 2 diabetes on IMCL content. Furthermore,
we used two different models, namely an ex vivo model
(muscle biopsies) under the influence of the in vivo
environment and an in vitro system (primary human cells
derived from muscle biopsies), in order to analyse the
intrinsic determinants of IMCL accumulation in correlation
with anthropometric characteristics of the donors.

Methods

Participants We studied ten non-obese and seven obese
participants all with no personal or familial history of
diabetes, along with eight overweight but non-obese and
eight obese type 2 diabetic patients. Characteristics of the
participants are described in Table 1. They were matched
by sex (male) and physical activity, the latter measured by
the Voorrips index [20]. Type 2 diabetic patients (obese or
non-obese) were recently diagnosed (5±0.8 years) and
matched on baseline glucose-lowering agent use (mostly
metformin). None of the type 2 diabetic participants were
on statin, insulin or glitazone treatment. All medications
were withheld 24 h prior to the start of experiments.
Autoimmune diabetes markers (islet cell, GAD and tyrosine
phosphatase-like molecule IA-2 antibodies) were absent in
all diabetic patients. The experimental protocol was
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approved by the local Ethic Committee (03/10/GESE,
Montpellier, France). Informed and written consent was
obtained from all participants after explanation of the
protocol. Body composition was determined using multi-
frequency impedancemetry (QuadScan 4000; Bodystat, Isle
of Man, UK). Insulin sensitivity was measured in the fasted
state with an IVGTT followed by the minimal model
analysis as previously published [21]. A skeletal muscle
biopsy of the vastus lateralis was performed as previously
described [22, 23].

Blood biochemistry Fasting plasma glucose, insulin,
NEFA, triacylglycerol, total cholesterol, HDL-cholesterol,
HbA1C and high-sensitive C-reactive protein (hs-CRP)
were measured at rest. Fasting plasma insulin was assessed
by radioimmunoassay (Bi Insulin IRMA; Schering CIS bio
international, Bagnols sur Cèze, France) and fasting blood
glucose concentrations with an automatic device (AU2700;
Olympus, Paris, France). HbA1c was determined by HPLC
(MENARI Diagnostics, Paris, France). NEFA was quanti-
fied with a test kit (NEFA C; Wako Chemical, Dyasis,
France) and hs-CRP concentrations by the immunoturbidi-
metric method (Randox, Mauguio, France). Total choles-
terol, triacylglycerol and HDL-cholesterol were determined
by the enzymatic method (c8000; Abbott, Rungis, France).

Mitochondrial respiration Respiratory variables of the total
mitochondrial population were analysed in situ on fresh
permeabilised skeletal muscle fibres as previously described
[22]. Respiration rates were recorded in the presence of
pyruvate/malate (10 mmol/l) or palmitoyl-L-carnitine
(40 µmol/l). For each sample, basal oxygen consumption

without ADP was first recorded, then the ADP-stimulated
maximal respiration rate (Vmax) was determined in the
presence of a saturating concentration of ADP (2 mmol/l).
At the end of each measurement, cytochrome c was added to
evaluate outer mitochondrial membrane integrity. Following
these respiratory measurements, the fibre bundles were dried
overnight and weighed the next day. Respiration rates were
expressed in µmol of O2 min−1 (g dry weight)−1.

Citrate synthase activity Muscle extracts were homoge-
nised in 10 mmol/l Tris HCl (pH 7.4). Citrate synthase
activity was measured with 0.5 mmol/l oxaloacetate,
0.3 mmol/l acetyl-CoA, 0.1 mmol/l of 5, 5′-dithiobis
2-nitro-benzoic acid, 100 mmol/l Tris HCl (pH=8.0) and
0.1% (vol./vol.) Triton 100X. Enzyme activity was moni-
tored by recording the changes in absorbance at 412 nm
over 2.5 min at 37°C and normalised to tissue weight.

Ultra-structural studies of muscle by electron microscopy
Freshly obtained muscle samples (5 mg) were fixed at 4°C
overnight in 3.5% (vol./vol.) glutaraldehyde in PBS. These
samples were then prepared as previously described [24].
Electron microscopy was carried out at the Centre Régional
d’Imagerie Cellulaire (CRIC) of Montpellier (France).

