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Abstract
On the basis of phylogenetic studies and laboratory cultures, it has been proposed 
that the ability of microbes to metabolize iron has emerged prior to the Archaea/
Bacteria split. However, no unambiguous geochemical data supporting this claim have 
been put forward in rocks older than 2.7–2.5 giga years (Gyr). In the present work, we 
report in situ Fe and S isotope composition of pyrite from 3.28- to 3.26-Gyr-old cherts 
from the upper Mendon Formation, South Africa. We identified three populations of 
microscopic pyrites showing a wide range of Fe isotope compositions, which cluster 
around two δ56Fe values of −1.8‰ and +1‰. These three pyrite groups can also be 
distinguished based on the pyrite crystallinity and the S isotope mass-independent 
signatures. One pyrite group displays poorly crystallized pyrite minerals with positive 
Δ33S values > +3‰, while the other groups display more variable and closer to 0‰ 
Δ33S values with recrystallized pyrite rims. It is worth to note that all the pyrite groups 
display positive Δ33S values in the pyrite core and similar trace element compositions. 
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1  | INTRODUC TION

The identification of early traces of life in the geological record is 
challenging due to the scarcity and complex post-depositional his-
tory of early Archean rocks. Given their micrometer size and chemi-
cal composition (dominated by organic molecules prone to oxidation), 
the first forms of life, Archaea and Bacteria, did not leave unam-
biguous fossils (Brasier, Green, Lindsay, & Steele, 2004 cf.; Schopf, 
Kudryavtsev, Czaja, & Tripathi, 2007). Biominerals associated with 
residual organic matter are among the best evidence of ancient mi-
crobial activity (Brasier et al., 2004; Schopf et al., 2007). Pyrite (FeS2) 
is one of them and can be found in some of the oldest sedimentary 
rocks on earth. Pyrite has been extensively studied for reconstruct-
ing past environmental conditions of the early earth, especially at-
mospheric composition. Since the canonical work of Farquhar and 
colleagues and the discovery of mass-independent fractionated sul-
fur (S-MIF) isotope signatures in Archean pyrite (Farquhar, Bao, & 
Thiemens, 2000), it is well established that Archean pyrites record 
atmospheric sulfur cycle. S-MIF signatures are expressed as Δ33S, a 
deviation from a mass-dependent fractionation relationship, which 
can be expressed as (Farquhar et al., 2000; Ono, Wing, Johnston, 
Farquhar, & Rumble, 2006) follows:

where δxS = ((xS/32S)sample/(xS/32S)reference − 1) × 1,000 (‰) (x = 33, and 
34) and the reference is Canyon Diablo Troilite (V-CDT, Ding et al., 
2001). Photochemical reactions of dissociation of volcanic SO2 in an 
anoxic atmosphere can produce both elemental sulfur and sulfate 
aerosols with positive and negative Δ33S values, respectively. Although 
alternative views exist (Oduro et al., 2011), it is generally acknowl-
edged that O2 levels below 10–5 present atmospheric level (PAL) are 
critical for the production and preservation of S-MIF in the geologi-
cal record (Farquhar et al., 2000; Harman, Pavlov, Babikov, & Kasting, 
2018; Thiemens & Lin, 2019; Ueno, Ono, Rumble, & Maruyama, 2008; 
Zhelezinskaia, Kaufman, Farquhar, & Cliff, 2014). Both photochemi-
cal experiments and studies of sedimentary sulfides and sulfate have 

