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Ecography The impact of rapid habitat loss and fragmentation on biodiversity is a major issue.
43: 1-13, 2020 However, we still lack an integrative understanding of how these changes influence bio-
doi: 10 1111/ ecog.04870 diversity dynamics over time. In this study, we investigate the effects of these changes

T ) in terms of both niche-based and neutral dynamics. We hypothesize that habitat loss
Subject Editor: Kenneth Feeley has delayed effects on neutral immigration—extinction dynamics, while edge effects
Editor-in-Chief: Hanna Tuomisto and environmental heterogeneity in habitat patches have rapid effects on niche-based
Accepted 9 February 2020 dynamics.

We analyzed taxonomic and functional composition of 100 tree communities in a
tropical dry forest landscape of New-Caledonia subject to habitat loss and fragmenta-
tion. We designed an original, process-based simulation framework, and performed
Approximate Bayesian Computation to infer the influence of niche-based and neu-
tral processes. Then, we performed partial regressions to evaluate the relationships
between inferred parameter values of communities and landscape metrics (distance
to edge, patch area, and habitat amount around communities), derived from either
recent or past (65 yr ago) aerial photographs, while controlling for the effect of soil
and topography.

We found that landscape structure influences both environmental filtering and
immigration. Immigration rate was positively related to past habitat amount sur-
rounding communities. In contrast, environmental filtering was mostly affected by
present landscape structure and mainly influenced by edge vicinity and topography.

Our results highlight that landscape changes have contrasting spatio-temporal influ-
ences on niche-based and neutral assembly dynamics. First, landscape-level habitat loss
and community isolation reduce immigration and increase demographic stochasticity,
resulting in slow decline of local species diversity and extinction debt. Second, recent
edge creation affects environmental filtering, incurring rapid changes in community
composition by favoring species with edge-adapted strategies. Our study brings new
insights about temporal impacts of landscape changes on biodiversity dynamics. We
stress that landscape history critically influences these dynamics and should be taken
into account in conservation policies.
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Introduction

Habitat loss and fragmentation are global concerns for bio-
diversity conservation (Myers et al. 2000, Haddad et al.
2015, Taubert et al. 2018), and how they affect species per-
sistence and coexistence in space and time is a critical ques-
tion in community ecology (Niebuhr et al. 2015, Fahrig
2018, Figueiredo et al. 2019, Miller-Rushing et al. 2019).
Specifically, understanding how dispersal and stochastic
demography, on one hand and environmental filtering, on
the other hand, jointly influence diversity patterns in a con-
text of habitat loss and fragmentation remains challenging
(Matthews and Whittaker 2014, Piittker et al. 2015).

The equilibrium theory of island biogeography (ETIB,
MacArthur and Wilson 1967) provides a conceptual foundation
to understand how the balance between stochastic immigra-
tion and extinction processes influences biodiversity in habi-
tat patches (MacArthur and Wilson 1967, Wilson and Willis
1975). ETIB predicts that immigration decreases with increasing
patch isolation, and extinctions increase with decreasing patch
area (MacArthur and Wilson 1967, Wilson and Willis 1975,
Laurance 2008, Piictker et al. 2015). From another perspective,
the habitat amount hypothesis (HAH, Fahrig 2013) states that
immigration—extinction equilibrium in a given site primarily
depends on the amount of habitat in the surrounding landscape.
Both ETIB and HAH emphasize that local biodiversity rely on
immigration and local stochastic extinction (i.e. ecological drift,
Vellend et al. 2014) and assume that species have equivalent
probabilities to establish in local habitat, so that they lean on
neutral assembly dynamics (Hubbell 2001, Volkov et al. 2003,
Piittker et al. 2015). However, environmental heterogeneity
within and among patches can differentially filter species accord-
ing to their ecological attributes (i.e. functional traits), which
determine their ecological strategies and influence their prob-
ability to establish and persist in a given environment (Chase
2005, McGill et al. 2006, Violle et al. 2007, Piittker et al. 2015).
Hence, if species are functionally different, local community
composition in heterogeneous habitat patches should depend on
both immigration—extinction dynamics and trait-based environ-
mental filtering (McGill 2010, Matthews and Whittaker 2014).

Although landscape changes may affect both immigra-
tion—extinction dynamics and environmental filtering,
their respective signature on diversity patterns can emerge
with different tempos. First, reaching a new immigration—
extinction equilibrium after habitat reduction and/or isola-
tion may involve a substantial delay and incur an extinction
debt, especially because this relies on stochastic demography
(Kuussaari et al. 2009, Jackson and Sax 2010). Second, edge
effects can entail strong changes in environmental condi-
tions within patches, so that habitat fragmentation should
affect environmental filtering (Ewers and Didham 2005,
Harper et al. 2005, Didham et al. 2012). However, such envi-
ronmental change can directly affect species persistence and

should more quickly influence local community composition
(Gilbert et al. 2006, Kuussaari et al. 2009). Nonetheless, how
such distinctive temporal influences affect observed diversity
patterns at a given time remain little studied.

