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Abstract: The pioneering work of Dr. William Coley has shown that infections can stimulate 

the immune system and improve tumor growth control. However, the immune mechanisms 

responsible for the protective role of infectious agents have still not been identified. Here, we 

investigated the role of innate immune pathways in tumor regression by performing 

experimental infections in genetically modified Drosophila that develop invasive neoplastic 

tumors. After quantifying tumor size, through image processing, and immune gene 

expression with transcriptomic analyses, we analyzed the link between tumor size and 

pathogen-induced immune responses thanks to a combination of statistical and mathematical 

modeling. Drosophila larvae infected with a naturally-occurring bacterium showed a smaller 

tumor size compared to controls and fungus-infected larvae, thanks to an increase expression 

of Imd and Toll pathways. Our mathematical model reinforces this idea by showing that 

repeated acute infection could results in an even higher decrease in tumor size. Thus, our 

study suggests that infectious agents can induce tumor regression through the alteration of 

innate immune responses. This phenomenon, currently neglected in oncology, could have 

major implications for the elaboration of new preventive and immunotherapeutic strategies. 

 

One Sentence Summary: Bacterial infections can decrease cancer cell accumulation through 

stimulation of innate immune responses.  
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Introduction 

Most, if not all, multicellular organisms are exposed, during their life, to a diversity of 

infectious agents (through contact, ingestion and inhalation, among other possibilities) that 

stimulate the innate immune system (1) but also let an imprint on individual’s immune profile 

(2). As numerous immune mechanisms are shared by anti-infection and anti-cancer responses 

(3), it is theoretically expected that the personal history of infections could influence cancer 

cell elimination/proliferation in the body. For instance, evidences are accumulating to suggest 

that infectious agents may play an indirect role in tumor progression, through immunological, 

ecological and evolutionary interactions with immune system (4). Moreover, early work from 

William Coley as well as many other reports have unambiguously linked infection to tumor 

regression in cancer patients (5, 6) suggesting that non-specific immunity may be particularly 

relevant for cancer treatment (7). While the impact of infectious agents on the adaptive 

tumoral immunity has been studied in mammals (8, 9), the activation of innate immune 

pathways, a non-specific first line of defense, have however been poorly investigated in term 

of cancer prevention.  

To disentangle the role of infection-induced innate immunity in tumor burden, we 

performed our experiments in an invertebrate model which does not evolve an adaptive 

immunity (but see (10, 11)). In this context, Drosophila is recognized as a pertinent model 

for the study of cancer (12). We considered two types of acute infections, bacterial and 

fungal, since they trigger different immune pathways in an experimental system of 

Drosophila, which develops GFP-labeled invasive neoplastic tumors in larval epithelial 

tissues called eye-antennal discs (13). We combined extensive image analysis with 

transcriptomic study of the three main immune pathways of drosophila immunity.  Then, we 

used statistical analysis to figure out how immune expression following each kind of 

infection modulates accumulation of cancer cells. Finally, we developed a mathematical 
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model calibrated with our experimental data to show that the repetitive activation of innate 

immunity by acute infections may represent a significant factor for cancer prevention. 

 

Results and Discussion 

 We first measured the activation of innate immune pathways in response to cancer 

cells without infection. In Drosophila, three main pathways are responsible for driving 

expression of downstream effectors of innate immunity (14, 15). Immune Deficiency (Imd) is 

involved in the response to Gram-negative bacterial infection (16) while Toll pathway is 

stimulated in response to fungi and gram-positive bacteria (17, 18) and Janus Kinase/Signal 

Transducer and Activator of Transcription (Jak/STAT) is activated by injury or by the 

presence of aberrant cells (19, 20) and upon parasitoid wasps infection (21). qRT-PCR 

analysis revealed no effect of cancerous status on diptericin (dpt, a read-out for Imd pathway) 

neither on unpaired 3 (upd3, a key activator of Jak/STAT pathway) expression. However, the 

presence of tumor cells influenced drosomycin expression (drs, a read-out for Toll pathway) 

with cancerous larvae expressing higher level of drs than non-cancerous ones (Figure 1A; z-

value = 2.04, pval = 0.04). As previously reported, our results suggested that Toll pathway is 

activated in presence of cancer cells (22). 