then confirmed that Archean sulfate has negative Δ33S values while 
elementary sulfur has positive Δ33S values (Endo, Danielache, & Ueno, 
2019; Farquhar et al., 2000; Farquhar, Wu, Canfield, & Oduro, 2010; 
Halevy, 2013; Harman et al., 2018; Muller et al., 2017; Ueno et al., 
2008; Zhelezinskaia et al., 2014). Sulfur in archean sedimentary pyrite 
may predominantly originate either from a sulfate-derived sulfide pool 
(e.g., following microbial sulfate reduction) or from an elemental sulfur 
derived pool of polysulfides that may further react with iron sulfide 
precursors (Farquhar et al., 2013). Indeed diagenetic pyrite formation 
pathways are complex and involve various precursors either molecu-
lar (including elemental sulfur and polysulfides) or mineral (including 
FeS mackinawite and Fe3S4 greigite; Rickard, 2012). Reconciliating S 
and Fe isotope compositions of sulfide with their precise diagenetic 
pathway is still complex as some large isotopic discrepancies between 
pyrite mineral and the porewater composition have been observed in 
modern environments (Gomes, Fike, Bergmann, Jones, & Knoll, 2018; 
Raven, Sessions, Fischer, & Adkins, 2016). However, it is well estab-
lished that sedimentary pyrite can record past microbial metabolisms 
(Fike, Bradley, & Rose, 2015). While pyrite may form secondarily during 
late diagenesis or metamorphism following abiotic pathways, several 
microbial metabolisms have also been proposed to be involved in the 
formation of early diagenetic pyrite. These include bacterial sulfate 
reduction, sulfur reduction and disproportionation, and dissimilatory 
iron reduction (Rickard, 2012). These various metabolic processes can 
potentially be traced and distinguished from abiotic routes using iron 
and sulfur isotope compositions recorded in pyrite (Beard et al., 1999; 
Canfield, 2001; Johnson, Beard, & Roden, 2008; Johnston, 2011).

For instance, the oldest traces of bacterial sulfate reduction and 
sulfur disproportionation were evidenced from S isotope composition 
of pyrite in 3.47-Gyr-old barite deposits from North Pole, Australia 
(Philippot et al., 2007; Shen, Buick, & Canfield, 2001). Microbial dis-
similatory iron reduction (DIR, a form of respiration where ferric iron 
is used as an electron acceptor) also plays a role in Fe sulfide forma-
tion as it promotes the reduction in ferric iron minerals into dissolved 
ferrous iron, which can then react with dissolved sulfide to precipi-
tate mackinawite (FeS), a key precursor of pyrite (Rickard, 2012). DIR 
imparts a strong Fe isotope fractionation, enriching the product in 
the light isotope by ~3‰ (Crosby, Roden, Johnson, & Beard, 2007). 

Δ33S =δ33S−

((
1+δ34S∕1000

)0.5152

−1

)
×1000
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We therefore suggest that two of the pyrite groups have experienced late fluid cir-
culations that have led to partial recrystallization and dilution of S isotope mass-
independent signature but not modification of the Fe isotope record. Considering 
the mineralogy and geochemistry of the pyrites and associated organic material, we 
conclude that this iron isotope systematic derives from microbial respiration of iron 
oxides during early diagenesis. Our data extend the geological record of dissimilatory 
iron reduction (DIR) back more than 560 million years (Myr) and confirm that micro-
organisms closely related to the last common ancestor had the ability to reduce Fe(III).
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This light Fe isotope signature was previously used as a proxy of DIR 
in Archean rocks as old as 2.7–2.5 Gyr (Archer & Vance, 2006; Czaja 
et al., 2010; Heimann et al., 2010; Johnson, Ludois, Beard, Beukes, 
& Heimann, 2013; Nishizawa, Maruyama, Urabe, Takahata, & Sano, 
2010) and even as old as 3.8 Gyr (Craddock & Dauphas, 2011; Czaja 
et al., 2013). However, because an unambiguous interpretation of 
the 3.8 Gyr signals is hampered by the strong metamorphism expe-
rienced by early Archean rocks (Ueno, Yurimoto, Yoshioka, Komiya, 
& Maruyama, 2002), the Fe isotope signature recorded in 2.7 Gyr 
sediments can be considered as the earliest firm evidence for DIR 
(Czaja et al., 2013). Consistently, DIR may have evolved only after 
the spread of oxygen photosynthesis (Czaja et al., 2013).

In the present work, we analyzed both Fe and S isotope com-
positions of individual pyrite crystals in 3.28–3.26 Gyr sedimentary 
rocks from the well-preserved Mendon Formation (South Africa). 
Together with high-resolution mineralogy and trace element con-
centrations, the data are used to constrain the mechanisms of pyrite 
formation and evaluate in particular the impact of diagenesis and 
metamorphism on pyrite composition.

2  | SAMPLES AND METHODS

2.1 | Geological context and samples description

The 3.6–3.2 Ga Barberton Greenstone Belt is located in the east of 
the Kaapvaal Craton, South Africa. It consists of mafic, ultramafic, 
and felsic volcanic rocks alternating with sedimentary successions, 
termed the Swaziland Supergroup. Three main lithostratigraphic 
units compose the Swaziland Supergroup. These are the Onverwacht 
Group, the Fig Tree Group, and the Moodies Group, in ascending 
stratigraphic order (Lowe & Byerly, 2007; Viljoen & Viljoen, 1970).