Extensive process-based simulation of community dynam-
ics has proved helpful to disentangle the respective influences
of stochastic and trait-based assembly processes on diversity
patterns (Jabot et al. 2008, Zurell et al. 2010, Munoz et al.
2018, Denelle et al. 2019). Indeed, community functional
composition should reflect the imprint of environmental fil-
tering (McGill et al. 2006), while taxonomic diversity should
better capture the influence of stochastic immigration—extinc-
tion dynamics (Munoz et al. 2007). Comparing community
composition simulated under various immigration rates and
environmental filters to an observed community pattern
allows to explicitly infer the contribution of these processes to
community assembly (Zurell et al. 2010, Munoz et al. 2018).

Tropical forests have been largely studied through the
prism of habitat loss and fragmentation (Laurance et al. 2011,
Haddad etal. 2015, Taubert et al. 2018). Likewise, the imprint
of neutral and deterministic processes on tropical forest com-
position have been a major focus of community ecology dur-
ing the last two decades (Hubbell 2001, Gilbert et al. 2006,
Kraft et al. 2008, Swenson 2013). Yet, the pace at which such
processes influence tree community patterns in the context of
landscape changes remains poorly addressed.

Here, we investigated the influence of habitat loss
and fragmentation on tree community assembly in New-
Caledonia’s highly threatened tropical dry forest (Gillespie
and Jaffré 2003), with two main purposes: 1) deciphering the
respective contributions of neutral and niche-based assembly
processes, and 2) identifying different tempos of their influ-
ence on diversity patterns. We characterized functional and
taxonomic composition of 100 observed tree communities,
and inferred plausible contributions of neutral and trait-
based processes with intensive coalescent-based simulations
and approximate Bayesian computation (Munoz et al. 2018).
We examined how estimated parameters were related to past
and present landscape structure, in terms of distance to edge,
patch area and habitat amount surrounding communities.
We also assessed the influence of soil and topography within
habitat patches, which should contribute to environmental
filtering apart from spatial habitat structure (Jucker et al.
2018, Blanchard et al. 2019). We hypothesized that immi-
gration—extinction dynamics depended on community isola-
tion and has a delayed influence on community composition,
while compositional shifts due to environmental filtering
should occur more quickly and be related to edge influence
on local environmental conditions.

Material and methods

Study area

New Caledonia is an archipelago located in south-
west Pacific (20-23°S, 164-167°E). The study area is a
20x20km landscape located in a plain surrounded by



low-elevation mountains (500—1000m), on the west coast
of the main island (Kone-Pouembout plain). It receives
~1000-1400 mmyr™! rainfall and the mean annual tempera-
ture is ~23-24°C (WorldClim2 database, Fick and Hijmans
2017). The vegetation is a mosaic of evergreen dry forest
patches (‘tropical dry forest’, Holdridge 1947) surrounded
by secondary thickets and farmlands. All patches considered
in this study were located on volcano-sedimentary substrate
below 300 m a.s.l. The whole area was probably mainly cov-
ered by forest before anthropogenic landscape modification
(Jaffré et al. 1998). Then, the current forest cover results from
clearing and fires dating from both pre-European (i.e. since
3500 yr ago) and post-European time (i.e. since about 200 yr
ago), with an intensification over the last century (Jaffré et al.
1998). Overall, tropical dry forest of New-Caledonia has
been reduced to 2% of its original extent, which makes it
the world’s most endangered tropical dry forest (Gillespie and
Jaffré 2003).

Sampling design and landscape metrics

We first characterized the present-day landscape structure by
digitizing all forest patches at a scale of 1:3000 scale (i.e. 1 cm
on the map represents 30 m), using recent georeferenced aer-
ial photographs (2012). We also digitized past georeferenced
aerial photographs (1954) to assess past landscape struc-
ture. Both recent and past aerial photographs were available
online (<www.georep.nc>). We used Qgis software (QGIS
Development Team) for digitization.

Then, we designed a random sampling scheme stratified
by patch area. Based on a present landscape map, we selected
36 accessible patches spanning a wide range of area (0.5—
272.2 ha, median 23.6). We excluded areas recently colonized
by the forest (i.e. areas currently covered by forest, but which
were open in 1954). Then, we applied a 25X25m square
grid and, in each patch, we randomly selected a number of
grid nodes proportionally to the logarithm of patch area. The
resulting number of points per patch ranged from 1 to 12,
with a total of 100 points. Within a circular 400 m* plot (i.e.
11.30 m radius) at each selected point, we identified all trees
with diameter at breast height (DBH, 1.3 m above ground)
above 10 cm. We ensured that the entire plots were actually
within forest patches by relocating the center of plots away
from the edge if necessary. All the plots were established dur-
ing years 2017 and 2018.