Lipid accumulation Lipid accumulation was visualised by Oil
Red O (Sigma-Aldrich, Saint Quentin Fallavier, France)
staining. To quantify lipid content in myotubes, Oil Red O
was extracted using isopropanol for 10 min. A 1 ml sample was
transferred to spectrophotometer cuvettes as previously de-
scribed [25, 26]. On skeletal muscle section, Oil Red O staining
was quantified by ImageJ Launcher Software (National

Characteristic Non-T2D T2D

Non-ob Ob Non-ob Ob

N 10 7 8 8

Age (years) 52.7±1.9 50.9±3.6 58.2±2.6 51.2±2.1

Body weight (kg) 76.6±2.4 93.7±4.1a 85.6±2.7a,d 97.6±1.9a,c

BMI (kg/m²) 25.3±0.7 31.8±1.0a,c 26.9±0.6b,d 31.9±0.5a,c

Body fat (kg) 16.2±0.9 29.2±2.4a,c 22.5±1.2a,d 28.0±1.9a,c

Waist circumference (cm) 89.8±3.3 103.3±1.2a 99.6±1.7a,d 107.9±2.3a,c

Fasting blood glucose (mmol/l) 4.5±0.4 5.4±0.4c,d 8.6±1.3a,b 8.6±0.8a,b

Fasting plasma insulin (pmol/l) 34.7±2.8 51.4±5.5 54.2±6.9 69.4±17.4

Fasting plasma NEFA (mmol/l) 0.45±0.08 0.46±0.04 0.69±0.13 0.47±0.06

Fasting plasma triacylglycerol (mmol/l) 1.11±0.13 2.32±0.67 1.52±0.37 2.02±0.32

Fasting plasma cholesterol (mmol/l) 5.57±0.25 5.02±0.69 3.87±0.45a 5.10±0.27

Fasting plasma HDL-cholesterol (mmol/l) 1.41±0.12 1.49±0.45 1.07±0.13 1.01±0.06

Insulin sensitivity (min−1/(μU ml−1)×10−4) 4.57±0.75 5.91±0.72c,d 0.85±0.29a,b 0.91±0.46a,b

HbA1C (%) ND ND 7.80±0.69 7.35±0.35

hs-CRP (mg/l) 1.3±0.2 2.9±0.7 1.4±0.4 3.0±0.9

Table 1 Participant
characteristics

Data are means±SEM
a p<0.05 for difference from
Non-T2D Non-ob; b p<0.05 for
difference from Non-T2D Ob;
c p<0.05 for difference from T2D
Non-ob; d p<0.05 for difference
from T2D Ob

Non-T2D, non-type 2 diabetic
participants; T2D, type 2
diabetic patients; Non-ob, non-
obese participants; Ob, obese
participants
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Institutes of Health [NIH],WashingtonDC,WA,USA). Images
were analysed by obtaining the integrated pixel density per
muscle fibre along with the area of each muscle fibre. At least
three independent images for each participant were analysed. A
mean of 157±17 fibres per participant were analysed.

Primary human muscle cell culture Muscle biopsy (50 mg)
was scissor-minced, tissue explants were plated on to
collagen-coated dishes and cells were purified as previously
described [26, 27].

Immunofluorescence Skeletal muscle tissue or differentiat-
ed myotubes were fixed and incubated with the following
primary antibodies: anti-caveolin 3 (Becton Dickinson,
Paris, France), anti-slow and fast myosin heavy chain
(MHC) (Sigma-Aldrich), anti-desmin (Sigma-Aldrich). A
polyclonal anti-FAT/CD36 (H300; Tebu-BIO, Paris, France)
was used to stain sarcolemmal FAT/CD36 on muscle sections
and a monoclonal anti-CD36 Alexa Fluor 488 (SMФ;

Molecular Probes, Paris, France) was used to stain cell surface
FAT/CD36 in living myotubes (1 h at 37°C). Nuclei were
stained by DAPI. On skeletal muscle section and myotubes,
membrane FAT/CD36 staining was quantified by ImageJ
Launcher Software (NIH). Images were analysed by obtaining
the integrated pixel density per muscle fibre or per myotube.
On skeletal muscle sections, membrane FAT/CD36 data are
presented relative to caveolin 3 staining intensity. A mean of
39±5 fibres per participant were analysed.

