, World Spider Catalog World Spider Catalog. Version 20.0, p.14, 2020.

J. A. Coddington, C. E. Griswold, D. Silva-dàvila, E. Peñaranda, and S. F. Larcher, Designing and testing sampling protocols to estimate biodiversity in tropical ecosystems, The Unity of Evolutionary Biology: Proceedings of the fourth International Congress of Systematic and Evolutionary Biology

E. Dudley and . Ed, , pp.44-60, 1991.

P. Cardoso, N. Scharff, C. Gaspar, S. S. Henriques, R. Carvalho et al., Rapid biodiversity assessment of spiders (Araneae) using semi-quantitative sampling: A case study in a Mediterranean forest, Insect Conserv. Divers, vol.1, pp.71-84, 2008.

P. Cardoso, L. Crespo, R. Carvalho, A. Rufino, and S. Henriques, Ad-Hoc vs. Standardized and Optimized Arthropod Diversity Sampling, Diversity, vol.1, pp.36-51, 2009.

G. H. Azevedo, B. T. Faleiro, I. L. Magalhães, A. R. Benedetti, U. Oliveira et al., Effectiveness of sampling methods and further sampling for accessing spider diversity: A case study in a Brazilian Atlantic rainforest fragment, Insect Conserv. Divers, vol.7, pp.381-391, 2014.

J. Malumbres-olarte, N. Scharff, T. Pape, J. A. Coddington, and P. Cardoso, Gauging megadiversity with optimized and standardized sampling protocols: A case for tropical forest spiders, Ecol. Evol, vol.7, pp.494-506, 2017.

K. Privet, C. Courtial, T. Decaens, E. A. Djoudi, V. Vedel et al., Spider assemblage structure in a neotropical rainforest-inselberg complex: Ecological and methodological insights from a small-scale intensive survey, Trop. Ecol, vol.59, pp.21-34, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01806868

J. Adis, Problems for interpreting arthropod sampling with pitfall traps, Zool. Anziger Jena, vol.202, pp.177-184, 1979.

H. G. Döbel, R. F. Denno, and J. A. Coddington, Spider (Araneae) Community Structure in an Intertidal Salt Marsh: Effects of Vegetation Structure and Tidal Flooding, Environ. Entomol, vol.19, pp.1356-1370, 1990.

E. E. Semenina, A. E. Anichkin, O. L. Shilenkova, S. G. Ermilov, and A. V. Tiunov, Rapid extraction of invertebrates from tropical forest litter using modified Winkler apparatus, J. Trop. Ecol, vol.31, pp.191-194, 2015.

T. B. Churchill and J. M. Arthur, Measuring Spider Richness: Effects of Different Sampling Methods and Spatial and Temporal Scales, J. Insect Conserv, vol.3, pp.287-295, 1999.

M. H. Hancock and C. J. Legg, Pitfall trapping bias and arthropod body mass: Pitfall bias and body mass, Insect Conserv. Divers, vol.5, pp.312-318, 2012.

V. Vedel, C. Rheims, J. Murienne, and A. D. Brescovit, Biodiversity baseline of the French Guiana spider fauna, vol.2, p.361, 2013.

C. J. Topping and K. D. Sunderland, Limitations to the Use of Pitfall Traps in Ecological Studies Exemplified by a Study of Spiders in a Field of Winter Wheat, J. Appl. Ecol, vol.29, p.485, 1992.

P. Cardoso, Standardization and optimization of arthropod inventories-the case of Iberian spiders, Biodivers. Conserv, vol.18, pp.3949-3962, 2009.

G. R. Brown and I. M. Matthews, A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground-active arthropod biodiversity, Ecol. Evol, vol.6, pp.3953-3964, 2016.

L. L. Sørensen, J. A. Coddington, and N. Scharff, Inventorying and Estimating Subcanopy Spider Diversity Using Semiquantitative Sampling Methods in an Afromontane Forest, Environ. Entomol, vol.31, pp.319-330, 2002.

R. Jansen, L. Makaka, I. T. Little, and A. Dippenaar-schoeman, Response of ground-dwelling spider assemblages (Arachnida, Araneae) to Montane Grassland management practices in South Africa, Insect Conserv. Divers, vol.6, pp.572-589, 2013.

R. Corti, S. T. Larned, and T. Datry, A comparison of pitfall-trap and quadrat methods for sampling ground-dwelling invertebrates in dry riverbeds, Hydrobiologia, vol.717, pp.13-26, 2013.

M. L. Luff, Some features influencing the efficiency of pitfall traps, Oecologia, vol.19, pp.345-357, 1975.

M. A. Baars, Catches in pitfall traps in relation to mean densities of carabid beetles, Oecologia, vol.41, pp.25-46, 1979.

V. Vedel, A. Cerdan, Q. Martinez, C. Baraloto, F. Petitclerc et al., Day-time vs. night-time sampling does not affect estimates of spider diversity across a land use gradient in the Neotropics, J. Arachnol, vol.43, pp.413-416, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535342

J. Pétillon, B. Leroy, E. A. Djoudi, and V. Vedel, Small and large spatial scale coexistence of ctenid spiders in a neotropical forest (French Guiana), Trop. Zool, vol.31, pp.85-98, 2018.