For both past and present landscapes, we calculated three
metrics characterizing landscape structure around sampling
points: 1) the minimum distance to patch edge, 2) the area
of the embedding fragment and 3) the proportion of sur-
rounding forest area (i.e. the habitat amount). Forest habi-
tat amount was calculated within buffers of 250, 500, 1000
and 2000 m around sampling points. As suggested by Fahrig
(2013) we used the Akaike information criterion (AIC)
to select the buffer yielding the best univariate relation-
ship between species richness (i.e. the number of species in
sampled plots) and habitat amount. Using this method, we
retained a 500 m buffer for past landscape and a 250 m buffer

for present landscape (Supplementary material Appendix 1).
Distance to edge and patch area were log-transformed prior
to analyses.

As variation in water and nutrient availability related
to soil and topography may influence environmental fil-
tering (Blanchard et al. 2019), we calculated topographic
indices, including elevation, curvature, aspect and topo-
graphic wetness index, from a 10m DEM (Direction of
Technologies and Information of New Caledonia, DTSI).
In addition, we extracted the log-transformed distance to
the nearest river (Direction of Infrastructures, Topography
and Land Transport of New Caledonia, DITTT) and
the lithology of the soil substrate, defined as volcanic or
sedimentary (Direction of Industry, Mines and Energy of
New Caledonia, DIMENC).

Trait sampling

For all sampled species, we measured five wood and leaf
functional traits involved in resource-use strategies and
stress resistance, following standardized protocols in Pérez-
Harguindeguy et al. (2013). Trait were collected during years
2017 and 2018. For leaf traits, we collected five leaves per
individual and sampled five individuals per species. For com-
pound leaves, we considered a leaflet as the laminar unit.
Petioles and petiolules were removed from leaves before mea-
surement. We measured leaf area (the area of a leaf in cm?),
specific leaf area (the leaf area per dry mass in cm?g™") and
leaf dry-matter content (the leaf dry mass per fresh mass in
mgg™"). Specific leaf area and leaf dry-matter content cap-
ture species investment in leaves, and represent a trade-off
between acquisitive (high specific leaf area) and conservative
(high leaf dry-matter content) strategies along the leaf eco-
nomic spectrum (Wright et al. 2004). Leaf area represents the
light-capturing and transpiration surface and is thus related
to water-use efficiency (Moles 2018). We measured the wood
density of one wood sample per individual and five individu-
als per species. Wood density is a key trait of the wood eco-
nomic spectrum, from water use efficiency and high growth
rate to lower growth rate and drought resistance (Chave et al.
2009). Furthermore, we measured bark thickness. Thick bark
provides stem protection from heat and fire (Pausas 2015),
as well as from other damages (Rosell 2016). For bark thick-
ness, we calculated the mean of two bark measures on indi-
vidual trees, and sampled at least 15 individuals per species
(mean=17.8). For wood density and bark thickness of 38
species, data were complemented from the New Caledonian
plant inventory and permanent plot network (NC-PIPPN)
database, in which trait measurements were carried out using
identical protocols (Ibanez et al. 2017a). In subsequent anal-
yses, we used the mean trait value per species for leaf traits
and wood density. As bark thickness varies with DBH (Pausas
2015), we used the maximum value per species, to better
approximate an upper bound reached during tree growth. We
used a Box—Cox transformation (Box and Cox 1964) on each
trait to get distributions closer to normality. The five func-
tional traits were finally informed for 99 species, representing



90% of the identified species (n=110), and more than 99%
of the identified individuals (n=3089). We used this subset
of 99 species in further analyses.

Species ecological strategies

We evaluated trait covariation to identify main functional
dimensions (trait spectra) across species by performing a
principal component analysis (PCA) of species traits values,
with varimax orthogonal rotation of the three first compo-
nents. Trait values were centered and scaled to unit variance
before performing PCA. We considered species scores on the
first three rotated PCA (RPCA) axes as synthetic trait values
representing species ecological strategies along the main func-
tional dimensions. The synthetic trait values where standard-
ized between 0 and 1 prior to further analyses.

Community assembly model

We used the coalescent-based model of community assembly
provided by Munoz et al. (R package ‘ecolottery’) to simulate
community composition under a joint effect of determinis-
tic and neutral processes. This model rebuilds the genealogy
of individuals in a community by sampling their immigrant
ancestors from a reference species pool, while conditioning
establishment success and subsequent persistence to both
trait-based environmental filtering and stochastic demogra-
phy (Munoz et al. 2018).

In the model, immigration determines how stochastic
species extinctions in the community are counterbalanced by
an influx of new immigrants. The balance of migration and
stochastic demography is quantified with the migration rate
m, which represents the probability that a dead individual in
the community is replaced by a migrant from the pool (1 —m
being the probability that the dead individual is replaced by
the offspring of the remaining individuals of the community).
When the value of m is 1, there is no effect of local stochas-
tic demography and the community is a random sample of
the source pool of immigrants. As 7 decreases, the influence
of demographic stochasticity conversely increases. We also
examined the related immigration parameter /=m(/—1)/
(1 —m), where J is the number of individuals in the com-
munity. / represents the number of immigrants competing
with local offspring to replace a dead individual in the com-
munity, and is insensitive to sample size (Etienne and OIff
2004, Munoz et al. 2008, 2018).