Western blots Muscular extracts were quantified (30 μg)
and then lysed in Laemmli buffer as previously described
[27]. Following primary antibodies were used: anti-AMPK,
anti-PAMPK (Thr172), anti-acetyl-CoA carboxylase (ACC)
and anti-PACC (Ser79) (all from Ozyme, Saint-Quentin-
en-Yvelines, France); and anti-FAT/CD36 (H300) and
anti-α-tubulin (Sigma-Aldrich). Levels of proteins were
quantified by density analysis using ImageJ Launcher
Software (NIH).
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Fig. 1 Ectopic lipid accumula-
tion is observed in the skeletal
muscle tissue of type 2 diabetic
patients as well as in obese
participants without type 2 dia-
betes. a Representative electron
microscopy of skeletal muscle
from obese (Ob) and non-obese
(Non-ob) participants without
type 2 diabetes (Non-T2D), and,
from obese and non-obese
type 2 diabetic patients (T2D).
Arrows show lipid droplets.
Scale bar 1 μm. b Representa-
tive histological cross-sections
of skeletal muscle from partic-
ipants as above (a). Lipid accu-
mulation was visualised by Oil
Red O staining. Scale bar,
100 μm. c Quantification of Oil
Red O staining in the four
groups of participants. Non-ob
non-T2D, n=7; Ob non-T2D,
n=7; non-ob T2D, n=6; Ob
T2D, n=5. *p<0.05, †p=0.06
and ‡p<0.005 for difference
from non-ob non-T2D
participants
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Myotube treatments Treatments performed on differentiated
myotubes are detailed in the figure legends and were
realised in triplicate for each of the independent cell
cultures. The following reagents were from Sigma-
Aldrich: L-glutamine, DMEM and palmitate. FBS was from
Hyclone (Brebières, France) and insulin from Lilly (Sure-
snes, France). Sulfo-N-succinimidyloleate (SSO) was a
kind gift from W. Coumans (Cardiovascular Research
Institute Maastricht, Maastricht University, Maastricht, the

Netherlands). Palmitate was prepared as previously de-
scribed [26].

Statistical analyses Data are presented as mean±SEM.
Statistical analyses were performed using Statview 5.0
(SAS institute Inc, Cary, NC, USA). Student’s t test for
paired comparison or one-way ANOVA with Fisher’s
protected least significant difference post hoc test were
used to assess statistical differences. Simple regression
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Fig. 2 Normal mitochondrial function in type 2 diabetic skeletal
muscle tissue. ADP-stimulated Vmax measured in presence of
pyruvate/malate (10 mmol/l) (a) or palmitoyl-L-carnitine (40 µmol/l)
(b) in permeabilised skeletal muscle fibre isolated from nine non-
obese (Non-ob) non-type 2 diabetic (Non-T2D) and six obese (Ob)
non-type 2 diabetic participants, and from eight non-obese type 2
diabetic (T2D) and seven obese type 2 diabetic patients. *p<0.05 for
difference from Non-T2D Non-ob and from Non-T2D Ob.
c Measurement of citrate synthase activity in muscle extracts isolated
from non-obese non-type 2 diabetic (n=9) and obese non-type 2
diabetic participants (n=6), or from non-obese type 2 diabetic (n=7)
and obese type 2 diabetic patients (n=6). *p<0.05 and **p<0.01 for
difference from Non-T2D Non-ob and from T2D Non-ob respectively.
d Representative western blot analysis of Threonine 172 phosphory-

lation of AMPK alpha (PAMPK) and of AMPK alpha in muscle
extracts from participants as shown. e Quantification by density
analysis of AMPK and PAMPK:AMPK ratio (f) in muscle extracts
from Non-T2D Non-ob (n=5) and Non-T2D Ob participants (n=6), or
T2D Non-ob (n=6) and T2D Ob patients (n=6). *p<0.05 for
difference from T2D Ob; **p=0.01 for difference from Non-T2D
Non-ob and T2D Non-ob. g Representative western blot analysis of
Serine 79 phosphorylation of ACC (PACC) and of ACC in muscle
extracts from participants as shown. h Quantification by density
analysis of ACC and (i) PACC:ACC ratio in muscle extracts from
Non-T2D Non-ob (n=5) and Non-T2D Ob participants (n=4), or from
T2D Non-ob (n=4) and T2D Ob patients (n=4). Data (a–c, e, f, h, i)
are shown as mean±SEM
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analysis was used to study the relationship between lipid
content in myotubes and anthropometric variables (BMI,
body fat, waist circumference).