 Still with non-infected Drosophila, we quantified the tumor size using the number of 

pixels with a standardized fluorescent intensity above a given threshold (see Supplementary 

materials for sensitivity on this measure). Using a generalized linear mixed model, we 

observed that tumor size was associated with the interaction of the three immune pathways 

(triple interaction: χ² = 4.6, df=1, pval = 0.03). Therefore, we used a principal component 

analysis (PCA) based on the expression of the three immune genes to study their complex 

impact on tumor growth. We found that dpt and upd3 were positively and significantly 
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associated to the first dimension, which accounted for 61.9% of the total variance (Figure 

1B). drs was positively associated to the second dimension, which accounted 32.3% of the 

total variance (Figure 1B). Statistical analyses showed that tumor size was significantly 

associated with this first dimension (Figure 1D; t=2.3, df = 13, pval = 0.03). Taken together, 

these results suggest that the activation of Toll pathway is not proportional to the number of 

cancer cells but that Imd and Jak/STAT activations are linked with tumor size in non-infected 

larvae. Accordingly, evidences have shown that upd3-dependent Jak/STAT activation in 

Rasv12/scrib1 tumors promotes tumor growth (23). Moreover, activation of Imd pathway has 

also recently been reported in tumor bearing larvae, mutant for dlg or mxc (24, 25). As we 

measured gene expression in whole body, and not specifically in tumor tissues, the 

upregulation of upd3 may have not been sufficient to be detected in cancerous larvae in our 

first qRT-PCR analysis. 

 In order to evaluate the effect of infections on tumor burden, we carried out infectious 

treatments on tumor bearing larvae using the gram-negative bacterium Pectobacterium 

carotovorum carotovorum (Pcc) or the fungal entomopathogen Beauvaria bassiana (Bb) and 

compared tumor growth in those conditions with non-infected larvae (see supplement 

materials Table S1 for prevalence data). Analysis of tumor phenotype showed that larvae 

orally infected by the bacterium Pcc showed smaller sizes compared to non-infected ones 

(Figure 2A; z-value = 3.5, pval = 0.001). However, infection by Bb was not significantly 

affecting tumor size compared to controls. This suggested that infections may have different 

effect on tumor regression depending on the characteristics of the downstream immune 

response. 

To identify which immune mechanisms could explain the effect of the bacterial 

infection, we compared the activation of the innate immune pathways following infections in 

cancerous versus non-cancerous larvae. Infection with Pcc resulted in at least a 20-fold 
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increase of dpt expression compared to non-infected larvae of both statuses (Figure 2B; 

treatment effect: χ² = 23.3, df = 2, pval < 0.0001). In non-cancerous larvae, drs expression 

was higher in Pcc and Bb-infected larvae compared to non-infected larvae (Figure 2C; 

treatment effect: χ² = 12.9, df = 2, pval =0.002). However, the impact of the infectious 

treatment was comparatively lower in cancerous larvae (status effect: χ² = 12.9, df = 2, pval 

=0.002). 

Altogether, our results pointed out the role of Imd and Toll pathways in the tumor 

reduction observed in Pcc-infected larvae. Considering the recent studies demonstrating the 

anti-tumoral function of several antimicrobial peptides produced downstream of Imd and Toll 

pathway (24, 25), it is likely that tumor size reduction induced by bacterial infection was a 

consequence of a general activation of the innate immune system. However, Toll pathway 

alone seemed to be insufficient to induce a potent elimination of cancer cells, as suggested by 

the absence of tumor regression in Bb-infected larvae. This might be explained by the 

synergistic action of both pathways already reported for several antimicrobial peptides (16). 

Nevertheless, we cannot preclude that other mechanisms, such as metabolic or microbiota 

alterations consequent to digestive infection, were involved in tumor size reduction. In 

addition, the innate immune mechanisms, observed in response to Pcc infection, are 

susceptible to apply to other bacteria, including those encountered by humans, as they share 

common antigens called pathogen-associated molecular patterns (PAMPs) (26).  

Finally, the expression of upd3 gene was significantly decreased by Pcc and Bb 

infection compared to non-infected larvae but only in cancerous larvae (Figure 2D; z-value = 

-2.8, pval = 0.01). Interestingly, Jak/STAT pathway has been shown to have a dual role in 

tumoral immune responses. On the one hand, it promotes hemocytes proliferation, which 

subsequently restrict tumor growth (19) but on the other hand expression of upd3 in the 

tumor has been shown to increase cancer cells proliferation (23). Thus, the downregulation 
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Jak/STAT following infection could be directly involved in tumor size reduction or a by-

product of cancer cell elimination. 