The 3550- to 3260-Myr-old Onverwacht Group (Kröner, Hegner, 
Wendt, & Byerly, 1996) is composed of six units: Sandspruit, 
Theespruit, Komati, Hooggenoeg, Kromberg, and Mendon Formations 
(Lowe & Byerly, 1999). The Sandpruit, Theespruit, Hooggenoeg, and 
Kromberg Formations consist of basaltic, komatiitic, and felsic volca-
nic rocks and minor cherts. The Komati and Mendon Formations are 
composed mainly of komatiites and minor cherts. The central green-
stone belt has been metamorphosed in greenschist facies conditions 
(i.e., ~350°C; Tice, Bostick, & Lowe, 2004). The Fig Tree and Moodies 
Groups consist of sandstone, shale, chert, banded iron formation, and 
felsic volcanic rocks, which have been dated at ca. 3,280–3,216 Myr 
(Byerly, Kröner, Lowe, Todt, & Walsh, 1996; Drabon, Galić, Mason, 
& Lowe, 2019; Hofmann, 2005; Kamo & Davis, 1994; Kröner et al., 
1996; de Ronde, Wit, & Spooner, 1994).

The samples analyzed in this study come from the Barberton 
Drilling Project (BBDP2) drill core (Figure 1), located at 25°54′24.8″S 
and 31°03′23.9″E, hole azimuth 288° and dip 50° (Philippot et al., 
2009). About 100 m of the uppermost Mendon Formation was re-
covered. The Mendon Formation was deposited between 3.34 
and 3.26 Gyr and has been studied in detail (Busigny et al., 2017; 
Galić et al., 2016; Hofmann & Bolhar, 2007; Lowe & Byerly, 1999; 

Montinaro et al., 2015; Philippot et al., 2009; Philippot, Zuilen, & 
Rollion-Bard, 2012; Tice et al., 2004; Trower & Lowe, 2016). The 
sequence consists of five volcanic cycles, termed Mv1 through 
Mv5, which are each capped by thin chert sequences, termed 
Mc1 through Mc5 (Byerly et al., 1996). In the BBDP2 drill core, the 
Mendon Formation is composed of volcanic rocks, mostly komatiite 
and silicified komatiite of the Mv5 cycle, which are overlain by ~60 m 
of finely laminated cherts of the Mc5 cycle (Decker, Byerly, Stiegler, 
Lowe, & Stefurak, 2015). The base of the Mc5 sequence was dated at 
3.28 Gyr, and the top is marked by the S2 spherule layer that was de-
posited at 3.26 Gyr (Decker et al., 2015). Mc5 corresponds to a wide 
variety of chert, with mostly black chert and ferruginous gray chert, 
and minor amounts of black and white banded chert, banded ferru-
ginous chert, intraclast breccia and silicified green colored ash and 
accretionary lapilli (Trower & Lowe, 2016). The Mendon Formation 
was deposited during a period of local volcanic quiescence with 
slow sedimentation rates under quiet water settings (Lowe & Byerly, 
1999; Trower & Lowe, 2016).

Twelve samples were selected based on sulfide abundance; their 
name indicates the location (in meter) along the drill core (Table 1). 
Most samples correspond to black cherts composed of microcrys-
talline quartz and minor amounts of organic matter and iron carbon-
ates (Figure 2 and Table 1). The size of disseminated pyrites varies 
over a large range from 10 μm to 1 cm (Figure 2 and Table 1). The 
chert samples were affected by late fluid circulation, as illustrated 
by the presence of numerous quartz, carbonates, and chlorite veins 
linked to regional metamorphism (Busigny et al., 2017). However, 
primary sedimentary structures are well-preserved, with fine lam-
inations, especially in samples 114.30 and 114.33, which have expe-
rienced only limited fluid circulation overprint (Figure 2 and Table 1). 
Alteration phases are present as ganterite (barium-rich mica), chlo-
rite, and fuchsite. Minor phases of barite, iron oxide, nickel-rich iron 
oxide, and rutile are also present. Sulfides occur essentially as pyrite, 
but one sample (94.92) shows the presence of chalcopyrite and pent-
landite. One sample (160.12) represents altered komatiites in which 
spinifex texture has been preserved, with olivine pseudomorphed 
by ankerite, dolomite, quartz, fuchsite, ganterite, and small grains 
of barite (Figure 2). Sample 160.12 displays large (mm) pyrites and 
smaller (>100 μm) cubic pyrites. Sample 147.38 contains one large 
(mm) square pyrite with visible mineral (quartz and ankerite) inclu-
sions (Figure 2). Very small pyrites (<10 μm) are present in the chert 
matrix but were not studied here due to their small size compared 
with ion microprobe beam size.