Results

Participant characteristics Table 1 shows characteristics of
the participants. There were no differences in the age of the
participants among groups. Greater body weight was ob-
served in both groups of obese participants compared with the

non-obese group without type 2 diabetes (p≤0.0003), as well
as the non-obese type 2 diabetic group (p=0.03). Body
weight was also significantly higher in obese compared with
non-obese type 2 diabetic patients (p=0.007). BMI was
significantly higher in obese than in non-obese participants
(regardless of diabetes status) (p≤0.0002). Body fat and
waist circumference were also significantly higher in obese
participant groups (p<0.0001) and in non-obese type 2
diabetes patients (p<0.01) than in non-obese participants
without type 2 diabetes. Fasting blood glucose was higher
and insulin sensitivity lower in type 2 diabetic patients
(regardless of obesity status) than in participants without
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Fig. 3 Permanent relocation of FAT/CD36 in obese participants and
type 2 diabetic patients occurs independently of increased oxidative
phenotype. a Representative western blot analysis of total FAT/CD36
levels in muscle extracts from non-obese (Non-ob) non-type 2 diabetic
(Non-T2D) and obese (Ob) Non-T2D participants, or from type 2
diabetic (T2D) Non-ob and T2D Ob patients. α-Tubulin levels were
used as loading charge controls. b Quantification by density analysis
of FAT/CD36 in muscle extracts from Non-T2D Non ob (n=6) and
Non-T2D Ob participants (n=6), or from T2D Non-ob (n=6) and T2D
Ob patients (n=5). Data are presented normalised to α-tubulin protein
levels. c Representative cross-sections of skeletal muscle tissue from
participants as indicated after incubation with antibodies against
caveolin 3 (Cav3) and FAT/CD36. Proteins were visualised using
secondary antibodies conjugated to Alexa 546 for caveolin 3 (red) and

Alexa 488 for FAT/CD36 (green). Scale bar 100 μm. d Quantification
of sarcolemmal FAT/CD36 in muscle extracts from Non-T2D Non-ob
(n=5) and Non-T2D Ob participants (n=4), or from T2D Non-ob
(n=5) and T2D Ob patients (n=3). *p<0.05 for difference from Non-
T2D Non-ob. e Representative cross-sections of skeletal muscle tissue
from participants as shown after incubation with an antibody against
slow MHC. Proteins were visualised using secondary antibodies
conjugated. to Alexa 546 (red). Nuclei in fibres were stained by DAPI
(blue). Scale bar, 50 μm. f The percentage of oxidative fibres was
determined by dividing the number of slow MHC positive fibres by
the total number of fibres from cross-sections obtained from Non-T2D
Non-ob (n=4) and Non-T2D Ob participants (n=4), or from T2D
Non-ob (n=3) and T2D Ob patients (n=3). More than 100 fibres were
counted for each participant. Data (b, d, f) are shown as mean±SEM
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type 2 diabetes (obese or not) (p<0.01 and p≤0.0002,
respectively). No significant differences were observed
among groups for fasting plasma insulin, NEFA, triacylgly-
cerol, HDL-cholesterol and hs-CRP levels. A decrease was
also observed in fasting plasma cholesterol for non-obese
type 2 diabetic patients compared with non-obese partici-

pants without type 2 diabetes (p<0.01). HbA1C levels were
similar between both type 2 diabetes groups.

Muscle lipid content is dependent on obesity or type 2
diabetes Previous studies have shown that IMCL accumu-
lation is increased in muscle tissue of type 2 diabetic
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T2D obese (Ob) participants, and from type 2 diabetic (T2D) Non-ob
and T2D Ob patients after 8 days of differentiation. Myotubes were
incubated with antibody raised against desmin and visualised using a
secondary antibody conjugated to Alexa 546 (red). Nuclei in cells
were stained by DAPI (blue). Scale bar, 30 μm. b Representative Oil
Red O staining in myotubes derived from the four different groups of
donors after palmitate treatment (0.6 mmol/l for 16 h). Scale bar,
30 µm. c Quantification of lipid content in myotubes derived from

