A. Agangi, A. Hofmann, B. Eickmann, and J. Marin-carbonne, , 2019.

, Mesoarchaean gold mineralisation in the barberton greenstone belt: A review, the archaean geology of the Kaapvaal Craton, pp.171-184

A. Agangi, A. Hofmann, B. Eickmann, J. Marin-carbonne, and S. M. Reddy, An atmospheric source of S in Mesoarchaean structurally-controlled gold mineralisation of the Barberton Greenstone Belt, Precambrian Research, vol.285, pp.10-20, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01407404

C. Archer and D. Vance, Coupled Fe and S isotope evidence for Archean microbial Fe (III) and sulfate reduction, Geology, vol.34, pp.153-156, 2006.

N. Bassim, K. Scott, and L. A. Giannuzzi, Recent advances in focused ion beam technology and applications, MRS Bulletin, vol.39, pp.317-325, 2014.

B. L. Beard, C. M. Johnson, L. Cox, H. Sun, K. H. Nealson et al., Iron isotope biosignatures, Science, vol.285, pp.1889-1892, 1999.

J. S. Berg, D. Jézéquel, A. Duverger, D. Lamy, C. Laberty-robert et al., Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin, PLoS ONE, vol.14, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02066354

M. Brasier, O. Green, J. Lindsay, and A. Steele, Earth's oldest, 2004.

. Ga, Fossils and the Early Eden hypothesis': Questioning the evidence, Origins of Life and Evolution of the Biosphere, vol.34, pp.257-269

V. Busigny, J. Marin-carbonne, E. Muller, P. Cartigny, C. Rollion-bard et al., Iron and sulfur isotope constraints on redox conditions associated with the 3.2 Ga barite deposits of the Mapepe Formation, Geochimica Et Cosmochimica Acta, vol.210, pp.247-266, 2017.

V. Busigny, N. J. Planavsky, D. Jézéquel, S. Crowe, P. Louvat et al., Iron isotopes in an Archean ocean analogue, Geochimica Et Cosmochimica Acta, vol.133, pp.443-462, 2014.

G. R. Byerly, A. Kröner, D. R. Lowe, W. Todt, and M. M. Walsh, Prolonged magmatism and time constraints for sediment deposition in the early Archean Barberton greenstone belt: Evidence from the Upper Onverwacht and Fig Tree groups, Precambrian Research, vol.78, pp.73-82, 1996.

D. Canfield, Biogeochemistry of sulfur isotopes, Reviews in Mineralogy and Geochemistry, vol.43, pp.607-636, 2001.

P. R. Craddock and N. Dauphas, Iron and carbon isotope evidence for microbial iron respiration throughout the Archean, Earth and Planetary Science Letters, vol.303, pp.121-132, 2011.

H. A. Crosby, E. E. Roden, C. M. Johnson, and B. L. Beard, The mechanisms of iron isotope fractionation produced during dissimilatory Fe (III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens, Geobiology, vol.5, pp.169-189, 2007.

S. A. Crowe, G. Paris, S. Katsev, C. Jones, S. Kim et al., Sulfate was a trace constituent of Archean seawater, Science, vol.346, pp.735-739, 2014.

A. D. Czaja, C. M. Johnson, B. L. Beard, J. L. Eigenbrode, K. H. Freeman et al., Iron and carbon isotope evidence for ecosystem and environmental diversity in the ~2.7 to 2.5 Ga Hamersley Province, Western Australia. Earth and Planetary Science Letters, vol.292, pp.170-180, 2010.

A. D. Czaja, C. M. Johnson, B. L. Beard, E. E. Roden, W. Li et al., Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland), Earth and Planetary Science Letters, vol.363, pp.192-203, 2013.

N. Dauphas, S. G. John, and O. Rouxel, Iron isotope systematics, Reviews in Mineralogy and Geochemistry, vol.82, pp.415-510, 2017.

C. E. De-ronde, M. J. De-wit, and E. T. Spooner, Early Archean (> 3.2 Ga) Fe-oxide-rich, hydrothermal discharge vents in the Barberton greenstone belt, vol.106, pp.86-104, 1994.

N. B. Decker, G. R. Byerly, M. T. Stiegler, D. R. Lowe, and E. Stefurak, High resolution tephra and U/Pb chronology of the 3.33-3.26 Ga Mendon Formation, Precambrian Research, vol.261, pp.54-74, 2015.

T. Ding, S. Valkiers, H. Kipphardt, P. De-bievre, P. Taylor et al., Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur, Geochimica Et Cosmochimica Acta, vol.65, issue.01, pp.611-612, 2001.

