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Abstract

Muscular dystrophy is a condition potentially predisposing for cancer; however, currently, only Myotonic dystrophy patients are known to have
a higher risk of cancer. Here, we have searched for a link between facioscapulohumeral dystrophy (FSHD) and cancer by comparing published
transcriptome signatures of FSHD and various malignant tumours and have found a significant enrichment of cancer-related genes among the
genes differentially expressed in FSHD. The analysis has shown that gene expression profiles of FSHD myoblasts and myotubes resemble that
of Ewing’s sarcoma more than that of other cancer types tested. This is the first study demonstrating a similarity between FSHD and cancer cell
expression profiles, a finding that might indicate the existence of a common step in the pathogenesis of these two diseases.

Keywords: cancer� rhabdomyosarcoma� Ewing’s sarcoma� FSHD�muscular dystrophy

Introduction

Recent studies have shown that murine models of Duchenne muscu-
lar dystrophy (DMD) and Limb-girdle muscular dystrophy (LGMD)
frequently develop cancer. Mice with mutations in the Dystrophin
(DMD), Calpain-3 (LGMD2A) or Dysferlin (LGMD2B) genes are sus-
ceptible to malignant tumours originating from the skeletal muscles
[1–4] (reviewed in [5]).

Several cases of coincidence of cancer and DMD [6–13] or facio-
scapulohumeral dystrophy (FSHD) [14–16] have been also reported
in humans; however, at the moment, DMD and FSHD patients are not
considered to be more susceptible to cancer than the general popula-
tion. Myotonic dystrophy (MD) patients are known to have higher risk
of cancer [17, 18], while no cancer cases are known to be reported
among LGMD patients.

Here, we focused on FSHD, an autosomal dominant hereditary
neuromuscular disorder, because it is genetically associated with the

same genomic region that is re-arranged or epigenetically modified in
various types of cancer. The majority of FSHD patients carry a dele-
tion of the 3.3 kb-long D4Z4 macrosatellite repeats, accompanied by
DNA demethylation and chromatin structure alterations within the
subtelomeric region of chromosome 4 (4q35) [19, 20] (for review see
[21]). The minor form of FSHD (FSHD2) is not associated with D4Z4
repeat contractions, but shares common epigenetic alterations in
4q35 with the major form (FSHD1) of this disease [22].

The rearrangement of the FSHD-associated region in 4q35 has
been also found in various tumours, including undifferentiated soft
tissue sarcoma [23–25], Ewing’s sarcoma [26] and rhabdomyo-
sarcoma [27]. Epigenetic alterations of the same region have been
documented in cervical and ovarian cancers [28, 29].

D4Z4 repeats encode a powerful transcription regulator, double
homeobox protein 4 (DUX4) [30], playing an important if not the key
role in the aetiology of FSHD [31] and a potent enhancer that is capa-
ble of regulating a variety of genes [32, 33]. Interestingly, the expres-
sion level of DUX4 is altered in cervical cancer [28] and in Ewing’s
sarcoma where this gene functions as a chimeric oncogene if fused
to CIC gene as a result of the t(4;19)(q35;q13.1) translocation [26].

The involvement of 4q35 in FSHD and several types of cancer
prompted us to search for similarities in gene expression profiles of
FSHD and cancer cells and tissues. We have found that a significant
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number of genes differentially expressed in cancer are also differen-
tially expressed in FSHD and, according to statistical criteria, this phe-
nomenon could not be explained by a simple coincidence. We then
searched for similarities of expression profiles of FSHD and various
types of cancer and found the highest resemblance between FSHD
and Ewing’s sarcoma expression profiles.

Taken together, the results of this study establish for the first time
a link between FSHD and cancer at the level of gene expression.

Materials and methods

Cell culture

Primary human myoblasts from normal individuals and FSHD patients
(Table S6) Primary human myoblasts were isolated from skeletal mus-

cles of healthy individuals as described in [34], for details see

Table S4), purified with an immuno-magnetic sorting system (Miltenyi-

Biotec, Bergisch Gladbach, Germany) by using an anti-CD56/NCAM anti-
body according to the manufacturer’s specifications. CD56-positive

myoblasts were seeded in collagen-coated Petri dishes (P1) and cul-

tured in DMEM, 10% FCS, 1% Ultroser G, at 37°C with 5% CO2. All
experiments were carried out between P1 and P5 to avoid cell senes-

cence. Myoblast purity was determined by staining for Desmin.

Gene expression analysis

Total RNA was isolated from 2 9 106 myoblasts or myotubes by using
Trizol (Invitrogen, Carlsbad, CA, USA), 400 ng of total RNA was reverse

transcribed by using the High Capacity cDNA Archive kit (Applied Bio-

systems, AB, Foster city, CA, USA) according to the manufacturer pro-
tocol. cDNA was mixed with 29 TaqMan PCR mix (AB) and amplified

with TLDA (Taqman Low Density Array; AB) by using Abiprism 7900HT.

The expression was analysed by using the DDCt method [35].

Statistical analysis

qRT-PCR data have been analysed by using one-way ANOVA [36],

P < 0.05 have been considered significant. To calculate the significance

of the lists’ intersection, we have used the LOLA tool (www.lola.gwu.

edu). For the intersection of two lists, the P-value is determined as the
probability of observing an intersection size that occurs by chance and

is larger than the given one [37].

Lists of genes

The statistical significance of an intersection of gene lists has been cal-

culated using online service List Of Lists Annotated (LOLA) http://www.

lola.gwu.edu/ [37]. To standardize the lists of genes extracted from dif-

ferent publications, we have used GenBank GeneIDs as reference points.
As the GeneID was not usually provided along with the expression data,

we have converted available Affymetrix or Ensembl IDs or Gene names

to GeneID by using db2db online tool http://biodbnet.abcc.ncifcrf.gov/

db/db2db.php [38]. In the cases where Gene name was not recognized
by the db2db service, we assumed that the authors of the study used a

synonym. In these cases, we provide both Gene names: the major one,

recognized by db2db service and the synonym from the original

publication.