Non-T2D Non-ob (n=4), Non-T2D Ob (n=6) participants and from
T2D Non-ob (n=4) and T2D Ob (n=5) participants after palmitate
treatment (0.6 mmol/l for 16 h). Data are normalised to lipid content in
myotubes derived from Non-T2D Non-ob participants. *p<0.05 for
difference from T2D Non-ob; †p<0.05 for difference from Non-T2D
Ob; ‡p≤0.005 for difference from Non-T2D Non-ob. d Relationship
between lipid content in myotubes after 16 h of palmitate (0.6 mmol/l)
stimulation and BMI (r2=0.51, p<0.001), (e) body fat (r²=0.31,
p=0.01) and (f) waist circumference (r²=0.32, p=0.01) of the donors.
Data of lipid accumulation shown (c–f) are the mean from three to six
independent experiments where each point was assayed in triplicate
for each of the 19 cell cultures
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patients [28, 29] and obese participants [10] compared with
controls. In Fig. 1, lipid droplets observed by electron
microscopy (Fig. 1a) and Oil Red O staining of histological
cross-sections (Fig. 1b) reveal IMCL accumulation in all
subject groups except non-obese participants without type 2
diabetes. Quantification of Oil Red O staining (Fig. 1c)
shows that IMCL accumulation was significantly greater in
all other groups than in the non-diabetic, non-obese
participants (p=0.06 for non-obese type 2 diabetes, p<0.05
for obese non-type 2 diabetes, p<0.005 for obese type 2
diabetes).

Muscle mitochondrial function and AMPK status are not
altered with type 2 diabetes Ectopic lipid accumulation in
skeletal muscle may result from decreased mitochondrial
function and/or increased fatty acid transport. To address
this issue, we first examined mitochondrial function by
measuring ADP-stimulated Vmax with substrates pyruvate/
malate (Vmax pyruvate) (Fig. 2a) or palmitoyl-L-carnitine
(Fig. 2b) on permeabilised muscle fibres. Surprisingly, Vmax

pyruvate was significantly increased in obese type 2
diabetic patients (Fig. 2a) compared with non-diabetic
participants (p≤0.01). Vmax palmitoyl-L-carnitine was not
significantly different between groups (Fig. 2b). We next
measured citrate synthase activity (Fig. 2c). Citrate syn-
thase activity was significantly increased in obese non-
diabetic participants compared with non-diabetic non-obese
and type 2 diabetic non-obese patients (p<0.05). Cellular
dysfunction, in the form of AMPK downregulation, is also
a likely candidate for abnormal IMCL accumulation in
muscle of obese and type 2 diabetic participants. ACC is a
substrate for AMPK and a critical determinant of fatty acid
oxidation (reviewed by Munday [30]). We monitored
AMPK and ACC phosphorylation expressed as a ratio of
phosphorylated:total protein (Fig. 2d, g). AMPK expression
was significantly lower in non-diabetic obese participants
than in other groups (Fig. 2e). However, the ratio of the
phosphorylated form of AMPK alpha to total AMPK alpha
(PAMPK:AMPK) was not significantly different between
the four groups (p<0.05) (Fig. 2f). Similar results were
obtained for phosphorylated PACC:ACC ratio (Fig. 2i) and
ACC expression (Fig. 2h).

Permanent sarcolemmal FAT/CD36 relocation is dependent
on obesity or type 2 diabetes Translocation of FAT/CD36
from intracellular depots to the sarcolemmal membrane of
the muscle fibre is an important regulator of fatty acid
transport and utilisation in muscle [31, 32]. We monitored
total FAT/CD36 levels by western blot on muscle tissue
extracts from the four groups of donors (Fig. 3a). Total
FAT/CD36 levels were not significantly different between
groups (Fig. 3b). We then analysed FAT/CD36 localisation
by immunostaining (Fig. 3c) on muscle tissue sections from

the four different groups of donors. Caveolin 3 was used as a
sarcolemmal marker. Sarcolemmal FAT/CD36 staining was
significantly increased (Fig. 3d) in skeletal muscle of obese
participants without type 2 diabetes, non-obese type 2
diabetic and obese type 2 diabetic patients compared with
that of non-obese non-diabetic participants who had only
low levels of sarcolemmal FAT/CD36 (p<0.05). Oxida-
tive:glycolytic muscle fibres ratio is a key regulator of
FAT/CD36 levels in muscle. FAT/CD36 levels have
previously been shown to be higher in type 1 (oxidative,
expressing slow MHC) than in type 2 (glycolytic, express-
ing fast MHC) muscle fibres [33, 34]. Figure 3e shows
representative co-staining of slow MHC with DAPI. As
shown in Fig. 3f, percentage of oxidative fibres ranged
from 31 to 40% but did not statistically differ between the
groups.