2.2 | Methods

2.2.1 | SEM and TEM analyses

Scanning electron microscopy (SEM) and energy-dispersive X-ray 
spectrometry (EDS) were used to characterize the microstruc-
ture and chemistry of pyrite and its inside inclusions for subse-
quent in situ extraction using focused ion beam milling (FIB). 
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SEM observations were performed on a TESCAN VEGAII LSU at 
IMPMC with 15  kV accelerating voltage and a working distance 
of 15.4 mm according to the geometrical conditions required for 
EDS analyses on this microscope. SEM images were collected with 
both secondary (SE) and backscattered electrons (BSE) detectors. 
FIB ultrathin sections were extracted from different pyrite grains 
using an FEI Strata DB 235 at IEMN (Lille, France Schiffbauer & 

Xiao, 2009; Wirth, 2009). This extraction procedure maintains 
textural integrity and prevents shrinkage and deformation of mi-
croscale to nanoscale pores, even in the case of highly sensitive 
materials (Bassim, Scott, & Giannuzzi, 2014).

Transmission electron microscopy (TEM) analyses were per-
formed on FIB sections to characterize crystallographic orientation 
and textures of the pyrites. TEM observations were performed with 

F I G U R E  1   Geological map of the Barberton Greenstone Belt (from Busigny et al. 2017). The BBDP2 drill core is indicated by the red star 
and the samples location by yellow stars

TA B L E  1   Mineralogical description of the Mendon chert samples

Depth
Rock 
description

Primary 
sedimentary 
features Secondary veins

Pyrites

Morphology Size (μm) Inclusions Group

94.92 Black chert Yes 20% Euhedral 100–200 Qz, sid, mica B

95.41 Black chert Yes 30% Euhedral 100–300 Qz, mica, C org B

104.80 Black chert Yes 5% Cubic 1,000 Qz, Ank, C org A

104.83 Black chert Yes 5% Cubic 1,000 Qz, Ank, C org A and B

114.30 Black chert Yes <5% Aggregated 50–100 Qz, sid, C org. C

114.33 Black chert Yes <5% Aggregated 50–100 Qz, sid, C org C

135.55 Black chert No 50% Euhedral 50–1,000 Qz, Ank B

137.84 Black chert Yes 5% Euhedral 100– 1,000 Qz, sid A

139.80 Black and white 
chert

Yes 5% Euhedral 50–100 Qz C

147.38 White chert No 10% Euhedral 1,000 Qz, Ank B

160.12 Altered 
Komatiite

No 50% Eudedral 100–300 Qz, Ank, mica, 
rutile

A and B

Note: Qz for quartz, sid for siderite, Ank for ankerite, and C org for organic matter.
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JEOL 2100F field emission gun (FEG) microscopes (IMPMC—Paris, 
France, and IEMN—Lille, France) operating at 200  kV. Scanning 
transmission electron microscopy (STEM) Z-contrast imaging was 
performed using the high-angle annular dark field (HAADF) mode. 
High-resolution TEM (HRTEM) images were collected in the bright 
field mode. Selected-area diffraction (SAED) patterns were obtained 
on areas of interest.