FSHD-related genes
List A was created by using supplementary data from [39], previously
available at www.ucihs.uci.edu/biochem/winokur under ‘publications’

(Table S2). To our knowledge, at the moment of submission, the data

are no longer available for downloading on this server. Genes with fold

change >2 and P < 0.05 were considered as differentially expressed.
In total, 527 probes from the two types of microarrays used in the

study (HuFL and U95) corresponding to differentially expressed genes

were retained by the authors. To standardize this list and make it com-

patible with the lists originating from other studies, we have trans-
formed probe codes to GeneIDs. Some of probe codes corresponded to

multiple genes and some probe codes could not be found in available

databases, therefore, the resulting list counted 529 unique gene IDs,
301 up- and 238 down-regulated. List B was created by using sup-

plementary data from [40] previously available at www.ucihs.uci.edu/

biochem/winokur under ‘publications’. To our knowledge, at the moment

of submission, the data are no longer available for downloading on this
server. Using Affymetrix GCS V3.2 software and undisclosed statistical

criteria, the authors attributed an arbitrary value of 1.1 to transcripts

exhibiting an increase (I), 1.0 – marginal increase (MI), 0.0 – no change

(NC), �1.0 – marginal decrease (MD) and �1.1 – decrease (D). We
summed these values across all pairwise comparisons and considered

transcripts with a sum of >5.5 as up-regulated and transcripts with a

sum of <�5.5 as down-regulated in FSHD. In total, 236 probes codes
corresponding to differentially expressed genes were selected according

to these criteria. After transforming the list of probe codes to a list of

GeneIDs, we obtained a list of 297 unique entries (26 up- and 271

down-regulated GeneIDs). Lists Ca, Cb and Cc were created by using
supplementary tables A–G from [41] available for downloading at http://

gefu.cribi.unipd.it/papers/FSHD/. From these tables, we have retrieved

symbols of genes differentially expressed in FSHD biopsies divided into

three sublists of genes (a, b and c), corresponding to the groups of
patients, containing 194, 164 and 164 gene names respectively. These

were converted to three lists of GeneIDs with 207 (112 up- and 95

down-regulated), 177 (118 up- and 59 down-regulated) and 177 (106

up- and 71 down-regulated) unique GeneIDs respectively. List D was
created by using data from supplementary table from [42] available at

http://onlinelibrary.wiley.com/doi/10.1634/stemcells.2007-0465/suppinfo.

The probe names corresponding to the genes differentially expressed in
FSHD mesoangioblasts were converted to 32 unique GeneIDs (20 up-

and 12 down-regulated). Lists Ea and Eb were created from Tables S3

and S4 from [43] available at www.neurology.org. The probes corre-

sponding to differentially expressed genes were further subdivided into
two sublists a and b, corresponding to the genes differentially

expressed in FSHD and other types of muscular dystrophy (318 probes)

and genes differentially expressed in FSHD only (134 probes). After the

transformation of probe names to GeneIDs, these lists were converted
to the Lists Ea and Eb containing 376 and 176 unique GenesIDs respec-

tively. Lists Fa and Fb were created from Table S1 in [44] available for

downloading at http://www.plosone.org/article/info%3Adoi%2F10.1371%
2Fjournal.pone.0020966. Lists of Ensembl IDs of genes differentially

expressed in myoblasts or myotubes from FSHD1 patients have been

transformed to the two lists of unique GeneIDs containing 393 and 111
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unique entries respectively. Lists Ga and Gb were extracted from
Table S1 from [45] available online at www.pnas.org/lookup/suppl/

doi:10.1073/pnas.1209508109/-/DCSupplemental/sd01.xls. The authors

have analysed transcriptome profiles of biceps, muscles affected in

FSHD and deltoids that are usually spared in FSHD patients and com-
pared them to transcriptome profiles of the same types of muscles

from normal subjects. The authors have found 238 GeneIDs differen-

tially expressed (1.2-fold change, P < 0.01) in affected FSHD biceps,
but not deltoids as compared with normal biceps and 182 GeneIDs dif-

ferentially expressed according to the same statistical criteria in both

biceps and deltoids of FSHD patients as compared with normal sub-

jects. We have extracted these lists from a single Table S1 and named
them List Ga and List Gb respectively.

Cancer-related genes
List 1 was constructed by using the data from [46] (Table S1). The
authors of the study have conducted a meta-analysis of transcriptomes

of 2186 samples representing 20 different cancers from 39 studies and

obtained a transcriptome signature comprising 187 genes (list 1 of the
present study) of which 117 up-regulated (Table 1 in [46]) and 70 were

down-regulated (Table 2 in [46]). Authors claimed that this transcrip-

tome signature could discriminate cancer samples with 92.6% accuracy

independently from their tissue of origin. List 2 was constructed by
using the data from Table 1 in [47]. The authors of the study used a

published census of cancer-related genes [48] to select a representative

list of 56 cancer-related genes. List 3 have been created by using data

from [49]. The authors of the study have performed transcriptome pro-
filing of 373 samples of 15 different types of benign and malignant

tumours by using 17.5K custom-made cDNA arrays. These arrays

allowed to cover the expression of 12,947 genes that included 332 can-
cer biomarkers (Table S1 in [49]) known from literature. The expression