In vitro lipid accumulation is influenced by obesity To
determine whether lipid accumulation is maintained in
vitro, we derived primary muscle cells as previously
described [27]. Figure 4a shows that all differentiated

Fig. 5 Increased membrane relocation and activity of FAT/CD36 in
myotubes derived from obese participants with or without type 2
diabetes. a Representative western blot analysis of total FAT/CD36
levels in myotubes derived from non-obese (Non-ob) non-type 2
diabetic (Non-T2D) and Non-T2D obese (Ob) participants, or from
type 2 diabetic (T2D) Non-ob and T2D Ob patients. α-Tubulin levels
were used as loading charge controls. b Quantification by density
analysis of FAT/CD36 in muscle extracts from Non-T2D Non-ob
(n=4) and Non-T2D Ob participants (n=3), or from T2D Non-ob
(n=4) and T2D Ob patients (n=4). Data are presented normalised to
α-tubulin protein levels and shown as mean±SEM. c Representative
immunofluorescence microscopy of myotubes that were established
from the four different groups of donors after 8 days of differentiation
and incubated after fixation and permeabilisation with an antibody
against FAT/CD36 (H300) to show intracellular FAT/CD36. A
polyclonal secondary antibody conjugated to alexa 488 (green) was
used to visualise H300. Nuclei in cells were stained by DAPI (blue).
To show membrane FAT/CD36, myotubes were also incubated for 1 h
with an antibody against FAT/CD36 Alexa 488 (CD36-Alexa488), and
after fixation and permeabilisation, nuclei were stained by DAPI
(blue). Scale bar, 30 μm. d Quantification of intracellular and (e)
membrane FAT/CD36 in myotubes derived from Non-T2D Non-ob
(n=4) and Non-T2D Ob participants (n=5), or from T2D Non-ob
(n=4) and T2D Ob patients (n=5). †p<0.005 for difference from Non-
T2D Non-ob and T2D Non-ob respectively. f Representative immu-
nofluorescence microscopy of myotubes that were established from
participants as shown after 8 days of differentiation and incubated
with antibody against fast MHC and slow MHC. Visualisation was by
a secondary antibody conjugated to Alexa 546 (red). Nuclei in cells
were stained by DAPI (blue). Scale bar 30 μm. g Quantification of
lipid content in myotubes derived from Non-ob (n=7) and (h) Ob
(n=9) participants after (+) or without (−) SSO stimulation (250 µg/ml
for 30 min) followed by three DMEM washes and by palmitate
treatment (0.6 mmol/l for 16 h). Data are normalised to lipid content in
myotubes after palmitate treatment and presented as mean±SEM from
one to two independent experiments where each point was assayed in
triplicate for each of the 16 independent cell cultures. ‡p<0.0001 for
SSO and palmitate treatment vs palmitate treatment

�
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primary human satellite cells produced the muscle-
specific marker desmin. Muscle cells were differentiated
over 8 days, treated with palmitate and stained with Oil
Red O. Figure 4b shows a representative Oil Red O
staining after palmitate treatment of the four groups of
myotubes. Quantification of Oil Red O in primary
myotubes (Fig. 4c) shows that: (1) IMCL accumulation
was greater with obesity; and (2) IMCL accumulation was
greater with type 2 diabetes in the presence of obesity, but

not in its absence. To further confirm the extent and
specificity of obesity in influencing lipid content in vitro,
we performed linear regression analyses of obesity
markers and myotube lipid content (Fig. 4d, e, f).
Regression analyses show that lipid accumulation in
myotubes positively correlated with BMI (r2=0.51,
p<0.001, Fig. 4d), body fat (r2=0.31, p=0.01, Fig. 4e)
and waist circumference (r2=0.32, p=0.01, Fig. 4f) of the
donors.
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In vitro blocking of FAT/CD36 reduces myotube lipid stores
in obesity To further study the relationship between FAT/
CD36 localisation and lipid accumulation, we examined
total levels of FAT/CD36 by western blot analysis
(Fig. 5a) in myotubes derived from the four groups of
participants. Total FAT/CD36 levels were not significantly
different between groups (Fig. 5b). We then examined
intracellular staining of FAT/CD36 (Fig. 5c). Intracellular
localisation and staining (Fig. 5d) of FAT/CD36 were
similar in all cells. To examine whether the capacity of
myotubes to accumulate lipids was related to membrane
localisation of FAT/CD36, immunofluorescence staining
of FAT/CD36 in living cells was performed with an
antibody directed against the extracellular loop of FAT/
CD36, thus revealing cell surface FAT/CD36 (Fig. 5d).
Figure 5e shows that in myotubes cell surface FAT/CD36
relocation was significantly greater with obesity (p<0.005)
but not type 2 diabetes. Figure 5f shows that differentiated
muscle cells isolated from the four groups of donors had
equivalent levels of slow and fast MHC.

Functional evidence supporting the role of FAT/CD36 in
myotube lipid accumulation in obesity was obtained using
SSO, a specific inhibitor of FAT/CD36. SSO specifically
binds to plasma membrane FAT/CD36, resulting in an arrest
of the transport function of this protein [35]. As membrane
FAT/CD36 relocation in myotubes was independent of
type 2 diabetes, we grouped data from type 2 diabetic and
non-diabetic participants to yield only two groups: obese and
non-obese. SSO treatment significantly decreased myotube
lipid content in tissue from obese patients (p<0.0001,
Fig. 5h), but the decrease in lipid content after SSO treatment
did not reach significance in non-obese participants (p=0.07,
Fig. 5g).

Discussion

Lipid content in skeletal muscle is dependent on obesity or
type 2 diabetes Our study clearly demonstrates excessive
IMCL accumulation in obesity. This was observed in fresh
skeletal muscle and in primary myotubes. Moreover, lipid
content in myotubes was significantly related to BMI, body
fat and waist circumference of donors. This suggests that
anthropometric variables of obesity, which largely relate to
adipose tissue mass, are a strong indicator of adipose tissue
lipid overspill into skeletal muscle. This is in accordance
with another study showing that IMCL content in myotubes
from lean control and obese non-diabetic participants was
significantly related to BMI of the donor [5]. However, we
and others [10] have shown that type 2 diabetes alone, in
the absence of whole-body indicators of obesity, is also
associated with skeletal muscle lipid accumulation. Our
study provides evidence that this finding is limited to fresh

skeletal muscle and is not observed in primary myotubes.
Therefore, excess body fat is not the sole determinant of
skeletal muscle lipid accumulation ex vivo. An unknown
factor (or combined factors) of type 2 diabetes is present in
the in vivo metabolic environment and, as adiposity, also
contributes to IMCL accumulation. IMCL accumulation is
thus dependent upon obesity or type 2 diabetes in skeletal
muscle.

Mitochondrial function is not impaired in type 2 diabetes
Several studies have provided evidence of mitochondrial
dysfunction in skeletal muscle of type 2 diabetic, predia-
betic and obese participants [1, 8, 9, 11, 12, 36]. In our
study the measure of oxidative capacity and of citrate
synthase activity clearly argues against mitochondrial or
cellular dysfunction as a confounding variable in lipid
accumulation of muscle from type 2 diabetic patients. Our
findings support other recent reports [15, 16, 18, 37, 38].
Furthermore, it was recently shown that skeletal muscle
mitochondrial capacity for oxidative phosphorylation in
Asian Indians with type 2 diabetes is the same as in non-
diabetic Indians [39]. Similarly, we have shown that AMPK
or ACC status does not appear to be implicated in type 2
diabetes in accordance with previous studies [40–42] and at
odds with others [43]. While obese participants without
type 2 diabetes do not show defective mitochondrial
respiration, they do have a significant increase in citrate
synthase activity and significantly reduced AMPK levels.
Since citrate synthase activity as such may not necessarily
reflect mitochondrial content, further analyses should be
performed to determine whether mitochondrial function is
reduced in obese participants without type 2 diabetes. Our
findings highlight the absence of mitochondrial dysfunction
in type 2 diabetes, a concept that warrants recognition in
light of recent studies [15, 16, 18, 37, 38]; they also suggest
that the defective mechanism responsible for muscle lipid
accumulation in type 2 diabetes is further upstream, in fatty
acid transport across the sarcolemma.

