D. Aurbach, Y. Gofer, A. Schechter, O. Chusid, H. Gizbar et al., A Comparison between the Electrochemical Behavior of Reversible Magnesium and Lithium Electrodes, J. Power Sources, pp.269-273, 2001.

R. Mohtadi and F. Mizuno, Magnesium Batteries: Current State of the Art, Issues and Future Perspectives, Beilstein J. Nanotechnol, vol.5, pp.1291-1311, 2014.

E. M. Erickson, E. Markevich, G. Salitra, D. Sharon, D. Hirshberg et al., Review-Development of Advanced Rechargeable Batteries: A Continuous Challenge in the Choice of Suitable Electrolyte Solutions, J. Electrochem. Soc, vol.162, issue.14, pp.2424-2438, 2015.

M. Matsui, Study on Electrochemically Deposited Mg Metal, J. Power Sources, vol.196, pp.7048-7055, 2011.

M. Jäckle and A. Groß, Microscopic Properties of Lithium , Sodium , and Magnesium Battery Anode Materials Related to Possible Dendrite Growth Related to Possible Dendrite Growth, J. Chem. Phys, vol.141, p.174710, 2014.

C. Ling, D. Banerjee, and M. Matsui, Study of the Electrochemical Deposition of Mg in the Atomic Level: Why It Prefers the Non-Dendritic Morphology, Electrochim. Acta, vol.76, pp.270-274, 2012.

M. Jäckle, K. Helmbrecht, M. Smits, D. Stottmeister, and A. Groß, Self-Diffusion Barriers : Possible Descriptors for Dendrite Growth in Batteries?, Energy Environ. Sci, vol.11, pp.3400-3407, 2018.

A. Kopa?-lautar, D. Kopa?, T. Rejec, T. Ban?i?, and R. Dominko, Morphology Evolution of Magnesium Facets : DFT and KMC Simulations, Phys. Chem. Chem. Phys, vol.21, pp.2434-2442, 2019.

N. N. Rajput, X. Qu, N. Sa, A. K. Burrell, and K. A. Persson, The Coupling between Stability and Ion Pair Formation in Magnesium Electrolytes from First-Principles Quantum Mechanics and Classical Molecular Dynamics, J. Am. Chem. Soc, 2015.

S. Dong, Y. Kim, S. Lee, D. Y. Kim, Y. Lim et al., Operating Mechanisms of Electrolytes in Magnesium Ion Batteries: Chemical Equilibrium, Magnesium Deposition, and Electrolyte Oxidation, Phys. Chem. Chem. Phys, vol.16, issue.16, pp.25789-25798, 2014.

Y. Yu, A. Baskin, C. Valero-vidal, N. T. Hahn, Q. Liu et al., Instability at the Electrode/Electrolyte Interface Induced by Hard Cation Chelation and Nucleophilic Attack, Chem. Mater, vol.29, issue.19, pp.8504-8512, 2017.

O. Tutusaus, R. Mohtadi, N. Singh, T. S. Arthur, and F. Mizuno, Study of Electrochemical Phenomena Observed at the Mg Metal/Electrolyte Interface, ACS Energy Lett, vol.2, pp.224-229, 2016.

Z. Lu, A. Schechter, M. Moshkovich, and D. Aurbach, On the Electrochemical Behavior of Magnesium Electrodes in Polar Aprotic Electrolyte Solutions, J. Electroanal. Chem, vol.466, pp.146-147, 1999.

C. B. Bucur and T. D. Gregory, Challenges of a Rechargeable Magnesium Battery, Editio, 2018.

S. Ha, Y. Lee, B. Koo, J. Kim, J. Cho et al., Magnesium(II) Bis(Trifluoromethane Sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries, ACS Appl. Mater. Interfaces, vol.6, issue.6, pp.4063-4093, 2014.

I. Shterenberg, M. Salama, H. D. Yoo, Y. Gofer, J. Park et al., Evaluation of (CF3SO2)2N ? (TFSI) Based Electrolyte Solutions for Mg Batteries, J. Electrochem. Soc, vol.162, issue.13, pp.7118-7128, 2015.

J. Bitenc, M. Firm, . ;-randon, A. Vitanova, and R. Dominko, Effect of Cl -and TFSI -Anions on Dual Electrolyte Systems in a Hybrid Mg/Li4Ti5O12 Battery, vol.76, pp.29-33, 2017.

C. J. Barile, R. G. Nuzzo, and A. A. Gewirth, Exploring Salt and Solvent Effects in Chloride-Based Electrolytes for Magnesium Electrodeposition and Dissolution, J. Phys. Chem. C, 2015.

M. R. Nellist, F. A. Laskowski, J. Qiu, H. Hajibabaei, K. Sivula et al., Potential-Sensing Electrochemical Atomic Force Microscopy for in Operando Analysis of Water-Splitting Catalysts and Interfaces, Nat. Energy, vol.3, 2018.

S. Drvari?-talian, J. Mo?kon, R. Dominko, M. Gaber??ek, . Reactivity et al., A Fundamental Study Using Impedance Spectroscopy, ACS Appl. Mater. Interfaces, vol.2017, issue.35, pp.29760-29770

M. Baloch, A. Vizintin, R. K. Chellappan, J. Moskon, D. Shanmukaraj et al., Application of Gel Polymer Electrolytes Based on Ionic Liquids in Lithium-Sulfur Batteries, J. Electrochem. Soc, vol.163, issue.10, pp.2390-2398, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01498742

S. H. Lapidus, N. N. Rajput, X. Qu, K. W. Chapman, K. A. Persson et al., Solvation Structure and Energetics of Electrolytes for Multivalent Energy Storage, Phys. Chem. Chem. Phys, vol.2014, issue.40, pp.21941-21945

S. P. Ong, O. Andreussi, Y. Wu, N. Marzari, and G. Ceder, Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations, Chem. Mater, vol.23, issue.11, pp.2979-2986, 2011.

J. Z. Hu, N. N. Rajput, C. Wan, Y. Shao, X. Deng et al., 25Mg NMR and Computational Modeling Studies of the Solvation Structures and Molecular Dynamics in Magnesium Based Liquid Electrolytes, Nano Energy, vol.46, pp.436-446, 2018.

P. Kubisiak and A. Eilmes, Solvation of Mg 2+ Ion in Mg(TFSI)2/Dimethoxyethane Electrolytes -A View from Molecular Dynamics Simulations, J. Phys. Chem. C, issue.24, pp.12615-12622, 2018.

N. Sa, N. N. Rajput, H. Wang, B. Key, M. Ferrandon et al., Concentration Dependent Electrochemical Properties and Structural Analysis of a Simple Magnesium Electrolyte: Magnesium Bis(Trifluoromethane Sulfonyl)Imide in Diglyme, RSC Adv, vol.6, issue.114, pp.113663-113670, 2016.

E. Jónsson and P. Johansson, Electrochemical Oxidation Stability of Anions for Modern Battery Electrolytes: A CBS and DFT Study, Phys. Chem. Chem. Phys, vol.2015, issue.5, pp.3697-3703

N. Pour, Y. Gofer, D. T. Major, and D. Aurbach, Structural Analysis of Electrolyte Solutions for Rechargeable Mg Batteries by Stereoscopic Means and DFT Calculations, J. Am. Chem. Soc, 2011.

K. M. Callahan, N. N. Casillas-ituarte, M. Roeselova?, H. C. Allen, and D. J. Tobias, Solvation of Magnesium Dication: Molecular Dynamics Simulation and Vibrational Spectroscopic Study of Magnesium Chloride in Aqueous Solutions, J. Phys. Chem. A, issue.15, pp.5141-5148, 2010.

Y. Wang, S. Nakamura, A. Makoto-ue, and P. B. Balbuena, Theoretical Studies To Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries: Reduction Mechanisms of Ethylene Carbonate, J. Am. Chem. Soc, vol.123, pp.11708-11718, 2001.

W. Schmickler, E. Santos, . Electrochemistry, and . Editio, , 2010.

A. J. Bard, H. D. Abruña, C. E. Chidsey, L. R. Faulkner, S. W. Feldberg et al., The Electrode/Electrolyte Interface -A Status Report, J. Phys. Chem, issue.28, pp.7147-7173, 1993.

A. J. Bard and L. R. Faulkner, Electrochemical Methods, 2001.

J. S. Lowe and D. J. Siegel, Reaction Pathways for Solvent Decomposition on Magnesium Anodes, J. Phys. Chem. C, issue.20, pp.10714-10724, 2018.

P. Canepa, G. S. Gautam, R. Malik, S. Jayaraman, Z. Rong et al., Understanding the Initial Stages of Reversible Mg Deposition and Stripping in Inorganic Nonaqueous Electrolytes, Chem. Mater, vol.27, issue.9, pp.3317-3325, 2015.

A. Baskin and D. Prendergast, Exploration of the Detailed Conditions for Reductive Stability of Mg(TFSI)2 in Diglyme: Implications for Multivalent Electrolytes, J. Phys. Chem. C, issue.7, pp.3583-3594, 2016.

N. Kumar and D. J. Siegel, Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries, J. Phys. Chem. Lett, 2016.

Y. Ando, Y. Kawamura, T. Ikeshoji, and M. Otani, Electrochemical Reduction of an Anion for Ionic-Liquid Molecules on a Lithium Electrode Studied by First-Principles Calculations, Chem. Phys. Lett, vol.612, pp.240-244, 2014.

J. S. Filhol and M. L. Doublet, Conceptual Surface Electrochemistry and New Redox Descriptors, J. Phys. Chem. C, vol.118, pp.19023-19031, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01075350

N. Lespes and J. S. Filhol, Using Implicit Solvent in Ab Initio Electrochemical Modeling: Investigating Li + /Li Electrochemistry at a Li/Solvent Interface, J. Chem. Theory Comput, vol.11, issue.7, pp.3375-3382, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01182468

J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, D. Lyngby et al., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, J. Phys. Chem. B, vol.108, pp.17886-17892, 2004.

A. L. Dalverny, J. S. Filhol, and M. L. Doublet, Interface Electrochemistry in Conversion Materials for Li-Ion Batteries, J. Mater. Chem, vol.21, issue.27, pp.10134-10142, 2011.

N. Lespes and J. Filhol, Using the Electrochemical Dimension to Build Water/Ru(0001) Phase Diagram, Surf. Sci, vol.631, pp.8-16, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01090042

M. Mamatkulov and J. S. Filhol, An Ab Initio Study of Electrochemical vs. Electromechanical Properties: The Case of CO Adsorbed on a Pt(111) Surface, Phys. Chem. Chem. Phys, vol.13, issue.17, pp.7675-7684, 2011.

G. Kresse and J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci, vol.6, issue.1, pp.8-8, 1996.

G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B -Condens. Matter Mater. Phys, vol.54, issue.16, pp.11169-11186, 1996.

K. Mathew, R. Sundararaman, K. Letchowrth-weaver, T. A. Arias, and R. G. Henning, Implicit Solvation Model for Density-Functional Study of Nanocrystal Surfaces and Reaction Pathways, J. Chem. Phys, vol.8, p.84106, 2014.

M. J. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb et al., , 2004.

M. Salama, I. Shterenberg, H. Gizbar, N. N. Eliaz, M. Kosa et al., Unique Behavior of Dimethoxyethane (DME)/Mg(N(SO2CF3)2)2Solutions, J. Phys. Chem. C, vol.2016, issue.35, pp.19586-19594

, Jun, vol.13, 2019.

J. Bitenc, K. Pirnat, E. ?agar, A. Randon-vitanova, and R. Dominko, Effect of Salts on the Electrochemical Performance of Mg Metal-organic Battery, J. Power Sources, vol.430, pp.90-94, 2019.

T. Tamura and M. Nakamura, Physicochemical Properties of Glyme -Li Salt Complexes as a New Family of Room-Temperature Ionic Liquids, Chem. Lett, vol.39, pp.753-755, 2010.

S. Tobishima, H. Morimoto, M. Aoki, Y. Saito, T. Inose et al., Glyme-Based Nonaqueous Electrolytes for Rechargeable Lithium Cells, Electrochim. Acta, vol.49, pp.979-987, 2004.

K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki et al., Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme-Lithium Salt Equimolar Complexes, J. Am. Chem. Soc, issue.33, pp.13121-13129, 2011.

J. Lee and M. H. Litt, Ring-Opening Polymerization of Ethylene Carbonate and Depolymerization of Poly(Ethylene Oxide-Co-Ethylene Carbonate, Macromolecules, vol.33, pp.11618-11627, 2000.

D. Aurbach, I. Weissman, Y. Gofer, and E. Levi, Nonaqueous Magnesium Electrochemistry and Its Application in Secondary Batteries, Chem. Rec, vol.3, issue.1, pp.61-73, 2003.

X. Chen, T. Hou, B. Li, C. Yan, L. Zhu et al., Towards Stable Lithium-Sulfur Batteries : Mechanistic Insights into Electrolyte Decomposition on Lithium Metal Anode. Energy Storage Mater, vol.8, pp.194-201, 2017.

R. G. Pearson, Hard and Soft Acids and Bases, J. Am. Chem. Soc, issue.C, p.265, 1963.

B. Pan, J. Huang, N. Sa, S. M. Brombosz, J. T. Vaughey et al., MgCl 2 : The Key Ingredient to Improve Chloride Containing Electrolytes for Rechargeable Magnesium-Ion Batteries, J. Electrochem. Soc, vol.163, issue.8, pp.1672-1677, 2016.

C. Liao, N. Sa, B. Key, A. K. Burrell, L. Cheng et al., The Unexpected Discovery of the Mg(HMDS)2/MgCl2 Complex as a Magnesium Electrolyte for Rechargeable Magnesium Batteries, J. Mater. Chem. A Mater. energy Sustain, vol.2015, issue.11, pp.6082-6087

M. Salama, I. Shterenberg, L. J. Shimon, K. Keinan-adamsky, M. Afri et al., Structural Analysis of Magnesium Chloride Complexes in Dimethoxyethane Solutions in the Context of Mg Batteries Research, J. Phys. Chem. C, vol.2017, issue.45, pp.24909-24918