Then, environmental filtering is defined as the probability
that the immigrants establish in the community depending
on how their trait values differ from a functional optimum
related to local abiotic conditions. This probability can clas-
sically be defined as a Gaussian function of # (species trait
values), centered around some optimal trait value topt, with
standard deviation 6 quantifying how fast the performance
decreases away from the optimum (Loranger et al. 2018,
Munoz et al. 2018, Denelle et al. 2019). As we considered
three main axes of ecological strategies (synthetic traits) in
our study, the probability of establishment and persistence of

migrants was defined as the product of three Gaussian filters
each representing environmental filtering on one of the syn-
thetic traits. Thus, the function defining environmental filcer-
ing depended on six parameters, namely, toptl, 61, topt2,
62, topt3, 63.

Parameter estimation and predictive accuracy of
assembly models

We estimated parameter values of neutral and determin-
istic processes for the sampled tropical tree communities
by performing approximate Bayesian computation (ABC,
Gsilléry et al. 2012). The method relies on intensive simu-
lation of community composition for a range of parameter
values defined in prior distributions. Then, statistics sum-
marizing community composition, called summary statistics,
were compared between simulated and observed communi-
ties, so as to characterize the most plausible parameter values
complying with actual composition (Munoz et al. 2018).

We simulated the composition of each community over
a broad range of parameter values of migration and environ-
mental filtering (coalesc function in R package ecolottery,
Munoz et al. 2018). In each simulation, the values of migra-
tion parameter (72) and the mean values of the three Gaussian
filters (top1, topt2, topt3) were each randomly assigned from
a uniform prior distribution between 0 and 1. The stan-
dard deviation values of the three Gaussian filters (61, 62,
03) were each randomly assigned from a uniform prior dis-
tribution between 0.01 and 0.25, which represents a wide
range in filter intensity from strong to weak, respectively. The
observed number of individuals was kept unchanged in each
simulation and set to actual sample sizes. In addition, a larger
o could represent a looser filter, and thus a community closer
to neutrality.

We quantified summary statistics representing 1) taxo-
nomic composition, i.e. species richness (S, the number of
species) and Shannon diversity (ES), and 2) functional com-
position, i.e. community weighted mean (CWM) and com-
munity weighted variance (CWV) of each synthetic trait.
Because ecological drift reduces species diversity (Hubbell
2001, Gilbert and Levine 2017), we expected immigration
intensity to be positively linked to SR and ES. For each syn-
thetic trait, we expected CWM to be related to topt and
CWYV to be related to o, as the variance of the theoretical
Gaussian filter is equal to o?. As filtering intensity could
reduce species diversity, we also expected G to be positively
related to SR and ES.

We performed 10 000 simulations for each of the 100
observed communities, and characterized the posterior distri-
butions of parameters using ABC. The medians of the poste-
rior distributions of parameters provided reference parameter
estimates for each community. We log-transformed the immi-
gration parameter / for further analyses. We performed cross-
validation to evaluate the reliability of parameter estimation,
and to choose the best tolerance level for ABC (a tolerance
0f 0.05 was chosen, see R package abc, Csilléry et al. 2012).



In order to evaluate the predictive accuracy of the
assembly model, we designed posterior predictive checks
(Gsilléry et al. 2010). First, we used the same model with 100
sets of parameter values randomly sampled from their poste-
rior distribution to generate 100 simulated communities for
each observed community. Then, we obtained the posterior
predictive distributions of each summary statistics from the
simulated communities. We used graphical checks to com-
pare the obtained posterior predictive distributions with the
observed values of summary statistics (Csilléry et al. 2010).

Statistical analyses

In order to analyze the effect of past and present landscape
structure on community assembly dynamics, we tested the
relationships between estimated parameters of the com-
munity assembly model, representing filtering and neutral
processes, and landscape metrics of both past and present
landscape. We also tested the effect of soil and topographic
conditions, since we expected them to influence environmen-
tal filtering.

First, we selected for each parameter the combination of
topographic and soil predictors yielding the lowest corrected
AIC when regressed against the parameter (AICc, corrected
for sample size and number of predictors). Then we grouped
predictors in three matrices: 1) present landscape metrics,
2) past landscape metrics and 3) soil and topography (i.e.
the previously selected subset). We performed partial regres-
sions (varpart and rda functions of the vegan R package,
Oksanen et al. 2019) to partition the total and independent
effects (i.e. adjusted R?) of the three groups of predictors on
each parameter of deterministic and neutral processes. Then,
we partitioned the nested total and independent effect of each
landscape metric (i.e. distance to edge, patch area and habi-
tat amount) for both past and present metrics. We assessed
the significance of the total and independent effects of each
predictor and groups of predictors using a permutations test
with 9999 permutations (Legendre and Legendre 2012).
Finally, in order to evaluate if the effect of landscape structure
varied when considering only communities far from the edge,
we carried out the analysis on forest interior communities
only (i.e. communities being at more than 50 m from past
and current edges, n=32). All analyses were performed using
R (R Core Team, R Foundation for Statistical Computing,
Vienna, Austria).