N. Drabon, A. Gali?, P. R. Mason, and D. R. Lowe, Provenance and tectonic implications of the 3.28-3.23 Ga Fig Tree Group, vol.325, pp.1-19, 2019.

Y. Endo, S. O. Danielache, and Y. Ueno, Total pressure dependence of sulfur mass-independent fractionation by SO2 photolysis, Geophysical Research Letters, vol.46, pp.483-491, 2019.

J. Farquhar, H. Bao, and M. Thiemens, Atmospheric influence of Earth's Earliest Sulfur Cycle, Science, vol.289, pp.756-758, 2000.

J. Farquhar, J. Cliff, A. L. Zerkle, A. Kamyshny, S. W. Poulton et al., Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes, Proceedings of the National Academy of Sciences, vol.110, pp.17638-17643, 2013.

J. Farquhar, N. Wu, D. E. Canfield, and H. Oduro, Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits, Economic Geology, vol.105, pp.509-533, 2010.

D. A. Fike, A. S. Bradley, and C. V. Rose, Rethinking the ancient sulfur cycle, Annual Review of Earth and Planetary Sciences, vol.43, pp.593-622, 2015.

T. M. Flynn, E. J. O'loughlin, B. Mishra, T. J. Dichristina, and K. M. Kemner, Sulfur-mediated electron shuttling during bacterial iron reduction, Science, vol.344, pp.1039-1042, 2014.

A. J. Frierdich, O. Nebel, B. L. Beard, and C. M. Johnson, Iron isotope exchange and fractionation between hematite (?-Fe2O3) and aqueous Fe(II): A combined three-isotope and reversal-approach to equilibrium study, Geochimica Et Cosmochimica Acta, vol.245, pp.207-221, 2019.

A. Gali?, P. R. Mason, J. M. Mogollón, M. Wolthers, P. Z. Vroon et al., Pyrite in a sulfate-poor Paleoarchean basin was derived predominantly from elemental sulfur: Evidence from 3.2 Ga sediments in the, 2016.

, Craton. Chemical Geology, vol.12, p.6, 2016.

M. Gomes, D. Fike, K. Bergmann, C. Jones, and A. Knoll, Environmental insights from high-resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures, Geobiology, vol.16, pp.17-34, 2018.

D. D. Gregory, R. R. Large, J. A. Halpin, E. L. Baturina, T. W. Lyons et al., Trace element content of sedimentary pyrite in black shales, Economic Geology, vol.110, pp.1389-1410, 2015.

R. Guilbaud, I. B. Butler, and R. M. Ellam, Abiotic pyrite formation produces a large Fe isotope fractionation, Science, vol.332, pp.1548-1551, 2011.

B. Guy, S. Ono, J. Gutzmer, A. Kaufman, Y. Lin et al., A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. Precambrian Research, vol.216, pp.208-231, 2012.

I. Halevy, Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment, Proceedings of the National Academy of Sciences, vol.110, pp.17644-17649, 2013.

C. Harman, A. Pavlov, D. Babikov, and J. Kasting, Chain formation as a mechanism for mass-independent fractionation of sulfur isotopes in the Archean atmosphere, Earth and Planetary Science Letters, vol.496, pp.238-247, 2018.

S. Hegyi and I. Halevy, Understanding microscale isotopic patterns in pyrite using a two dimensional reaction diffusion model, AGU Fall Meeting, pp.13-15, 2019.

A. Heimann, C. M. Johnson, B. L. Beard, J. W. Valley, E. E. Roden et al., Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments, Earth and Planetary Science Letters, vol.294, pp.8-18, 2010.

A. Hofmann, The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: Implications for tectonic, hydrothermal and surface processes during mid-Archaean times, Precambrian Research, vol.143, pp.23-49, 2005.

A. Hofmann and R. Bolhar, Carbonaceous cherts in the barberton greenstone belt and their significance for the study of early life in the archean record, Astrobiology, vol.7, pp.355-388, 2007.

C. M. Johnson and B. L. Beard, Biogeochemical cycling of iron isotopes, Science, vol.309, pp.1025-1027, 2005.

C. M. Johnson, B. L. Beard, and E. E. Roden, The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth, Annual Review of Earth and Planetary Sciences, vol.36, pp.457-493, 2008.

C. M. Johnson, J. M. Ludois, B. L. Beard, N. J. Beukes, and A. Heimann, Iron formation carbonates: Paleoceanographic proxy or recorder of microbial diagenesis?, Geology, vol.41, pp.1147-1150, 2013.