analysis of these 332 cancer biomarkers allowed the authors to select

from it 56 genes ([49] does not precise which genes these were) that

could discriminate between benign and malignant tumours with 88%
accuracy. List 4 was created by using data from [50]. The authors have

conducted a meta-analysis of transcriptomes of 3209 samples that

contained normal tissues, immortalized cell lines, a variety of cancers

pluripotent and partially committed stem cells. As a result, the authors
obtained a list of 189 genes (stem cell gene set, Tables S1–S4 in [50])

that could be used as a quantitative measure of stem cell-associated

transcriptional activity and could also discriminate histological grades

for a variety of human malignancies [50]. List 5 has been created by
using the data from [51]. The authors performed transcriptome profiling

of five cell lines representing altogether two different systems of cell

transformation, one based on an inducible expression of v-Src and
another one based on inducible expression of small and large T anti-

gens of SV40. Common transcriptional profile of these cell lines con-

sisted of 343 genes (238 up- and 105 down-regulated, Table S3 in

[51]). List 6 is based on the data from [52]. The authors conducted a
meta-analysis of 36 transcriptome signatures of tumours originating

from 12 representative tissue types. This analysis resulted in identifica-

tion of a common transcriptome signature of 183 genes from which 67

most significant genes (Fig. 2 in [52]) were differentially expressed in
nearly all cancer types available to the authors. List 7 was created from

our own large-scale literature search.

Expression profile scoring of FSHD samples has been conducted as
described in [53] for expression profiles of tumour tissue samples. In

total, 96 genes have been used for scoring, for each of them, the

authors have assigned a rank R, different for each of the four catego-

ries, EWS, RMS, NB and BL (Table S3 in [53] and Table S5 in the pres-
ent study). The contribution of a given gene to scoring is inversely

proportional to its rank. To contribute to a given category, the level of

gene expression must correspond to the sign in the scoring table e.g.

‘+1’ corresponds to up- and ‘�1’ to down-regulated genes. To deter-
mine the contribution of a gene to a given category, the following

schema was used. If the level of expression of a gene corresponds to

the sign in a given category in the scoring table, the contribution B of

the gene to a given tumour category is calculated according to formula
B = 1 – C 9 R where C is the coefficient and R is the rank. The coeffi-

cient was calculated independently for every category as follows: C = 1/

HR where HS is the highest rank for a given category resulting in CEWS

and Cnot EWS = 0.000543, CRMS and Cnot RMS = 0.000499, CNB and

Cnot NB = 0.000445, CBL and Cnot BL = 0.000980. If the level of expres-

sion of a given gene did not correspond to the sign in the scoring table,

the contribution of a gene to a given category was considered 0. To

Table 1 The lists of cancer-related genes used in the current study. For full lists of genes refer to Table S1

List Reference Samples
Cancers
types

Original gene list
Unique
GeneIDs

Platform

1 [46] 2186 20 187 genes (117 genes up- and
70 down-regulated in cancer)

190 Meta-analysis

2 [47] N/A N/A 56 genes (22 oncogenes and 34 tumour
suppressors) causally related to cancer

56 Literature search

3 [49] N/A N/A 332 genes 277 Literature search

4 [50] 3209 Unknown 189 genes 189 Meta-analysis

5 [51] 5 2 model
systems of
cell transformation

343 genes (239 up- and 104 down-regulated
in cancer)

348 Affymetrix U133 2.0A

6 [52] 3700 12 183 genes (67 most significant) 80 Meta-analysis

7 This study 400 genes Literature search
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determine the score of an expression profile, scores of every gene are
summed. Using these formulas, we have calculated the scores of ‘ideal’

tumours (where all genes have the direction of expression correspond-

ing to the signs in the scoring table). The resulting scores are:

SEWS and Snot EWS = 62.644; SRMS and Snot RMS = 64.041; SNB and
Snot NB = 70.408; SBL and Snot BL = 70.243.

Results

Lists of cancer- and FSHD-related genes

We have first compiled seven lists containing 56–343 published can-
cer-related genes (Table 1). These lists resulted either from a meta-
analysis of transcriptomic data (Lists 1, 4 and 6), direct transcriptome
analysis of cancer samples (List 5) or were assembled from cancer-
related genes known from the literature (Lists 2 and 3). List 7 has
been specifically created for this study by using bibliographical search
of genes that have been previously used as biomarkers in various
types of cancer. In total, Lists 1–7 assimilate transcriptome profiles
of 9100 samples representing 35 different cancer types (Table S1).

Twelve lists of genes differentially expressed in FSHD have been
extracted from six previously published transcriptome studies and
one combined transcriptome–proteome [41] study (Table 2). In total,
these lists represent transcriptional profiles of 86 FSHD patients and
73 healthy controls. Of these, eight lists of differentially expressed
genes resulted from transcriptome analysis of skeletal muscle biop-
sies of FSHD patients (Lists A, Ca, Cb, Cc, Ea, Eb, Ga, and Gb), two

lists resulted from the analysis of FSHD primary myoblasts (List B,
Fa), one list resulted from the transcriptome analysis of FSHD myotu-
bes (List Fb) and one list resulted from the transcriptome analysis of
mesoangioblasts isolated from FSHD patients (List D; Table S2).

Cancer-related genes are differentially expressed
in FSHD

Based on the fact that the same genomic region is involved in the
pathogenesis of both FSHD and cancer, we hypothesized that FSHD
and cancer expression profiles might have a significant number of the
common differentially expressed genes.