A. Merkel and . Kourou, Température Moyenne Kourou, Diagramme Climatique Pour Kourou-Climate-Data.Org, p.30, 2019.

T. Samson, . Météo-À-kourou-en, and . Juillet, , p.30, 2013.

A. D. Brescovit, A. B. Bonaldo, R. Bertani, C. A. Rheims, and . Araneae, In Amazonian Arachnida and Myriapoda. Identification Keys to All Classes, Orders, Families, Some Genera, and Lists of Known Terrestrial Species

J. Adis and . Ed, , pp.303-343, 2002.

G. Levy, Spiders of the genera Micaria and Aphantaulax (Araneae, Gnaphosidae) from Israel, Isr. J. Zool, vol.48, pp.111-134, 2002.

J. Prószy?ski, Monograph of the Salticidae (Araneae) of the World, 2019.

M. K. Wong, B. Guénard, and O. T. Lewis, Trait-based ecology of terrestrial arthropods, Biol. Rev, vol.94, pp.999-1022, 2019.

P. Brousseau, D. Gravel, and I. T. Handa, On the development of a predictive functional trait approach for studying terrestrial arthropods, J. Anim. Ecol, vol.87, pp.1209-1220, 2018.

P. Cardoso, S. Pekár, R. Jocqué, and J. A. Coddington, Global Patterns of Guild Composition and Functional Diversity of Spiders, PLoS ONE, vol.6, 2011.

S. C. Dias, L. S. Carvalho, A. B. Bonaldo, and A. D. Brescovit, Refining the establishment of guilds in Neotropical spiders (Arachnida: Araneae), J. Nat. Hist, vol.44, pp.219-239, 2009.

A. Chao, N. J. Gotelli, T. C. Hsieh, E. L. Sander, K. H. Ma et al., Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies, Ecol. Monogr, vol.84, pp.45-67, 2014.

A. Chao and L. Jost, Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size, Ecology, vol.93, pp.2533-2547, 2012.

T. C. Hsieh, K. H. Ma, and A. Chao, iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers), Methods Ecol. Evol, vol.7, pp.1451-1456, 2016.

A. Chao, Nonparametric estimation of the number of classes in a population, Scand. J. Stat, vol.11, pp.265-270, 1984.

A. Baselga and C. D. Orme, betapart: An R package for the study of beta diversity, Methods Ecol. Evol, vol.3, pp.808-812, 2012.

A. Baselga, Separating the two components of abundance-based dissimilarity: Balanced changes in abundance vs. abundance gradients, Methods Ecol. Evol, vol.4, pp.552-557, 2013.

, Development Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, 2019.

J. A. Coddington, I. Agnarsson, J. A. Miller, M. Kuntner, and G. Hormiga, Undersampling bias: The null hypothesis for singleton species in tropical arthropod surveys, J. Anim. Ecol, vol.78, pp.573-584, 2009.

E. Sereda, T. Blick, W. H. Dorow, V. Wolters, and K. Birkhofer, Assessing spider diversity on the forest floor: Expert knowledge beats systematic design, J. Arachnol, vol.42, pp.44-51, 2014.

J. Maelfait and L. Baert, Contribution to the knowledge of the arachni and entomofauna of different wood habitats. Part I. Sampled habitats, Theoretical study of the pitfall method, survey of the captured taxa-Carabidae, Biol. Jaarb. Dodonaea, vol.43, pp.179-196, 1975.

D. Lafage, S. Maugenest, J. Bouzillé, and J. Pétillon, Disentangling the influence of local and landscape factors on alpha and beta diversities: Opposite response of plants and ground-dwelling arthropods in wet meadows, Ecol. Res, vol.30, pp.1025-1035, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01205359

S. M. Rodriguez-artigas, R. Ballester, and J. A. Corronca, Factors that influence the beta-diversity of spider communities in northwestern Argentinean Grasslands, PeerJ, 1946.

A. C. Ávila, C. Stenert, E. N. Rodrigues, and L. Maltchik, Habitat structure determines spider diversity in highland ponds, Ecol. Res, vol.32, pp.359-367, 2017.

P. Sebek, S. Vodka, P. Bogusch, P. Pech, R. Tropek et al., Open-grown trees as key habitats for arthropods in temperate woodlands: The diversity, composition, and conservation value of associated communities, For. Ecol. Manag, vol.380, pp.172-181, 2016.

J. C. Carvalho, P. Cardoso, L. C. Crespo, S. Henriques, R. Carvalho et al., Biogeographic patterns of spiders in coastal dunes along a gradient of mediterraneity, Biodivers. Conserv, vol.20, pp.873-894, 2011.

S. Foord, A. Dippenaar-schoeman, and C. R. Haddad, South African Spider Diversity: African Perspectives on the Conservation of a Mega-Diverse Group, In Changing Diversity in Changing Environment

O. Grillo and G. I. Venora, , 2011.

T. Magura, R. Horváth, and B. Tóthmérész, Effects of urbanization on ground-dwelling spiders in forest patches, Hungary. Landsc. Ecol, vol.25, pp.621-629, 2010.

D. Alaruikka, D. J. Kotze, K. Matveinen, and J. Niemela, Carabid beetle and spider assemblages along a forested urban-rural gradient in southern Finland, J. Insect Conserv, vol.6, pp.195-206, 2002.

M. Varet, F. Burel, D. Lafage, and J. Pétillon, Age-dependent colonization of urban habitats: A diachronic approach using carabid beetles and spiders, Anim. Biol, vol.63, pp.257-269, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01610006

A. L. Tourinho, S. C. Dias, N. F. Lo-man-hung, R. Pinto-da-rocha, A. B. Bonaldo et al., Optimizing survey methods for spiders and harvestmen assemblages in an Amazonian upland forest, Pedobiologia, vol.67, pp.35-44, 2018.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI