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ORIGINAL ARTICLE
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Background and Aims. Increasing environmental pollution may participate in the
growing incidence of metabolic disorders. Static magnetic fields (SMFs) are an emerging
environmental health issue due to increased exposure in residential and commercial areas;
however, their metabolic effects in serum and skeletal muscle are largely unknown. The
aim of this study was to investigate the effect of SMF exposure on glucose and lipid
metabolism in serum and skeletal muscles of rats.

Methods. Twelve 6- to 7-week-old male Wistar rats were randomly divided into two
groups: rats exposed to 128 mT SMF and sham-exposed rats. This moderate-intensity
exposure was performed for 1 h/day for 15 consecutive days.

Results. Animals exposed to 128 mT SMF displayed significant changes in both glucose
(i.e., increases in plasma glucose and lactate and decrease in plasma insulin levels) and
lipid (i.e., increases in plasma glycerol, cholesterol and phospholipids but not triglyceride
levels) metabolism. During intraperitoneal glucose tolerance tests, SMF-exposed rats
displayed significantly higher hyperglycemia compared to sham-exposed rats despite
similar insulin levels in both groups. In tissues, SMF exposure induced significant alter-
ations in enzyme activities only in glycolytic muscles and caused a significant decrease in
quadriceps and liver glycogen content together with increased phospholipid levels.

Conclusions. This study provides evidence that subacute SMF exposure of moderate inten-
sity induces important alterations of glucose and lipid metabolisms, which deserve further
investigations to evaluate long-termconsequences. !2010 IMSS.PublishedbyElsevier Inc.
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Introduction

The incidence of metabolic disorders grows among devel-
opingnations. Several factors are known topromotemetabolic
alterations. These include endogenous factors characterized
by the interplay of genes with insulin-related abnormalities

and metabolic deregulations, as well as exogenous factors
such as sedentary life style, food intake and environmental
exposure (1e3).

This latter factor may be implicated in the development of
metabolic disorders (1,2,4). Electromagnetic fields (EMFs)
and staticmagnetic fields (SMFs) are growing environmental
pollutants due to increased exposure in both residential and
working areas (5,6). To date there are few data on health
effects of static magnetic fields.

In an attempt to address the biological effects of SMFs,
it is useful to classify them as weak (!1 mT), moderate
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(1 mT to 1T), strong (1e5 T) and ultrastrong (O5 T). Until
recently, the International Commission on Non-Ionizing
Radiation Protection (ICNIRP) recommendations for
occupational exposure were a whole-working-day time-
averaged exposure limit of 200 mT. The acute exposure
limit for head and trunk was 2T, which is the maximum
for limiting vertigo, nausea and metallic taste (7). In
2009, SMF guidelines were modified (8). Now, the public
limit is at 400 mT for occupational exposure and up to
8T exposure can be permitted in a controlled environment.
However, moderate-intensity SMF exposure (generally
|200 mT) has been shown to affect a wide variety of bio-
logical systems in vitro (9e15). Another important and so
far underestimated outcome is the impact of SMFs on in
vivo metabolism. Indeed, the most recently published study
deals with the effects of SMFs on bacteria metabolism (16)
and only few studies describe their effects in mammals. For
instance, Gorczynska et al. (17) observed an increase in
blood glucose associated with a reduced insulin secretion
in rats exposed to a constant magnetic field of moderate
intensity, 1 h/day for 10 days. Recently, Chater et al. (18)
reported an increase in glycemia after subacute exposure
of pregnant rats to 128 mT, 1 h/day for 13 consecutive days.

Skeletal muscles represent the most important metabol-
ically active mass of the body and play a major role in the
regulation of lipid and glucose metabolism. Therefore, skel-
etal muscles may be sensitive to SMF exposure. Metabolic
response is highly dependent on oxidative and glycolytic
muscle fiber types with sensitivity to external stimuli
related to muscle typology (3). In vitro, SMFs enhance
skeletal muscle differentiation (19) and accelerate Ca2þ/
calmodulin-dependent myosin light-chain phosphorylation
(20). Moreover, SMFs alter ion transporters (9) and seem
to affect muscle microcirculation (14,21,22). Finally,
because SMFs are widely used in therapeutics for musculo-
skeletal pain relief (23), it is crucial to dissect their effect
on skeletal muscle homeostasis and to take into account
muscle typology.

In the present study, our aim was to investigate whether
subacute exposure to moderate-intensity SMFs could induce
both systemic and local (i.e., in oxidative and glycolytic
muscle and liver) alterations of glucose and lipidmetabolism.
Therefore, we compared various hormonal and metabolic
parameters in male Wistar rats exposed or not to 128 mT
SMF (1 h/day) for 15 days.