Results

Changes in landscape structure

From 1954 to 2012, forest cover declined from 3350ha to
2050ha (i.e. a 37% reduction), while the number of forest
patches more than doubled (from 137 to 296, Fig. 1). Over
this period, distance to edge decreased by more than 10m
for 36 communities, while it increased by more than 10m
for 20 communities (Supplementary material Appendix 2).

Surrounding patch area and habitat amount increased for 13
and 27 communities, while they decreased for 87 and 73 com-
munities, respectively (Supplementary material Appendix 2).

Species ecological strategies

The three first axes of the rotated principal component analy-
sis (RPCA) represented more than 82% of species functional
variation (Fig. 2). The first axis of the RPCA (31.87%) was
positively related to species investment in leaves, and to a
lesser extent in wood, running from high specific leaf arca
to high leaf dry-matter content and wood density. The first
axis thus represented species strategies along an acquisi-
tive—conservative spectrum. The second axis of the RPCA
(28.1%) represented a trade-off between high hydraulic
efficiency (high leaf area, low wood density) on the negative
side, and drought resistance provided by low transpiration
(low leaf area, high leaf dry-matter content) and low embo-
lism risk (high wood density) on the positive side. The third
axis (22.1%) was positively related to bark thickness, and
to a lesser extent negatively correlated with species invest-
ment in wood and leaves (wood density and leaf dry-matter
content). Therefore, we referred to these axes as acquisitive—
conservative (axis 1), drought resistance (axis 2), and stem
protection (axis 3).

Parameter inference and posterior predictive checks

The estimated immigration parameter (/) was highly variable
among communities (min=2.3, max=180.5, mean=40.7).
With the selected tolerance of 0.05, mean prediction errors
from cross validation were between 0.20 and 0.25 for topt
values, and between 0.5 and 0.65 for 6 and / (Supplementary
material Appendix 3). As expected, estimated optimal trait
values (toptl, topt2, topt3) were strongly correlated with
observed values of CWM for each of the three synthetic traits
(Supplementary material Appendix 4). Likewise, estimated
standard deviations of the Gaussian filters (61, 62, 63) were
strongly correlated with CWV values for related synthetic
traits, and positively correlated with taxonomic diversity (SR:
species richness and ES: Shannon diversity). Estimated values
of the immigration parameter were strongly and positively
correlated with taxonomic diversity (Supplementary material
Appendix 4). Using sampled values of parameters from their
posterior distributions obtained with ABC, the model was
able to simulate communities whose summary statistics accu-
rately fitted to the observed values for CWM and SR values,
and with reasonable accuracy for ES (Supplementary material
Appendix 5). However, CWV values were less well predicted
as they tended to be lower than the observed ones when they
become large (Supplementary material Appendix 5).

Influence of landscape structure on community
parameters

Estimated immigration mainly depended on past landscape
metrics, with a significant independent effect (Table 1).
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Figure 1. Maps of forest patches in the Kone-Pouembout plain (light grey), derived from recent (2012, left) and past (1954, right) aerial
photographs. The positions of the 100 sampled plots are indicated on each map (black points).

Immigration increased with edge distance, patch area and
habitat amount, with a stronger and independent effect of
habitat amount (Table 1, Fig. 3a).

Estimated parameters of environmental filtering mainly
depended on present landscape metrics and topography.
Along the acquisitive—conservative axis (RPCA axis 1), the
optimal trait value (toptl) of communities was positively
linked to present landscape metrics (distance to edge, patch
area and habitat amount, Table 1, Fig. 3b), with significant
independent effect. We also detected independent effects of
past landscape metrics on the intensity of filtering along the
acquisition—conservation functional dimension (61), with an
additional effect of topography. Specifically, we found weak
but positive independent effect of habitat amount on o1
(Table 1, Fig. 3¢).

Environmental filtering related to drought resistance
(RPCA axis 2) mainly depended on soil and topography
(Table 1), as the optimal trait value (topt2) increased with
distance from rivers, terrain convexity and on sedimentary
soils (Supplementary material Appendix 6). Conversely,
we found significant negative effects of current distance to
edge on topt2 (Fig. 3d). The intensity of drought-induced
filtering decreased (i.e. 62 increased) with past distance to
edge (Fig. 3e¢).

Environmental filtering related to stem protection (RPCA
axis 3) depended on both past and present landscape met-
rics, with an independent effect of past landscape metrics
(Table 1). topt3 decreased with increasing distance to edge
(Fig. 3f), patch area and habitat amount, without any inde-
pendent effects. Filtering intensity on stem protection (63)
also depended on past and present landscape metrics, as well
as on topography (Table 1). 63 increased with present edge

distance (which had an independent effect, Table 1, Fig. 3g),

past edge distance, past patch area and past habitat amount.

Forest interior communities

In communities far from the edge (> 50m), the effects of
landscape metrics on environmental filtering were generally
weaker or no more significant (Fig. 3, Supplementary mate-
rial Appendix 7). Yet, environmental filtering depended more
on topography and soil in these communities (Supplementary
material Appendix 7, 8). Contrastingly, the immigration
parameter was still related to past habitat amount for com-
munities of forest interior (Fig. 3, Supplementary material

Appendix 4).

Discussion

We estimated parameters of deterministic and neutral assem-
bly processes by performing intensive community simulation
and approximate Bayesian computation (ABC) (Munoz et al.
2018). We found that both types of processes drove tree
community dynamics in a dry tropical forest landscape that
experienced recent habitat loss and fragmentation. Despite a
relatively moderate explained variance, all inferred parameters
were significantly affected by landscape metrics, emphasizing
the pervasive influence of landscape structure on community
dynamics. Specifically, landscape structure influenced both
deterministic and stochastic assembly processes, but yet with
different tempos. Recent changes in landscape structure (<
65 yr) could entail local shifts in tree community composi-
tion through rapid environmental filtering of persisting spe-
cies depending on their functional strategies. Contrastingly,
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Figure 2. Rotated principal component analysis of mean values of
the five measured species traits (SLA: specific leaf area; LA: leaf area;
LDMC: leaf dry-matter content; WD: wood density; BT: bark
thickness). Traits coordinates are projected on the two first axes on
the upper plot, and on the first and the third axes on the lower plot.
The three axes represent more than 82% of species functional varia-
tion and are considered as synthetic traits.

the immigration parameter representing how dispersal can
balance demographic extinction depended on past landscape
structure. Landscape influence on immigration—extinction
dynamics across habitat patches could thus impact commu-
nity composition more slowly, leading to possible extinction
debt in recently isolated communities.

Effects of landscape structure on immigration

Most empirical studies addressing the effects of landscape
structure on biodiversity are based on measuring diversity

(e.g. species richness), and interpreting non-random patterns
in terms of underlying mechanisms. Here we used a process-
based framework to explicitly assess the imprint of immigra-
tion—extinction dynamics in empiric data. Immigration is a
key parameter of community dynamics and is expected to
reflect community isolation (Munoz et al. 2008). Our results
show that immigration was highly variable among commu-
nities and mostly linked to past habitat amount (i.e. forest
cover within a 500 m-radius buffer in 1954). Furthermore,
immigration still depended on habitat amount in forest inte-
rior communities, indicating that this relationship did not
only concern edge vicinity. Therefore, in line with recent
works on plant communities (Martin-Queller et al. 2017,
MacDonald et al. 2018), our study supports more the HAH
(i.e. habitat amount determines immigration, Fahrig 2013)
than the ETIB. Indeed, the amount of habitat in the ‘local
landscape’ surrounding communities represent primary
sources of immigration, and should therefore appropriately
describe community isolation from immigrants (i.e. the less
surrounding habitat there is, the more isolated the commu-
nity is, see Fahrig 2013). Yet, if this amount of habitat cor-
respond to the area of the surrounding patch, community
immigration—extinction dynamics should essentially rely on
patch-level metrics, in agreement with the ETIB. In addition,
the extent to which immigration—extinction dynamics rely
on patch area also depends on species capacity to disperse
between patches (Fahrig 2013, Bueno and Peres 2019). In
this respect, HAH and ETIB are not opposing theories, but
represent the extremes paradigms of a continuum of scenarios
depending on habitat spatial structure and matrix permeabil-
ity to species dispersal (Bueno and Peres 2019). Our studied
landscape includes patches with highly variable size, shape
and isolation, within a fast-changing heterogeneous matrix,
which could explain why community immigration—extinc-
tion dynamics appears more related to the HAH paradigm.
However, if further habitat loss results in smaller and more
isolated patches, community dynamics could switch to a
patch-centric context as promoted by ETIB. Species-specific
dispersal ability — which could depend on particular traits not
considered here — may also influence their response to land-
scape structure (Ewers and Didham 2005, Bueno and Peres
2019). Although our approach did not account for such dif-
ferences among species, our study clearly emphases the nega-
tive influence of habitat loss on dispersal dynamics.

Time-lag in ecological drift

Although there is compelling evidence that landscape changes
can have delayed effects on biodiversity patterns (Ewers and
Didham 2005, Metzger et al. 2009), few studies have tested
the influence of past landscape properties on present spe-
cies diversity (Cousins 2009, Collins et al. 2017). Specifically,
stochastic species extinctions following habitat reduction
and isolation are hypothesized to happen slowly, entail-
ing some delay (i.e. extinction debt) before reaching some
immigration—extinction equilibrium (Jackson and Sax 2010,
Halley et al. 2014, Huth et al. 2015, Figueiredo et al. 2019).



Table 1. Partition of the effects of present landscape metrics, past landscape metrics and topographic and soil variables on parameter esti-
mates of environmental filtering (top1, o1, topt2, 62, topt3 and ¢3) and immigration (log-transformed immigration parameter) for all com-
munities (n=100). The effects of landscape metrics were first tested for groups of predictors (present landscape metrics, past landscape
metrics, topography and soil), and then for each metric (edge distance, E.D.; patch area, P.A.; habitat amount, H.A.). For each predictor and
group of predictors, the adjusted R? (Adj. R?, i.e. the total effect) and the conditional R? (Adj. R%c, i.e. the independent effect) are reported
when significant (ns: p-value > 0.05; *: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001). For landscape metrics, the sign of the
significant effects (coefficients) are indicated. For each parameter, the unexplained variance are also reported.

Parameter Groups Pred. Coef. Adj. R? Adj. R*c Adj. R? Adj. R*c
log(l) Present landscape E.D. (+) 0.04* ns ns ns
P.A. . ns ns
H.A. . ns ns
Past landscape E.D. (+) 0.08** ns 0.15%** 0.13**
P.A. (+) 0.07** ns
H.A. (+) 0.16*** 0.07**
Topography and soil . . . . ns ns
Unexplained . . . . 0.84
topt1 Present landscape E.D. (+) 0.14%+* ns 0.19%** 0.13**
P.A. (+) 0.16%** ns
H.A. (+) 0.09** ns
Past landscape E.D. . ns ns ns ns
P.A. . ns ns
H.A. . ns ns
Topography and soil . . . . 0.04* ns
Unexplained . . . . 0.82
cl Present landscape E.D. . ns ns ns ns
P.A. . ns ns
H.A. . ns ns
Past landscape E.D. . ns ns ns 0.05*
P.A. . ns ns
H.A. (+) ns 0.06**
Topography and soil . . . . 0.03* 0.06**
Unexplained . . . . 0.91
topt2 Present landscape E.D. (=) 0.04* ns ns ns
P.A. . ns ns
H.A. . ns ns
Past landscape E.D. . ns ns ns ns
P.A. . ns ns
H.A. . ns ns
Topography and soil . . . . 0.28%** 0.24%*+*
Unexplained . . . . 0.73
62 Present landscape E.D. . ns ns ns ns
P.A. . ns ns
H.A. . ns ns
Past landscape E.D. (+) 0.04* ns ns ns
P.A. . ns ns
H.A. . ns ns
Topography and soil . . . . ns ns
Unexplained . . . . 0.98
topt3 Present landscape E.D. (=) 0.12%* ns 0.12%* ns
P.A. (=) 0.09** ns
H.A. (=) 0.17%** ns
Past landscape E.D. (=) 0.14%** ns 0.15%** 0.05*
P.A. (=) 0.07** ns
H.A. (=) 0.09** ns
Topography and soil . . . . ns ns
Unexplained . . . . 0.83
63 Present landscape E.D. (+) 0.08** 0.03* 0.08* ns
P.A. . ns ns
H.A. . ns ns
Past landscape E.D. (+) 0.09** ns 0.1%* ns
P.A. (+) 0.04* ns
H.A. (+) 0.09** ns
Topography and soil . . . . 0.09** ns
Unexplained . . . . 0.84
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Figure 3. Effects (linear regressions) of landscape metrics on estimated parameters of immigration (log-transformed immigration parameter)
and environmental filtering (top1, 61, topt2, 62, topt3 and 63) for all communities (n=100 plots) and forest interior communities (n=32
plots). Adjusted R? are reported when significant (ns: p-value > 0.05; *: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001).



Our results indicate that immigration is better explained by past
forest cover (i.e. 65 yr ago). While the time to reach a new immi-
gration—extinction equilibrium after landscape change can be rel-
atively short (i.e. some years) for short-lived species (Ferraz et al.
2003, Grelle 2005), it should be far longer for trees (Cousins
2009, Hylander and Ehrlén 2013). Although quantifying this
delay is beyond the aim of this study (Kuussaari et al. 2009,
Figueiredo et al. 2019), our results suggest that local extinctions
could still be delayed after 65 yr of landscape changes. Conversely,
immigration should increase in the few communities for which
the amount of surrounding habitat has recently increased. As
immigration and establishment of species could also be delayed,
these communities may be subject to an immigration credit (i.e.
a future gain of diversity, see Jackson and Sax 2010). However,
since most parts of the landscape underwent habitat loss since
1954, immigration is likely to decrease in most habitat patches.
Nonetheless, we focused on adult tree community (DBH >
10cm), which could partly explain the observed delay in com-
munity response to immigration—extinction dynamics. Finally,
further habitat reduction and isolation may reduce this delay by
accelerating local extinctions (Haddad et al. 2015).

Intertwined effects of landscape structure on
environmental filtering

Niche-based mechanisms encompass environmental filtering,
that can be of various type including stabilizing or disrup-
tive (Loranger et al. 2018), and competitive interactions, that
can drive limiting similarity (Abrams 1983). While we only
considered stabilizing filters in our study (i.e. gaussian fil-
ters), our approach allowed us to identify non-random varia-
tions of functional optimums and filtering intensity related
to landscape metrics. As suggested by the posterior predic-
tive checks, our model could overestimate filtering intensity
in communities with high trait variance, which could result
from the multiplicative nature of the gaussian filtering func-
tion. Although we were able to distinguish the effects of past
and present landscape structure on assembly processes, inde-
pendent effects of distance to edge, patch area and habitat
amount on environmental filtering were generally weak or not
discernable, highlighting some interdependence. In addition,
these joint effects of landscape metrics on environmental fil-
tering were weaker or absent in forest interior. Confounding
effects of edge vicinity and habitat area has already been
reported in highly fragmented landscapes (Ewers et al. 2007,
Didham et al. 2012, Ibanez et al. 2017b). Indeed, distance to
edges geometrically decreases along with patch size, leading
to cumulative edge effects (Laurance et al. 2011). Thus, we
hypothesize that the interdependence between the effects of
patch area and distance to edge reflects a pervasive influence
of edge effects in small patches.

Edge-related environmental filtering at the forefront
of community changes

In tropical forests, edge vicinity is known to influence abiotic
conditions (Laurance et al. 2002, Broadbent et al. 2008), and
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then to entail shifts in community composition (Harper et al.
2005, Laurance et al. 2006). However, the underlying niche-
based processes have rarely been explicitly linked to trait-
based ecological strategies (Magnago et al. 2014, Benchimol
and Peres 2015). Our study demonstrates that edge effects
directly impact the nature and the strength of trait-based
environmental filtering in communities, by driving shifts in
species selection with respect to distinct ecological dimen-
sions. In addition, we showed that landscape changes slowly
influence immigration—extinction dynamics, while edge-
effect immediately determine establishment success and per-
sistence of species.

Edge vicinity entails modifications in forest abiotic con-
ditions, including increasing drought intensity, temperature,
light availability and wind disturbance. These modifications
entail increasing tree damages and mortality (Laurance et al.
2011, Magnago et al. 2015), and more open canopy closer
to the edge (Harper et al. 2005). Rapid increase in abun-
dance of pioneer species can results from edge-mediated envi-
ronmental changes in South America (Laurance et al. 2000,
Magnago et al. 2014, Benchimol and Peres 2015). Our results
highlight that edge-mediated shifts in community composi-
tion reflect trait-based filtering of species with respect to their
position along a basic acquisitive—conservative ecological
axis. Indeed, species with light-demanding, acquisitive strate-
gies (high specific leaf area, low leaf dry-matter content) were
favored in communities located near recent edges, suggesting
that such compositional shift occurs quickly after edge cre-
ation, as suggested by Laurance et al. (2006).

Furthermore, we found that decreasing distance to edge
favored species with thicker bark and increased filtering
intensity on bark thickness. Our results thus provide strong
support for an important role of stem protection in species
establishment and survival in communities near the edge.
One consequence of forest fragmentation and edge vicinity
is increasing exposure to fire (Cochrane 2003, Laurance et al.
2011). Edge-related fire disturbance has been reported to
increase tree mortality (Brando et al. 2014), and to impact
tree community composition (Michalski et al. 2007). As
bark thickness has a key role in species resistance to fire
(Hoffmann et al. 2009, Pausas 2015, Pellegrini et al. 2017),
fire regime can have substantial influence on species filtering
in the studied landscape. Nevertheless, greater herbivory and
mechanic injuries at the edge could also favor species with
thick bark (Rosell 2016). In addition, filtering related to bark
thickness depended on both present and past landscape, sug-
gesting both rapid and persistent influences of edge vicinity
after landscape changes.

Conversely, we found weak influence of distance to edge
on environmental filtering along the drought resistance axis,
with more drought-resistance species (i.e. species with denser
wood and smaller leaves) favored near the edge. While edge
proximity favored acquisitive species, drought resistance was
also involved in species survival near the edge. Indeed, edge
proximity is known to increase temperature and drought
intensity (Harper et al. 2005, Ibanez et al. 2013). However,
these effects are expected to be weaker in dry forests than



in rainforests (Arroyo-Rodriguez et al. 2017). In our study,
topographical heterogeneity mainly influenced species fil-
tering depending on hydraulic strategies, as suggested by
Jucker et al. (2018) and Blanchard et al. (2019). Thus, local
community composition not only depends on landscape
structure and edge effects but also on habitat heterogeneity
within patches.

Conclusion

Our study suggests that temporal and spatial variations in
landscape structure influence both niche-based and neutral
mechanisms of community assembly in tropical tree commu-
nities. However, the resulting impacts on community com-
position differ in space and time. On one hand, our results
suggest that landscape-level changes slowly impact immigra-
tion—extinction dynamics, entailing a slow decrease in diver-
sity along with an extinction debt following habitat loss and
isolation. On the other hand, edge creation locally modifies
environmental filtering and entails rapid and directional shifts
in community composition through the selection of species
with edge-adapted ecological strategies. Our study highlights
the need to develop approaches that encompass trait-based
ecology, ecological modelling, as well as spatial and historical
data to better understand and predict how habitat loss and
fragmentation can impact biodiversity dynamics in space and
time. This is particularly relevant in landscapes with highly
reduced habitat density, which are a priority in conservation
strategies (Vellend et al. 2013).
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