D. T. Johnston, Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle, Earth-Science Reviews, vol.106, pp.161-183, 2011.

D. T. Johnston, J. Hemingway, B. C. Gill, and I. Halevy, The information encoded in the isotopic composition of sedimentary sulfide, AGU Fall Meeting, pp.11-2245, 2019.

S. Kamo and D. Davis, Reassessment of Archean crustal development in the Barberton Mountain Land, South Africa, based on U-Pb dating, Tectonics, vol.13, pp.167-192, 1994.

K. O. Konhauser, N. J. Planavsky, D. S. Hardisty, L. J. Robbins, T. J. Warchola et al., , 2017.

, Earth-Science Reviews, vol.172, pp.140-177

A. Kröner, E. Hegner, J. Wendt, and G. Byerly, The oldest part of the Barberton granitoid-greenstone terrain, South Africa: Evidence for crust formation between 3.5 and 3.7 Ga, Precambrian Research, vol.78, pp.105-124, 1996.

J. Labidi, P. Cartigny, and M. G. Jackson, Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope 'mantle array' in chemical geodynamics, Earth and Planetary Science Letters, vol.417, pp.28-39, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01448198

R. R. Large, V. V. Maslennikov, F. Robert, L. V. Danyushevsky, and Z. Chang, Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log Deposit, Economic Geology, vol.102, pp.1233-1267, 2007.

Y. Li, K. O. Konhauser, A. Kappler, and X. Hao, Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations, Earth and Planetary Science Letters, vol.361, pp.229-237, 2013.

D. J. Lonergan, H. L. Jenter, J. D. Coates, E. J. Phillips, T. M. Schmidt et al., Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria, Journal of Bacteriology, vol.178, pp.2402-2408, 1996.

D. R. Lovley, Dissimilatory metal reduction: From early life to bioremediation, ASM News, vol.68, pp.231-237, 2002.

D. R. Lowe and G. R. Byerly, Stratigraphy of the west-central part of the Barberton Greenstone Belt, vol.329, pp.1-36, 1999.

D. R. Lowe and G. R. Byerly, An overview of the geology of the Barberton greenstone belt and vicinity: Implications for early crustal development, Developments in Precambrian Geology, vol.15, pp.481-526, 2007.

G. Luo, C. K. Junium, L. R. Kump, J. Huang, C. Li et al., Shallow stratification prevailed for ~1700 to ~1300 Ma ocean: Evidence from organic carbon isotopes in the North China Craton, Earth and Planetary Science Letters, vol.400, pp.219-232, 2014.

T. W. Lyons, C. T. Reinhard, and N. J. Planavsky, The rise of oxygen in Earth's early ocean and atmosphere, Nature, vol.506, p.307, 2014.

M. Mansor and M. S. Fantle, A novel framework for interpreting pyrite-based Fe isotope records of the past, Geochimica Et Cosmochimica Acta, vol.253, pp.39-62, 2019.

J. Marin-carbonne, C. Rollion-bard, A. Bekker, O. Rouxel, A. Agangi et al., Coupled Fe and S isotope variations in pyrite nodules from Archean shale, Earth and Planetary Science Letters, vol.392, pp.67-79, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01765317

J. Marin-carbonne, C. Rollion-bard, and B. Luais, In-situ measurements of iron isotopes by SIMS: MC-ICP-MS intercalibration and application to a magnetite crystal from the Gunflint chert, Chemical Geology, vol.285, pp.50-61, 2011.

A. Montinaro, H. Strauss, P. R. Mason, D. Roerdink, C. Münker et al., Paleoarchean sulfur cycling: Multiple sulfur isotope constraints from the Barberton Greenstone Belt, South Africa. Precambrian Research, vol.267, pp.311-322, 2015.

É. Muller, P. Philippot, C. Rollion-bard, P. Cartigny, N. Assayag et al., Primary sulfur isotope signatures preserved in high-grade Archean barite deposits of the Sargur Group, Dharwar Craton, India. Precambrian Research, vol.295, pp.38-47, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01636185

M. Nishizawa, S. Maruyama, T. Urabe, N. Takahata, and Y. Sano, Micro-scale (1.5 µm) sulphur isotope analysis of contemporary and early Archean pyrite, Rapid Communications in Mass Spectrometry, vol.24, pp.1397-1404, 2010.

M. Noel, Levée dz log d'une carotte de forage et analyses minéralogiques et isotopiques préliminaires (Formation de Fig Tree, 3.2 Ga Barberton, Afrique du Sud), 2009.