Materials and Methods

Animals and Protocol

Animal care and experimental procedures were carried out
in accordance with the guidelines set by the European
Community Directives (86/609/EEC) and the protocol
was approved by the Ethics Committee of the University
of Montpellier I, France.

Twelve 6- to 7-week-old male Wistar rats were housed
(n5 3/cage) in a temperature-controlled room at 25"C with
a relative humidity of 80% and a 12:12 h light-dark cycle
(lights on at 8 AM). Water and food were available ad
libitum. Rats were randomly divided into two groups: rats
exposed to 128 mT SMF (n 5 6, SMF) and sham-
exposed rats (n 5 6, sham exposed). Rats exposed to 128
mT SMF and sham-exposed rats were placed in the electro-
magnet for 1 h/day for 15 consecutive days. The exposure
period always took place between 8 and 12 AM under
standard light exposure and constant temperature.

Exposure System

We used an electromagnet (Model EM4-HVA, Lake Shore
Cryotronic, Inc., Westerville, OH) and a magnet power
supply (Model 647, Lake Shore Cryotronic, Inc.) with an
air gap of 11 cm. This apparatus incorporates water-
cooled coils and precision yokes that assure precise cap
alignment and excellent field stability and uniformity when
high power is required to achieve the maximum field capa-
bility for the electromagnet. SMF intensity was measured
and standardized over the total floor area of the plexiglas
cage at 128 mT. SMF uniformity in the active exposure
volume was #0.2% over 1 cm3. The cage measured 20 $
10 $ 20 cm. The two coils of the Lake Shore electromagnet
were separated by a 12.1-cm gap. Exposed and sham-
exposed rats (n 5 2/each time) were placed in the cage at
the center of the uniform field area and exposed (or not)
to 128 mT SMF.

Intraperitoneal Glucose Tolerance tests (IPGTT)

Two days before sacrifice, rats underwent an intraperitoneal
glucose tolerance test (IPGTT) as previously described
(24). Briefly, after being fasted for 4 h, a glucose solution
(2 g/kg body weight) was administered IP. Blood was
collected after tail snipping at time 0 and 20, 40, 60, and
90 min after glucose administration for measurements of
plasma glucose and insulin levels.

Blood Chemistry

Exposed and sham-exposed rats were sacrificed by decapita-
tion in postprandial state. Blood samples were immediately
centrifuged and plasma aliquots were frozen and stored at
%80"C until assays.

Plasma glucose and glycerol/triglyceride concentrations
were determined using enzymatic methods following the
manufacturer’s instructions (Sigma510, andSerumTriglycer-
ides Determination Kit TR0100, Sigma, France). Insulin
concentrations were determined using radioimmunoassay
with 125I-labeled insulin and a rat insulin antiserum to deter-
mine the level of rat insulin. The sensitivity of this radioimmu-
noassay was 0.02 ng/ml (SRI-13K, Labodia, France). The
colorimetric enzymatic test CHOD-PAP (Biomaghreb
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20111, Tunisia) was used for cholesterol quantification ac-
cording to the manufacturer’s instructions. Lactate concentra-
tionwas determined according to the method of Gutmann and
Wahlefeld (25) and plasma phospholipids were analyzed
following the method developed by Shibuya et al. (26).

Tissue Sampling

Immediately after sacrifice, the soleus (SOL; oxidative
muscle) and the extensor digitorum longus (EDL; glycolytic
muscle) of the hindlimb were removed, frozen in liquid
nitrogen and stored at e80"C until use for enzymatic activ-
ities measurements. Quadriceps and liver biopsies were
carried out to be used for determination of tissue glycogen,
phospholipids, triglycerides and glycerol concentrations.

Enzymatic Activities

Citrate synthase (CS) activity was measured at 412 nm and
30"C for 2.5 min as suggested by Srere (27). 3-Hydroxyac-
yl-coenzyme A-dehydrogenase (HADH) and lactate dehy-
drogenase (LDH) activities were measured at 340 nm for
10 min and 2.5 min, respectively. Results are expressed in
micromoles/minute/g of tissue (mmol/min/g).

Muscle and Liver Glycogen Contents

Muscle and liver glycogen contents were determined from
quadriceps and liver biopsies using the procedure described
by Lo et al. (28). Values were calculated from a standard
curve generated at the same time and expressed in mg
glycogen/g tissue.

Data Presentation and Statistical Analysis

Data are presented as mean # SEM. Statistical significance
of the differences between mean values was assessed by
Student t-test or Mann-Whitney U test; differences within
groups for the IPGTT values were assessed by analysis of
variance (ANOVA) followed by Bonferroni post hoc tests.
The level of significance was set at p !0.05.

Results

Effect of SMF on Body Weight and Metabolic Parameters

SMF exposure did not induce an obvious phenotype; exposed
rats were normal in terms of appearance, body weight and
relative weight of tissues. However, SMF-exposed rats dis-
played significant changes in metabolic parameters. Under
postprandial conditions, SMF-exposed rats presented higher
glycemia and lower insulinemia values than sham-exposed
animals (Table 1). They also displayed a significant increase
of plasma lactate compared to sham-exposed rats.

On the other hand, SMF exposure had no effect on the
triglycerides level, whereas it strongly enhanced plasma
glycerol, cholesterol and phospholipid concentrations.

Effect of SMF Exposure on Glucose Tolerance

To investigate whole-body glucose metabolism, IPGTT was
performed in fasted animals 2 days before sacrifice. IP admin-
istration of glucose resulted in an increase of plasma glucose
and insulin concentrations in bothgroups (Figure1).However,
ANOVA analysis showed that overall, SMF-exposed rats had
a significant higher glucose levels than sham-exposed animals
( p!0.01). These higher glucose levels in exposed rats were
accompanied by insulin levels similar to those observed in
non-exposed control animals.

Table 1. Basal metabolic and morphometric parameters in sham-
exposed and SMF-exposed rats

Sham-exposed rats SMF-exposed rats

Weight (g) 244.4 # 21.4 206.3 # 8.4
Glycemia (mg/dL) 166.0 # 4.2 205.6 # 5.9a

Insulin (ng/ml) 2.15 # 0.46 0.83 # 0.13b

Lactate (mM) 1.45 # 0.14 3.20 # 0.45b

Triglycerides (mg/dL) 66.06 # 11.00 47.40 # 8.69
Glycerol (mg/dL) 13.99 # 2.59 22.61 # 5.33a

Cholesterol (g/l) 0.97 # 0.04 1.26 # 0.06b

Phospholipids (mg/ml) 1.04 # 0.04 1.64 # 0.14b

n 5 6 in each group.
ap !0.05.
bp !0.01 significantly different from sham-exposed rats.

Figure 1. Glucose (A) and insulin (B) levels during an intraperitoneal
glucose tolerance test (IPGTT) in sham-exposed (-; n 5 5) and SMF
exposed rats (,; n 5 6). Values are mean # SEM. There is a significant
increase in hyperglycemia in SMF-exposed rat ( p !0.01) compared to
sham-exposed rat and $: statistical difference ( p !0.01) at time 20 min
between groups.
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Effects on Metabolic Parameters in Quadriceps and Liver
Biopsies after SMF Exposure

Because skeletal muscle and liver play a crucial role in
glucose and lipid metabolism, we then analyzed metabolic
parameters in these tissues. Glycogen content was strongly
reduced both in quadriceps (by 44%) and liver (by 25%)
biopsies of exposed rats compared with sham-exposed rats.
We also noticed a significant increase in phospholipid
content in both tissues after exposure to SMF (Table 2);
in contrast, we did not find significant differences in hepatic
and muscular levels of triglycerides and glycerol (Table 2).

Enzymatic Activities in Oxidative and Glycolytic Muscle
Biopsies after SMF Exposure

To further analyze the effect of SMF exposure on skeletal
muscle, we studied the activities of enzymes involved in
glycolytic and oxidative metabolism in both oxidative and
glycolytic muscle. We therefore tested CS, HADH and LDH
activities in the soleus (SOL; oxidative muscle) and in the
extensor digitorum longus (EDL; glycolytic muscle) of both
groups (Figure 2). SMF exposure did not affect CS, HADH
andLDHactivities in oxidativemuscles.Conversely, in glyco-
lytic muscles, SMF exposure reduced CS activity and
increased LDH but had no effect on HADH activity.

Discussion

In this study we showed that exposure of normal Wistar rats
to 128 mT SMF (1 h/day) for 15 days induced significant
changes in lipid and glucose homeostasis. In accordance
with previously published studies (17,18), we found that
rats exposed to SMF displayed significantly higher glyce-
mia and lower insulinemia. We were also able to show that
exposure to SMF induced a significant increase in hyper-
glycemia after IPGTT without insulin response alteration,
suggesting a decrease in glucose tolerance possibly due to
impaired glucose uptake after SMF exposure. The main
tissues implicated in glucose uptake are skeletal muscle
and liver. We did find a significant decrease in glycogen
content in muscles and liver. This reduction may be caused

either by decreased glucose uptake or increased glycogen-
olysis. Indeed, Abdelmelek et al. (29) reported higher
norepinephrine levels in skeletal muscle of rats after SMF
exposure at 128 mT, which could account for increased
glycogen breakdown. Such a hypothesis cannot be excluded
but, in our opinion, a decrease in glucose uptake is more
likely to be responsible for the reduction of glycogen
content in liver and skeletal muscles. Indeed, our exposed
rats also presented higher plasma lactate concentrations
and several studies have demonstrated a metabolic compe-
tition between lactate and glucose uptake (30,31). In the
presence of elevated plasma lactate, glucose uptake is