To test our hypothesis, we have systematically searched for the
common genes shared by the lists of genes differentially expressed in
FSHD and cancer-related, and found a statistically significant overlap
between these lists (Table 3). Interestingly, the significance of these
intersections depended on the type of samples used for transcrip-
tome profiling and the list source. The lists that were produced from
meta-analysis of cancer samples (e.g. Lists 1, 4 and 6) have demon-
strated the most significant overlap with List Fa and List B, both of
which are composed of genes differentially expressed in FSHD myo-
blasts (Table 3). Lists that were produced from simple literature
search of cancer-related genes, e.g. the Lists 2, 3 and 7, gave the
highest statistically significant intersection with the List A composed
of genes differentially expressed in FSHD biopsies.

The number of cancer-related genes among genes differentially
expressed in FSHD varied for different studies. For some (e.g. Lists A,

Table 3 P-values of intersection of gene lists of FSHD- and cancer-related genes. For the expanded version of this Table refer to Table S3

List 1 List 2 List 3 List 4 List 5 List 6 List 7
Total genes/list 190 56 277 189 348 80 576

List A 539 6 (ns) 7*** 30*** 11*** 7*** 4* 49***

List B 297 2** 3** 15*** 3*** 2*** 1*** 20***

List Ca 207 1 (ns) 15*** 1 (ns) 10**

List Cb 117 14*** 2* 9**

List Cc 177 14*** 2* 9**

List D 32 1 (ns) 1 (ns) 3*

List Ea 376 7* 1 (ns) 15*** 9* 9*** 15***

List Eb 176 1 (ns) 1 (ns) 5** 3 (ns) 4** 8**

List Fa 395 14*** 3* 12*** 24*** 5*** 9*** 23***

List Fb 111 2 (ns) 4* 2 (ns) 1** 1 (ns) 4 (ns)

List Ga 272 2 (ns) 13*** 1 (ns) 1 (ns) 11**

List Gb 220 2 (ns) 8*** 1 (ns) 1 (ns) 9**

*P < 0.05; **P < 0.01; ***P < 0.001.
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B and Fa), a highly significant intersection with all the cancer-related
lists has been observed. For others, we could obtain a statistically sig-
nificant intersection with only a few lists of cancer-related genes
(Table 3). The Reasons for this discrepancy are unknown and proba-
bly linked to the study design. The description of cancer-related genes
that have been found among genes differentially expressed in FSHD
can be found in the Table S4.

Finally, we have observed a much higher intersection of the lists
of cancer-related genes with the list of genes differentially expressed
both in FSHD and MD (List Ea) as compared with the other lists from
the same study (e.g. List Eb), that contained genes differentially
expressed exclusively in FSHD. The latter result confirms the known
link of MD with cancer and indicates that MD and FSHD share the
same cancer-related genes (Table 3).

Next, we tested whether cancer-related genes were up- or down-
regulated in FSHD as compared with the control. This analysis did
not produce a clear result as we could find examples of the presence
of cancer-related genes within lists of genes both up- and down-
regulated in FSHD (Table S3).

Similarity between FSHD and Ewing’s sarcoma
gene expression profiles

In addition, we tried to find out whether FSHD transcription signature
resembles that of a specific cancer. We have selected 96 genes that

were previously shown to be sufficient for classification of four types
of cancers in humans: Ewing’s sarcoma, rhabdomyosarcoma, neuro-
blastoma and Burkitt’s lymphoma [53] (for review see [54])
(Table S5) and tested their expression in myoblasts and myotubes
from FSHD patients. We have found that 12 of these genes are up-
regulated in FSHD myoblasts and 26 are up-regulated in FSHD myotu-
bes as compared with the control. Of these, five genes including
ANXA1, GATM, METAP2, PIM2 and PTPN13 are up-regulated both in
FSHD myoblasts and in differentiated FSHD myotubes, seven genes
including ELF1, FHL1, GAS1, IFI16, IGFBP5, KDSR and KIF3C were
specifically up-regulated in FSHD myoblasts, while 20 genes
(ALDH7A1, ATN1, BIN1, CCND1, CD99, CKB, CNN, CTNN1, FCGRT,
FGFR4, FHL1, GAP43, GATA2, IL4R, KIF3C, MYC, NFIB, PFN2,
PTPRF, TP53I3) were specifically up-regulated in FSHD myotubes
(Fig. 1).

Interestingly, five of 12 cancer-classifier genes differentially
expressed in FSHD myoblasts were specific to Ewing’s sarcoma
(EWS), while only 2/12, 2/12 and 3/12 of cancer classifiers were
specific to rhabdomyosarcoma, neuroblastoma and Burkitt’s
lymphoma respectively (Fig. 1). In FSHD myotubes, 11 of 26 differ-
entially expressed genes were specific to Ewing’s sarcoma, seven of
26 were specific to rhabdomyosarcoma, six of 26 were specific to
neuroblastoma and only one of 26 were specific to Burkitt’s
lymphoma.

To quantitatively evaluate the similarity of the resulting gene
expression profile of FSHD cells to cancer cell lines, we have used the

A B

Fig. 1 Cancer-classifier genes differentially expressed in facioscapulohumeral dystrophy (FSHD) myoblasts (A) and myotubes (B). Genes that are dif-

ferentially expressed both in FSHD myoblasts and myotubes as compared to healthy controls are shown in bold. (C) grey intensity corresponds to

the expression level of the genes with darker squares corresponding to higher expression levels. The Sample description can be found in Table S6.
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scoring procedure described in [53]. This procedure attributes a
maximal score of 1 to each of the four evaluated cancers, and 0 to
samples that are unrelated to cancer, scores between 0.4 and 1.0
being sufficient to establish a correct diagnosis [53] (Fig. 2B and C).
The procedure attributed to FSHD myoblasts score 0.124 and to
FSHD myotubes 0.233 for Ewing’s sarcoma followed by rhabdomyo-
sarcoma, neuroblastoma and Burkitt’s lymphoma (Fig. 2A). This
score was insufficient to result in a diagnosis of cancer (Fig. 2C);
however, it clearly indicated that FSHD and cancer samples have simi-
larities in their gene expression profile. Interestingly, transcription
signatures of FSHD myoblasts and myotubes resembled those of
Ewing’s sarcoma more than other types of cancer (Fig. 2A).