 Thanks to our experimental model we have been able to study the effects of one 

infectious event on cancer development. However, reports from Coley’s experiments as well 

as the use of bacillus Calmette-Guerin to treat superficial bladder cancer pointed out the 

importance of recurrent infections to promote efficient tumor regression (6, 27). Since it is 

experimentally challenging to do repeated infection on a short-lived model like Drosophila, 

we investigated the consequences of these different patterns of infection through a 

mathematical model that allows the exploration of a large number of infectious situations and 

where parameters have been estimated to reproduce the level of immune gene activation and 

tumor size observed experimentally (Supplementary materials). When this model simulated 

short repeated bacterial infections, we forecasted that it may result in a smaller tumor size 

compared to a single persistent infection (Fig. 3A). The effect of repeated infections can be 

linked to the maintenance of a higher level of Jak/STAT activation (Fig. 3B), which may act 

together with Imd and Toll pathways to eliminate cancer cells.  

Our study demonstrates that naturally-occurring bacterial infection can promote tumor 

regression in Drosophila and that infection-dependent activation of the main innate immune 

pathways is likely to be a key driver of this regression. Since the 20th century, radiotherapy 

and chemotherapy have been intensively developed to the detriment of the early attempts of 

immunotherapy, such as Coley’s toxin (7). However, the striking raise of immunotherapeutic 

strategies in the past decades, symbolized by the attribution of the 2018 Nobel Prize of 

Medicine, calls for a re-evaluation of the mechanisms linking infections and spontaneous 

tumor regression. While studies have mainly focused on adaptive immunity for the 

elaboration of new drugs (28), we focused on the role of innate responses. Our study, 

together with other recent studies in flies (24, 25), has revealed some molecular aspects 
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mediating the forgotten potential of the innate immune system in the control of tumor burden. 

Further efforts should be made to elucidate the precise molecular mechanisms leading to 

cancer regression in response to innate immune system activation as it could open new 

perspectives to design treatments that mimics the effects of natural infections. 
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Figure 1| A) Fold induction of the three immune genes in cancerous larvae in yellow without 

infection relatively to non-cancerous larvae in dark blue. The error bars represent the standard error of 

mean relative expression calculated for all pools. Shared letters (a, b) above error bars denote means 

that are not significantly different, while different letters indicate that p<0.05 for pairwise 

comparisons (Tukey's test). B) Contribution of the three immune genes in PCA dimensions. The scale 

shows the intensity of the contribution. Signs in the circle represent the sign of the association. The 

scare on the bottom reports the results of statistical analyses of model explaining tumor size with the 

dimensions of the PCA. (Abbreviation : dpt : diptericin; drs : drosomycin: upd3 : unpaired 3) 

 
Figure 2| A) Effect of infection by bacterium Pectobacterium carotovorum carotovorum (abbreviated 

by Pcc in red) and the fungi Beauvaria bassiana (abbreviated Bb in orange) compared to control 
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without infection (abbreviated Ctl in blue) on individual tumor size (S2 threshold: 75% of maximum 

intensity value). Fold induction of three immune genes: B) dpt, C) drs and D) upd3 in three groups of 

larvae with different cancerous status (C: cancerous, G: non-cancerous) in response to infection by the 

bacterium Pcc (red) and the fungi Bb (orange) standardized by control without infection (blue). The 

error bars represent the standard error of mean relative expression calculated for all pools. Shared 

letters (a, b) above error bars denote means that are not significantly different, while different letters 

indicate that p<0.05 for pairwise comparisons (Tukey's test). * represents a significant difference 

between status (p<0.05, status effect).  

 

Figure 3| A) Influence of the number of infectious events and their duration on the accumulation of 

cancer cells (range from dark red for accumulation of <15200 cancer cells to white >15600 cells). 

Dark and gray dots represent the value obtained without infection and with a persistent infection 

respectively. The black sign shows the parameters used to obtained figure 4B. B) Mathematical model 

simulations exploring the activation of immune pathways (green represents Jak-STAT, blue Toll and 

yellow Imd) across times of experiments (in hours) in cancerous larvae without infection (in bold 

line), after repeated bacterial (dotted lines) or after persistent infection (dashed line). The parameters 

used to model dynamics of cancer cells and immune activation are in the supplementary materials 

(Table M3).  

 

Supplementary Materials: 

Materials and Methods 

Figures S1-S4 

Tables S1-S2 
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