Lipid accumulation and skeletal muscle membrane FAT/
CD36 localisation in obesity and type 2 diabetes Fatty
acid transport in skeletal muscle is mediated by a
number of proteins [44]. The main long-chain fatty acid
transport protein in muscle is FAT/CD36, which is also
involved in regulating mitochondrial long-chain fatty acid
oxidation in concert with carnitine palmitoyltransferase-I
[45]. Permanent relocation of FAT/CD36 to the sarco-
lemma could provide a mechanism by which lipids
accumulate in muscle cells. Indeed, it has previously
been shown that in obesity or type 2 diabetes, fatty acid
transport rates in skeletal muscle are related to plasma-
lemmal localisation of FAT/CD36 and to IMCL accumu-
lation [10, 46]. These data were obtained after fractioning
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skeletal muscle and generating giant sarcolemmal vesicles.
Our results add to previous findings by demonstrating that
total FAT/CD36 protein levels are not modified in obesity
or in type 2 diabetes ex vivo and in vitro and that
membrane FAT/CD36 relocation observed by immunohisto-
chemistry is associated with muscle lipid accumulation,
not only ex vivo, but also in vitro, in cultured myotubes
derived from obese participants. Furthermore, the func-
tional implication of FAT/CD36 in muscle lipid accumu-
lation in vitro during obesity was demonstrated by a
dramatic reduction in IMCL content following specific
inhibition of FAT/CD36 by SSO. Type 2 diabetes alone
(i.e. independently of obesity) was also associated with
membrane localisation of FAT/CD36, but this observation
was limited to ex vivo measurements and did not occur in
vitro. Therefore, we speculate that two distinct types of
factor dictate permanent FAT/CD36 relocation to the
sarcolemma: (1) intrinsic factor(s) unique to obesity; and
(2) environmental factor(s) unique to type 2 diabetes. Our
findings of normal rates of fatty acid oxidation but
increased sarcolemmal FAT/CD36 and fatty acid uptake
in type 2 diabetes are similar to previous studies
performed in obese humans [10, 47] and in obese rats,
where upregulation of fatty acid oxidation did not
compensate for the additional FAT/CD36-mediated fatty
acid influx [19].

Regulators of FAT/CD36 translocation in obesity or type 2
diabetes Insulin, muscle contraction and AMPK activation
regulate FAT/CD36 translocation [48]. We have shown
that AMPK is unlikely to account for the permanent
FAT/CD36 relocation observed in obesity or type 2
diabetes. Muscle contraction is also unlikely to do so,
as biopsies were sampled in carefully controlled resting
conditions for all participants. Moreover, the oxidative:
glycolytic fibre ratio, a known regulator of FAT/CD36
expression in muscle [34], was not related to FAT/CD36
localisation or lipid content in our study, confirming
previous findings [49]. Early insulin resistance is charac-
terised by increased fasting plasma insulin levels, a factor
that is present in the muscle environment and could
contribute to aberrant membrane FAT/CD36 localisation.
However, our type 2 diabetic patients displayed insulin
insensitivity in the absence of elevated fasting plasma
insulin compared with participants without type 2
diabetes, making the implication of high insulin level
environment in permanent membrane FAT/CD36 reloca-
tion unlikely in our type 2 diabetic patients. Further
investigations must be made to identify novel factors that
are present only ex vivo in type 2 diabetes and present ex
vivo and in vitro in obesity, and are responsible for
permanent membrane FAT/CD36 relocation and hence
IMCL accumulation.

Conclusions

Overall, our study shows that FAT/CD36 localisation to the
membrane is a major contributor to skeletal muscle lipid
stores in obesity or type 2 diabetes. We have provided the
evidence that an unknown factor (or combined factors)
contributes to permanent FAT/CD36 relocation and lipid
accumulation in skeletal muscle of non-obese type 2 diabetic
patients and that this unknown factor is not retained in vitro in
cultured muscle cells. Furthermore, we are the first to show
that cultured myotubes derived from obese participants (with
our without type 2 diabetes) maintain permanent membrane
FAT/CD36 relocation and excessive lipid accumulation.
These findings suggest that permanent FAT/CD36 relocation
in obesity is not dependent upon environmental factors,
highlighting the need to identify new regulators of FAT/
CD36 cycling in skeletal muscle that operate independently of
insulin, contraction and AMPK activation. It also remains to
be determined whether permanent FAT/CD36 relocation is
genetically programmed or epigenetically acquired in obese
participants.
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