Discussion

A link between cancer and muscular dystrophy has been previously
demonstrated in the murine models of Duchenne and Limb-girdle
muscular dystrophies. Specifically, it was found that the mice with
the mutation in Dystrophin, Dysferlin and Calpain-3 were susceptible
to spontaneous formation of rhabdomyo-, fibro- and liposarcomas
derived from skeletal muscle tissue [1–4] (reviewed in [5]).

In human patients, only MD is currently associated with an
increased risk of thyroid cancer and choroidal melanoma [17, 18].
Higher cancer risk in DMD patients was suspected, but not confirmed

A

C

B

Fig. 2 A radar chart indicating the similarity of the facioscapulohumeral dystrophy (FSHD) samples to the one of four frequent types of cancer (A).
The numbers correspond to relative scores of FSHD gene expression profiles normalized to maximal scores of the ‘ideal’ expression signatures of

tumour samples. (B) The same scoring system was applied to the ‘ideal EWS’ and the ‘ideal not EWS’ expression profiles. (C) Linear representation
of the same data as in A. The limit, below which the algorithm cannot recognize the sample as a ‘true’ cancer is indicated to the right.
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[2, 13] To our knowledge, no such study has been conducted in the
case of FSHD, the third most common muscular dystrophy in the
world.

In the present work, we used meta-analysis to establish a link
between FSHD and cancer at the level of gene expression. We have
demonstrated that genes differentially expressed in FSHD contain
more cancer-related genes than could be expected by chance. To
exclude the possibility that these genes merely represent the tissue-
specific markers unrelated to oncogenic process, we have selected
studies that have analysed transcriptome signatures of a large num-
ber of cancer samples representing multiple cancer types of different
origin.

We have also measured the expression level of 96 tumour mark-
ers and used a previously published scoring algorithm [53] to find
out whether FSHD gene expression signature profile resembles any
specific type of cancer. We expected, that the expression profiles of
myogenic cells from FSHD patients would be more similar to the
expression profile of rhabdomyosarcoma, a tumour originating from
skeletal muscle tissue. Instead, we have found FSHD cells are more
similar to Ewing’s sarcoma. The resulting score, however, was insuffi-
cient to classify FSHD samples as true cancer samples, which is in
agreement with the fact that none of the patients who participated in
the study was diagnosed with cancer.

The reasons for the similarity of FSHD and tumour cell expression
profiles remain unknown. One possibility is that this similarity origi-
nates from inflammation, fibrosis or oxidative stress that frequently
accompany tumour development and are also observed in FSHD
patients.

Alternatively, a certain similarity of FSHD and cancer gene expres-
sion profiles might be caused by the nature of the genetic defect in
FSHD patients that affects the genomic region that is also altered in
several types of cancer. The involvement of the same genomic region
in both dystrophy and cancer is not unique to FSHD; this is also the
case for the rearrangements in Dystrophin gene [55]. Intriguingly,
DUX4, a powerful transcription factor encoded in 4q35, is involved in
the pathological mechanism of both FSHD [56] and Ewing’s sarcoma
[26].

Another plausible explanation of the similarity of FSHD and cancer
gene expression profiles is based on pre-mRNA splicing. Pre-mRNA
splicing is perturbed in FSHD [57, 58] [59], probably, because of ele-
vated expression of FRG1, a novel splicing regulator [57, 60]. As
alteration in pre-mRNA splicing is a common phenomenon in cancer
[61, 62], one could hypothesize that an abnormal pre-mRNA splicing
might be a mechanism linking FSHD to cancer. In support of this
hypothesis, we have observed that many cancer-related genes differ-
entially expressed in FSHD are also differentially expressed in MD, a
disease that has been shown to increase the risk of cancer in human
patients [17, 18]. Myotonic dystrophy is caused by CTG and CCTG
microsatellite repeat expansion affecting the function of splicing fac-
tors in the cells of the MD patients [63]. Therefore, an altered pre-
mRNA splicing could potentially initiate the process of tumour forma-
tion in MD; however, currently, this hypothesis is missing a solid
experiment support [64, 65].

The link at the level of gene expression that we have established
between FSHD and cancer does not imply that FSHD patients might

have a higher incidence of cancer, as compared to general population.
Although several cases of cancer in FSHD patients have been
reported, FSHD is not considered as a cancer-predisposing condition.
The latter is supported by the mouse models of FSHD [57, 66, 67] that
have not been reported to have higher than average incidence of
tumours. However, the conclusions about cancer incidence in muscu-
lar dystrophy patients made using mouse models should be handled
with caution. Indeed, high incidence of cancer observed inmdxmouse
model is not supported by observations in human patients, who do
not demonstrate higher incidence of cancer [2]. Conversely, while the
patients with MD suffer from an increased incidence of cancer, mouse
models of this disease are not susceptible for cancer [68]. To our
knowledge, no cases of concomitant LGMD and cancer have been
described, while LGMD mouse models are susceptible to cancer.

This discrepancy may be explained by certain limitations of mouse
models to represent human diseases. For example, mdx mice do not
suffer from muscle wasting and satellite cell pool depletion as human
patients do. Therefore, high incidence of tumours in mdx mice might
be explained by the regenerative environment of a permanently dam-
aged muscle, favouring oncogenic transformation of muscle satellite
cells in mdx mice, but not in DMD patients, where satellite cells are
rare [2].