Table 2. Liver and quadriceps parameters in sham-exposed and SMF-exposed rats

Liver Quadriceps

Sham SMF Sham SMF

Glycogen (mg/g tissue) 33.3 # 3.1 25.2 # 1.4a 5.7 # 0.5 3.2 # 0.3b

Phospholipids (mg/g tissue) 16.7 # 0.6 20.4 # 0.3b 12.7 # 0.7 17.7 # 1.2b

Triglycerides (mg/dL) 98.6 # 13.7 110.3 # 11.0 20.0 # 2.2 22.1 # 1.4
Glycerol (mg/dL) 103.0 # 12.1 117.7 # 9.9 19.0 # 1.7 20.6 # 1.3

n 5 6 in each group.
ap !0.05.
bp !0.01 significantly different from sham-exposed rats.

Figure 2. (A) CS activity in oxidative muscle: soleus (SOL) and glycolytic
muscle: extensor digitorum longus (EDL) in sham-exposed (-; n 5 6)
and SMF exposed rats (,; n 5 6); (B) HADH activity and (C) LDH
activity. Values are mean # SEM. *p !0.05 vs. sham-exposed rats.
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reduced and lactate is used as a metabolic substrate (31,32).
This metabolic switch is often described in glucose homeo-
stasis disorders such as diabetes (33e35) and our exposed
rats also displayed lower plasma insulin levels, which could
further favor the decrease in glucose uptake. Insulin levels
were not different in fasted SMF-exposed rats and controls
and also during glucose tolerance tests in the two groups.
The reason for such a discrepancy between fasting and
postprandial insulin levels (changes in insulin degradation
and/or secretion) remains to be determined. SMF exposure
has been shown to have an impact on impact on insulin
secretion. Sakurai et al. (36) found an increase in insulin
secretion after SMF exposure and, on the other hand, on
isolated pancreatic islets, Hayek et al. (37) demonstrated
a decrease in insulin secretion after SMF exposure. These
alterations in insulin secretion may be due to the increase
in reactive oxygen species (ROS), which are suggested to
be important mediators of SMF effects (38).

Skeletal muscle is the main producer and consumer of
lactate (39e41). The increase in LDH activity and the
decrease in CS activity were observed only in glycolytic
muscles. These data indicate that glycolytic muscles partic-
ipate actively in the increase of plasma lactate under our
conditions and emphasize the importance of muscle
typology in metabolic responses.

Finally, we also found that after SMF exposure, glycerol,
cholesterol and phospholipid contents were significantly
increased in the plasma, whereas triglycerides remained
unchanged. An excess of circulating lipids is often associ-
ated with cardiovascular diseases and glucose metabolism
deregulation (42,43). Adipose tissue is a likely candidate
for the release of such lipids in the circulation because of
lipid metabolism alterations. The higher plasma glycerol
level in rats exposed to SMFs suggest an increased adipose
tissue lipolysis is in accordance with the decreased plasma
insulin levels. In addition, increases in circulating choles-
terol and phospholipids suggest a higher turnover of plasma
membrane constituents. Our results concerning lipid metab-
olism alterations are in line with the signalling networks
identified to respond to SMF exposure by Wang et al.
(44). Hashish et al. (45) found in liver a significant increase
in lipid peroxidation associated with a decrease in the anti-
oxidant GSH after SMF exposure, suggesting an increase in
oxidative stress after such exposure. Alternate magnetic
field exposure induces an accumulation of lipids in the
plasma membrane of heart associated with a decrease in
membrane fluidity (46). Moreover, Rosen et al. (11) sug-
gested that changes to ion channel conductivity due to
SMF exposure may result from the slow re-orientation of
aligned groups of diamagnetic phospholipid molecules
within the cell membrane. Thus, SMF exposure could alter
membrane fluidity by changing phospholipids membrane
composition and phospholipids properties. Consequently,
SMF exposure could modify molecule flux into the cell
membrane.

In conclusion, our findings at both systemic and tissue
levels produce evidence for an impaired glucose homeostasis
and a deregulated lipid metabolism after a moderate-
intensity SMF exposure (1 h/day) for 15 days. These data
question the safety of such exposures. Further investigations
are necessary to evaluate long-term consequences of these
metabolic alterations and their reversibility.
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