H. Oduro, B. Harms, H. O. Sintim, A. J. Kaufman, G. Cody et al., Evidence of magnetic isotope effects during thermochemical sulfate reduction, Proceedings of the National Academy of Sciences, vol.108, pp.17635-17638, 2011.

S. Ono, B. Wing, D. Johnston, J. Farquhar, and D. Rumble, Massdependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles, Geochimica Et Cosmochimica Acta, vol.70, pp.2238-2252, 2006.

X. Peng, X. Zhu, F. Shi, B. Yan, F. Zhang et al., A deep marine organic carbon reservoir in the non-glacial Cryogenian ocean (Nanhua Basin, South China) revealed by organic carbon isotopes, Precambrian Research, vol.321, pp.212-220, 2018.

P. Philippot, M. Van-kranendonk, M. Van-zuilen, K. Lepot, N. Rividi et al., Early traces of life investigations in drilling Archean hydrothermal and sedimentary rocks of the Pilbara Craton, Comptes Rendus Palevol, vol.8, pp.649-663, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00549183

P. Philippot, M. Van-zuilen, K. Lepot, C. Thomazo, J. Farquhar et al., Early Archaean microorganisms preferred elemental sulfur, not sulfate, Science, vol.317, pp.1534-1537, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00315304

P. Philippot, M. Van-zuilen, and C. Bard, Variations in atmospheric sulphur chemistry on early Earth linked to volcanic activity, Nature Geosciences, vol.5, pp.668-674, 2012.

N. Planavsky, O. J. Rouxel, A. Bekker, A. Hofmann, C. T. Little et al., Iron isotope composition of some Archean and Proterozoic iron formations, Geochimica Et Cosmochimica Acta, vol.80, pp.158-169, 2012.

V. B. Polyakov, E. G. Osadchii, M. V. Voronin, V. O. Osadchii, L. V. Sipavina et al., Iron and Sulfur Isotope Factors of Pyrite: Data from Experimental Mössbauer Spectroscopy and Heat Capacity, Geochemistry International, vol.57, issue.4, pp.369-383, 2019.

R. Raiswell, K. Whaler, S. Dean, M. L. Coleman, and D. E. Briggs, A simple three dimensional model of diffusion with precipitation applied to localised pyrite formation in framboids, fossils and detrital iron minerals, Marine Geology, vol.113, issue.93, p.90151, 1993.

M. R. Raven, A. L. Sessions, W. W. Fischer, and J. F. Adkins, Sedimentary pyrite ?34S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur, Geochimica Et Cosmochimica Acta, vol.186, pp.120-134, 2016.

D. Rickard, Sulfidic sediments and sedimentary rocks, 2012.

D. Rickard and G. W. Luther, Chemistry of iron sulfides, Chemical Reviews, vol.107, pp.514-562, 2007.

D. L. Roerdink, P. R. Mason, M. J. Whitehouse, and F. M. Brouwer, Reworking of atmospheric sulfur in a Paleoarchean hydrothermal system at Londozi, Precambrian Research, vol.280, pp.195-204, 2016.

D. L. Roerdink, P. R. Mason, M. J. Whitehouse, and T. Reimer, High-resolution quadruple sulfur isotope analyses of 3.2 Ga pyrite from the Barberton Greenstone Belt in South Africa reveal distinct environmental controls on sulfide isotopic arrays, Geochimica Et Cosmochimica Acta, vol.117, pp.203-215, 2013.

J. M. Rolison, C. H. Stirling, R. Middag, M. Gault-ringold, E. George et al., Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue, Earth and Planetary Science Letters, vol.488, pp.1-13, 2018.

O. J. Rouxel, A. Bekker, and K. J. Edwards, Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state, Science, vol.307, pp.1088-1091, 2005.

O. Rouxel, E. Sholkovitz, M. Charette, and K. J. Edwards, Iron isotope fractionation in subterranean estuaries, Geochimica et Cosmochimica Acta, vol.72, issue.14, pp.3413-3430, 2008.

M. Schidlowski, J. Hayes, and I. Kaplan, Isotopic inferences of ancient biochemistries-Carbon, sulfur, hydrogen, and nitrogen, 1983.

J. D. Schiffbauer and S. Xiao, Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossil ultrastructures: A new view of complexity in early Eukaryotic organisms, Palaios, vol.24, pp.616-626, 2009.

J. W. Schopf, A. B. Kudryavtsev, A. D. Czaja, and A. B. Tripathi, Evidence of Archean life: Stromatolites and microfossils, Precambrian Research, vol.158, pp.141-155, 2007.

S. Severmann, C. M. Johnson, B. L. Beard, C. R. German, H. N. Edmonds et al., The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36 14? N, Earth and Planetary Science Letters, vol.225, issue.1-2, pp.63-76, 2004.

Y. Shen, R. Buick, and D. E. Canfield, Isotopic evidence for microbial sulphate reduction in the early Archaean era, Nature, vol.410, pp.77-81, 2001.

D. D. Syverson, D. M. Borrok, and W. E. Seyfried, Experimental determination of equilibrium Fe isotopic fractionation between pyrite and dissolved Fe under hydrothermal conditions, Geochimica et Cosmochimica Acta, vol.122, pp.170-183, 2013.

B. Thamdrup, K. Finster, J. W. Hansen, and F. Bak, Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese, Applied and Environmental Microbiology, vol.59, pp.101-108, 1993.

M. H. Thiemens and M. Lin, Use of isotope effects to understand the present and past of the atmosphere and climate and track the origin of life, Angewandte Chemie International Edition, 2019.

M. M. Tice, B. C. Bostick, and D. R. Lowe, Thermal history of the 3.5-3.2 Ga Onverwacht and Fig Tree Groups, Geology, vol.32, pp.37-40, 2004.

M. M. Tice and D. R. Lowe, The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert, Earth-Science Reviews, vol.76, pp.259-300, 2006.

E. J. Trower and D. R. Lowe, Sedimentology of the ~3.3 Ga upper Mendon Formation, Precambrian Research, vol.281, pp.473-494, 2016.

Y. Ueno, S. Ono, D. Rumble, and S. Maruyama, Quadruple sulfur isotope analysis of ca. 3.5Ga Dresser Formation: New evidence for microbial sulfate reduction in the early Archean, Geochimica Et Cosmochimica Acta, vol.72, pp.5675-5691, 2008.

Y. Ueno, H. Yurimoto, H. Yoshioka, T. Komiya, and S. Maruyama, Ion microprobe analysis of graphite from ca. 3.8 Ga metasediments, Isua supracrustal belt, West Greenland: Relationship between Metamorphism and Carbon Isotopic Composition, Geochimica Et Cosmochimica Acta, vol.66, pp.1257-1268, 2002.

M. A. Van-zuilen, M. Chaussidon, C. Rollion-bard, and B. Marty, Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: Isotopic, chemical and structural characteristics of individual microstructures, Geochimica Et Cosmochimica Acta, vol.71, pp.655-669, 2007.

M. Vargas, K. Kashefi, E. L. Blunt-harris, and D. R. Lovley, Microbiological evidence for Fe (III) reduction on early Earth, Nature, vol.395, pp.65-67, 1998.

M. Viljoen and R. Viljoen, Archaean vulcanicity and continental evolution in the Barberton region, Transvaal, 1970.

. Gass, African magmatism and tectonics, pp.27-39

M. W. Walsh, Microfossils and possible microfossils from the early archean onverwacht group, Precambrian Research, vol.54, pp.271-293, 1992.

M. M. Walsh and D. R. Lowe, Modes of accumulation of carbonaceous matter in the early Archean: A petrographic and geochemical study of the carbonaceous cherts of the Swaziland Supergroup, pp.115-132, 1999.

M. J. Whitehouse and C. M. Fedo, Microscale heterogeneity of Fe isotopes in >3.71 Ga banded iron formation from the Isua Greenstone Belt, southwest Greenland, Geology, vol.35, pp.719-722, 2007.

R. Wirth, Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale, Chemical Geology, vol.261, pp.217-229, 2009.

K. Yoshiya, Y. Sawaki, T. Shibuya, S. Yamamoto, T. Komiya et al., In-situ iron isotope analyses of pyrites from 3.5 to 3.2 Ga sedimentary rocks of the Barberton Greenstone Belt, Kaapvaal Craton. Chemical Geology, vol.403, pp.58-73, 2015.

A. L. Zerkle, C. H. House, and S. L. Brantley, Biogeochemical signatures through time as inferred from whole microbial genomes, 2005.

, American Journal of Science, vol.305, pp.467-502

I. Zhelezinskaia, A. J. Kaufman, J. Farquhar, and J. Cliff, Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction, Science, vol.346, pp.742-744, 2014.

J. Marin-carbonne, V. Busigny, and J. Miot, Situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation, vol.00, pp.1-20, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02510783