To conclude, we consider that to determine whether FSHD
patients are more prone to cancer than general population, one
should not rely on mouse models of this disease, but rather carry out
a retrospective examination of medical histories of FSHD patients.

Our study may also have an impact on the development of FSHD
therapy strategies. Recently, several anti-cancer drugs have been pro-
ven efficient in the mouse model of DMD [69, 70]. The similarity of
gene expression profile linking FSHD to cancer, discovered in our
study, may provide the basis for examination of the usability of
anti-cancer agents in FSHD.

Acknowledgements

The research has been supported by grants from the Association Franc�aise
contre les Myopathies (AFM) to YSV and DL. AB was a recipient of the IRC-

SET-Marie Curie International Mobility Fellowships in Science Engineering and

Technology, Ireland. P.D. was supported by the Association “Amis FSH” and

the University Montpellier I. We thank C�ecile Cassan for critical reading of the
manuscript.

Conflicts of interest

The authors confirm that there are no conflicts of interest.

Supporting information

Additional Supporting Information may be found in the online
version of this article:

Table S1. Lists of cancer-associated genes.

ª 2013 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

215

J. Cell. Mol. Med. Vol 18, No 2, 2014



Table S2. Lists of genes differentially expressed in FSHD.

Table S3. Intersection of lists of cancer-related genes and lists of
genes differentially expressed in FSHD.

Table S4. Description of cancer-related genes found among genes
differentially expressed in FSHD.

Table S5. Scoring table for tumour classification.

References

1. Chamberlain JS, Metzger J, Reyes M, et al.
Dystrophin-deficient mdx mice display a
reduced life span and are susceptible to

spontaneous rhabdomyosarcoma. FASEB J.

2007; 21: 2195–204.
2. Fernandez K, Serinagaoglu Y, Hammond S,

et al. Mice lacking dystrophin or alpha sar-

coglycan spontaneously develop embryonal

rhabdomyosarcoma with cancer-associated
p53 mutations and alternatively spliced or

mutant Mdm2 transcripts. Am J Pathol.

2010; 176: 416–34.
3. Hosur V, Kavirayani A, Riefler J, et al.

Dystrophin and dysferlin double mutant

mice: a novel model for rhabdomyosarcoma.

Cancer Genet. 2012; 205: 232–41.
4. Schmidt WM, Uddin MH, Dysek S, et al.

DNA damage, somatic aneuploidy, and

malignant sarcoma susceptibility in muscu-

lar dystrophies. PLoS Genet. 2011; doi:10.
1371/journal.pgen.1002042.

5. Fanzani A, Monti E, Donato R, et al.
Muscular dystrophies share pathogenetic

mechanisms with muscle sarcomas. Trends
Mol Med. 2013; 19: 546–54.

6. Rossbach HC, Lacson A, Grana NH, et al.
Duchenne muscular dystrophy and concom-

itant metastatic alveolar rhabdomyosar-
coma. J Pediatr Hematol Oncol. 1999; 21:

528–30.
7. Jakab Z, Szegedi I, Balogh E, et al. Duch-

enne muscular dystrophy-rhabdomyosar-

coma, ichthyosis vulgaris/acute monoblastic

leukemia: association of rare genetic disor-

ders and childhood malignant diseases. Med
Pediatr Oncol. 2002; 39: 66–8.

8. Doddihal H, Jalali R. Medulloblastoma in a

child with Duchenne muscular dystrophy.

Childs Nerv Syst. 2007; 23: 595–7.
9. Johnston KM, Zoger S, Golabi M, et al.

Neuroblastoma in Duchenne muscular

dystrophy. Pediatrics. 1986; 78: 1170–1.
10. Korones DN, Brown MR, Palis J. “Liver

function tests” are not always tests of liver

function. Am J Hematol. 2001; 66: 46–8.
11. Saldanha RM, Gasparini JR, Silva LS,

et al. Anesthesia for Duchenne muscular

dystrophy patients: case reports. Rev Bras

Anestesiol. 2005; 55: 445–9.
12. Svarch E, Menendez A, Gonzalez A.

Duchenne muscular dystrophy and acute

lymphoblastic leukaemia. Haematologia

(Budap). 1988; 21: 123–4.
13. van den Akker M, Northcott P, Taylor MD,

et al. Anaplastic medulloblastoma in a child

with Duchenne muscular dystrophy. J Neu-
rosurg Pediatr. 2012; 10: 21–4.

14. Blake D, Gilliam C, Warburton D, et al.
Possible clue for chromosomal assignment

of the gene for facioscapulohumeral muscu-
lar dystrophy: a family with polyposis. Ann

Neurol. 1988; 24: 178.

15. Blake D, Brown R, Gilliam T, et al. The

second family with facioscapulo-humeral
muscular dystrophy and familial polyposis

coli. Neurology. 1989; 39: 404.

16. Kazakov V, Rudenko D, Schulev J, et al.
Unusual association of FSHD and extrame-

dullary thoracic tumour in the same patient:

a case report. Acta Myol. 2009; 28: 76–9.
17. Gadalla SM, Lund M, Pfeiffer RM, et al.

Cancer risk among patients with myotonic

muscular dystrophy. JAMA. 2011; 306:

2480–6.
18. Win AK, Perattur PG, Pulido JS, et al.

Increased cancer risks in myotonic dystro-

phy. Mayo Clin Proc. 2012; 87: 130–5.
19. de Greef JC, Frants RR, van der Maarel

SM. Epigenetic mechanisms of facioscapu-
lohumeral muscular dystrophy. Mutat Res.

2008; 647: 94–102.
20. Cabianca DS, Gabellini D. FSHD: copy

number variations on the theme of muscular

dystrophy. JCB. 2010; 191: 1049–60.
21. Tawil R. Facioscapulohumeral muscular

dystrophy. Neurotherapeutics. 2008; 5:
601–6.

22. de Greef JC, Lemmers RJ, van Engelen BG,
et al. Common epigenetic changes of D4Z4

in contraction-dependent and contraction-
independent FSHD. Hum Mutat. 2009; doi:

10.1002/humu.21091.

23. Yoshimoto M, Graham C, Chilton-MacNeill
S, et al. Detailed cytogenetic and array

analysis of pediatric primitive sarcomas

reveals a recurrent CIC-DUX4 fusion gene

event. Cancer Genet Cytogenet. 2010; 195:
1–11.

24. Italiano A, Sung YS, Zhang L, et al. High
prevalence of CIC fusion with double-

homeobox (DUX4) transcription factors in
EWSR1-negative undifferentiated small blue

round cell sarcomas. Genes Chromosom

Cancer. 2012; 51: 207–18.
25. Graham C, Chilton-MacNeill S, Zielenska

M, et al. The CIC-DUX4 fusion transcript is

present in a subgroup of pediatric primitive
round cell sarcomas. Hum Pathol. 2012; 43:

180–9.
26. Kawamura-Saito M, Yamazaki Y, Kaneko K,

et al. Fusion between CIC and DUX4 up-
regulates PEA3 family genes in Ewing-like

sarcomas with t(4;19)(q35;q13) transloca-

tion. Hum Mol Genet. 2006; 15: 2125–37.
27. Sirvent N, Trassard M, Ebran N, et al.

Fusion of EWSR1 with the DUX4 facioscapu-

lohumeral muscular dystrophy region result-

ing from t(4;22)(q35;q12) in a case of
embryonal rhabdomyosarcoma. Cancer

Genet Cytogenet. 2009; 195: 12–8.
28. Katargin AN, Pavlova LS, Kisseljov FL,

et al. Hypermethylation of genomic 3.3-kb
repeats is frequent event in HPV-positive

cervical cancer. BMC Med Genomics. 2009;

doi: 10.1186/1755-8794-2-30.

29. Tsumagari K, Qi L, Jackson K, et al. Epige-
netics of a tandem DNA repeat: chromatin

DNaseI sensitivity and opposite methylation

changes in cancers. Nucleic Acids Res.

2008; doi: 10.1093/nar/gkn055.
30. Richards M, Coppee F, Thomas N, et al.

Facioscapulohumeral muscular dystrophy

(FSHD): an enigma unravelled? Hum Genet.
2011; doi: 10.1007/s00439-011-1100-z.

31. van der Maarel SM, Tawil R, Tapscott SJ.
Facioscapulohumeral muscular dystrophy

and DUX4: breaking the silence. Trends Mol
Med. 2011; 17: 252–8.

32. Petrov A, Allinne J, Pirozhkova I, et al. A
nuclear matrix attachment site in the 4q35

locus has an enhancer-blocking activity in
vivo: implications for the facio-scapulo-hum-

eral dystrophy. Genome Res. 2008; 18: 39–
45.

33. Dmitriev P, Petrov A, Ansseau E, et al. The
Kruppel-like factor 15 as a molecular link

between myogenic factors and a chromo-

some 4q transcriptional enhancer implicated
in facioscapulohumeral dystrophy. J Biol

Chem. 2011; 286: 44620–31.
34. Barro M, Carnac G, Flavier S, et al.

Myoblasts from affected and non-affected
FSHD muscles exhibit morphological

216 ª 2013 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



differentiation defects. J Cell Mol Med. 2010;
14: 275–89.

35. Livak KJ, Schmittgen TD. Analysis of rela-

tive gene expression data using real-time

quantitative PCR and the 2(-Delta Delta C
(T)) Method. Methods. 2001; 25: 402–8.

36. Georgin P, Gouet M. Statistiques avec Excel
2000. Paris: Eyrolles, 2000.

37. Cahan P, Ahmad AM, Burke H, et al. List of
lists-annotated (LOLA): a database for anno-

tation and comparison of published micro-

array gene lists. Gene. 2005; 360: 78–82.
38. Mudunuri U, Che A, Yi M, et al. bioDBnet:

the biological database network. Bioinfor-

matics. 2009; 25: 555–6.
39. Winokur ST, Chen YW, Masny PS, et al.

Expression profiling of FSHD muscle sup-

ports a defect in specific stages of myogenic

differentiation. Hum Mol Genet. 2003; 12:
2895–907.

40. Winokur ST, Barrett K, Martin JH, et al.
Facioscapulohumeral muscular dystrophy

(FSHD) myoblasts demonstrate increased
susceptibility to oxidative stress. Neuromu-

scul Disord. 2003; 13: 322–33.
41. Celegato B, Capitanio D, Pescatori M, et al.

Parallel protein and transcript profiles of
FSHD patient muscles correlate to the D4Z4

arrangement and reveal a common impair-

ment of slow to fast fibre differentiation and

a general deregulation of MyoD-dependent
genes. Proteomics. 2006; 6: 5303–21.

42. Morosetti R, Mirabella M, Gliubizzi C, et al.
Isolation and characterization of mesoangio-
blasts from facioscapulohumeral muscular

dystrophy muscle biopsies. Stem Cells.

2007; 25: 3173–82.
43. Osborne RJ, Welle S, Venance SL, et al.

Expression profile of FSHD supports a link

between retinal vasculopathy and muscular

dystrophy. Neurology. 2007; 68: 569–77.
44. Cheli S, Francois S, Bodega B, et al.

Expression profiling of FSHD-1 and FSHD-2

cells during myogenic differentiation evi-

dences common and distinctive gene dysre-
gulation patterns. PLoS ONE. 2011; doi: 10.

1371/journal.pone.0020966.

45. Rahimov F, King OD, Leung DG, et al. Tran-
scriptional profiling in facioscapulohumeral
muscular dystrophy to identify candidate bi-

omarkers. Proc Natl Acad Sci USA. 2012;

109: 16234–9.
46. Lu Y, Yi Y, Liu P, et al. Common human

cancer genes discovered by integrated gene-

expression analysis. PLoS ONE. 2007; 2:
e1149.

47. Fankhauser N, Cima I, Wild P, et al. Identi-
fication of a gene expression signature com-

mon to distinct cancer pathways. Cancer
Inform. 2012; 11: 139–46.

48. Futreal PA, Coin L, Marshall M, et al. A
census of human cancer genes. Nat Rev
Cancer. 2004; 4: 177–83.

49. Basil CF, Zhao Y, Zavaglia K, et al. Com-

mon cancer biomarkers. Cancer Res. 2006;

66: 2953–61.
50. Palmer NP, Schmid PR, Berger B, et al. A

gene expression profile of stem cell pluripo-

tentiality and differentiation is conserved

across diverse solid and hematopoietic can-
cers. Genome Biol. 2012; 13: R71.

51. Hirsch HA, Iliopoulos D, Joshi A, et al. A
transcriptional signature and common gene
networks link cancer with lipid metabolism

and diverse human diseases. Cancer Cell.

2010; 17: 348–61.
52. Rhodes DR, Yu J, Shanker K, et al. Large-

scale meta-analysis of cancer microarray

data identifies common transcriptional

profiles of neoplastic transformation and

progression. Proc Natl Acad Sci USA. 2004;
101: 9309–14.

53. Khan J, Wei JS, Ringner M, et al. Classifi-
cation and diagnostic prediction of cancers

using gene expression profiling and artificial
neural networks. Nat Med. 2001; 7: 673–9.

54. Greer BT, Khan J. Diagnostic classification

of cancer using DNA microarrays and artifi-
cial intelligence. Ann N Y Acad Sci. 2004;

1020: 49–66.
55. Mitsui J, Takahashi Y, Goto J, et al. Mecha-

nisms of genomic instabilities underlying
two common fragile-site-associated loci,

PARK2 and DMD, in germ cell and cancer

cell lines. Am J Hum Genet. 2010; 87: 75–
89.

56. Lemmers RJ, van der Vliet PJ, Klooster R,
et al. A unifying genetic model for

facioscapulohumeral muscular dystrophy.
Science. 2010; 329: 1650–3.

57. Gabellini D, D’Antona G, Moggio M, et al.
Facioscapulohumeral muscular dystrophy in

mice overexpressing FRG1. Nature. 2006;
439: 973–7.

58. Davidovic L, Sacconi S, Bechara EG, et al.
Alteration of expression of muscle specific

isoforms of the fragile X related protein 1
(FXR1P) in facioscapulohumeral muscular

dystrophy patients. J Med Genet. 2008; 45:
679–85.

59. Pistoni M, Shiue L, Cline MS, et al. Rbfox1
downregulation and altered calpain 3 splic-

ing by FRG1 in a mouse model of Facioscap-
ulohumeral muscular dystrophy (FSHD).

PLoS Genet. 2013; doi: 10.1371/journal.

pgen.1003186.
60. van Koningsbruggen S, Straasheijm KR,

Sterrenburg E, et al. FRG1P-mediated aggre-

gation of proteins involved in pre-mRNA

processing. Chromosoma. 2007; 116: 53–64.
61. Venables JP. Aberrant and alternative splicing

in cancer. Cancer Res. 2004; 64: 7647–54.
62. Faustino NA, Cooper TA. Pre-mRNA splicing

and human disease. Genes Dev. 2003; 17:
419–37.

63. Hino S, Kondo S, Sekiya H, et al. Molecular

mechanisms responsible for aberrant splic-
ing of SERCA1 in myotonic dystrophy type

1. Hum Mol Genet. 2007; 16: 2834–43.
64. Mueller CM, Hilbert JE, Martens W, et al.

Hypothesis: neoplasms in myotonic dystro-
phy. Cancer Causes Control. 2009; 20:

2009–20.
65. Zemtsov A. Association between basal,

squamous cell carcinomas, dysplastic nevi
and myotonic muscular dystrophy indicates

an important role of RNA-binding proteins in

development of human skin cancer. Arch

Dermatol Res. 2010; 302: 169–70.
66. Krom YD, Thijssen PE, Young JM, et al.

Intrinsic epigenetic regulation of the D4Z4

macrosatellite repeat in a transgenic mouse
model for FSHD. PLoS Genet. 2013; doi: 10.

1371/journal.pgen.1003415.

67. Pandey SN, Cabotage J, Shi R, et al. Condi-
tional over-expression of PITX1 causes skel-
etal muscle dystrophy in mice. Biol Open.

2013; 1: 629–39.
68. Gomes-Pereira M, Cooper TA, Gourdon G.

Myotonic dystrophy mouse models: towards
rational therapy development. Trends Mol

Med. 2011; 17: 506–17.
69. Ito T, Ogawa R, Uezumi A, et al. Imatinib

attenuates severe mouse dystrophy and

inhibits proliferation and fibrosis-marker

expression in muscle mesenchymal progeni-

tors. Neuromuscul Disord. 2013; 23: 349–56.
70. Dorchies OM, Reutenauer-Patte J, Dah-

mane E, et al. The anticancer drug tamoxi-

fen counteracts the pathology in a mouse

model of duchenne muscular dystrophy. Am
J Pathol. 2013; 182: 485–504.

ª 2013 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

217

J. Cell. Mol. Med. Vol 18, No 2, 2014