2.2.2 | Trace element composition

The chemical composition of pyrite from 3 chert samples was inves-
tigated by Electron Probe Micro-Analyzer (EPMA) at UNIL. In large 
pyrite grains, EPMA traverses were performed to quantify the trace 
element content of pyrite using a 5 spectrometer-equipped JEOL JXA-
8530F. The operational conditions were 15 kV acceleration potential 

F I G U R E  2   Petrography images of the three groups of pyrites. Images show an optical photograph of the core (a, d, g), an optical 
photomicrograph of the thin section of each sample (b, e, h), and a SEM picture of the analyzed pyrite (c, f, i). The group A pyrite is 
exemplified by sample 104.80, the group B by sample 147.38, and the group C by sample 114.30. The core pictures show the importance of 
fluid circulations identified as quartz veins. We can also note the presence of thin laminations, with a little less fluid circulations in the case 
of sample 114.30. It is also worth to note that the pyrites occur in proximity to these fluid circulations. All the samples consist of chert with a 
majority of microquartz; however, samples 104.80 and 147.38 contain also more iron carbonate (ankerite) than sample 114.30. These cherts 
are rich in organic matter visible in the darkness of the matrix. The pyrites display different shapes but are mostly cubic. The SIMS spots are 
still visible on the images as well as some leftover of the gold coating. All the pyrites display inclusions of quartz and occasionally of organic 
matter
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difference, 40 nA beam current, and a fully focused beam (<1 µm in di-
ameter). A set of sulfides, silicates, oxides, and native elements, includ-
ing FeS2 (for Fe), CuS (for S and Cu), PbS (for Pb), ZnS (for Zn), Mn2SiO4 
(for Mn), NiO (for Ni), and Co, was used as reference materials. All of 
the used reference materials were tested before the quantitative anal-
ysis. Elements and X-ray lines used for analysis were Fe (Kα), Co (Kα), 
Ni (Kα), Cu (Kα), Zn (Kα), S (Kα), Mn (Kα), and Pb (Mα). Detection limits 
were between 145 ppm by weight for Co, 160 ppm for Cu, 115 ppm 
for Mn, 700 ppm for Pb, 130 ppm for Mn, and 200 ppm for Zn on aver-
age. For each traverse, analysis spots were placed at 60 µm spacing.

2.2.3 | Carbon isotope analysis

Seven rock samples from the Mendon Formation were powdered 
to <60 μm using a ring and puck mill. Sample powders (about 1 g) 
were reacted with excess HCl (6  N) at room temperature in glass 
beakers during one night to remove carbonates. After removing the 
supernatant, samples were acidified again with HCl (6  N) at 80°C 
and agitated during 2  hr to guarantee full sample decarbonation. 
After decantation, the residues were rinsed with deionized distilled 
water until neutral, centrifuged, and dried at 60°C overnight. TOC 
content and δ13Corg values were measured for carbonate-free resi-
dues with a Flash EA1112 elemental analyzer coupled to a Thermo 
Finnigan DELTA plus XP isotope ratio mass spectrometer interfaced 
with a ConFlo IV interface at the stable isotope laboratory of the 
Institut de Physique du Globe de Paris (IPGP). Our results were nor-
malized using three internal standards with 5 different amounts, 
which were used to estimate the concentration of organic C (wt.%). 
Reproducibility on δ13Corg and TOC measurements based on at least 
triplicate measurements of the samples is usually better than ±0.4‰ 
and ±0.01 wt.%, respectively (1σ).

2.2.4 | SIMS Fe and S isotopes analyses

Iron and sulfur isotopes are expressed in delta notation (δ56Fe, δ34S, 
and δ33S) relative to the international standards IRMM-014 (for Fe) 
and V-CDT (for S) based on the following equation:

where X is Fe or S, i and j represent the heavy and light isotopes, re-
spectively (54 and 56 for Fe and 34 or 33 and 32 for S). Sulfur mass-in-
dependent fractionation has been calculated as the deviation from the 
Terrestrial Fractionation Line (TFL), using the mass discrimination law 
(Farquhar et al., 2000), where the factor 0.5152 defines the slope of 
the TFL.

Iron isotope compositions were measured with a Cameca ims 
1270 ion microprobe at CRPG following the procedure described in 
Marin-Carbonne, Rollion-Bard, and Luais (2011). Briefly, a 16O− pri-
mary beam of 10–13 nA intensity was focused to a spot of about 
15 µm diameter and less than 1 µm in depth. The mass resolution 

was set to ~7,000, and 54Fe+ and 56Fe+ were measured in multi-col-
lection mode with two off-axis Faraday cups. Typical 56Fe intensity 
was between 5 and 6 × 107 counts per second (cps). A typical analy-
sis consisted of 2 min pre-sputtering followed by data acquisition in 
30 cycles of 5 s acquisition time. The isobaric interference of 54Cr on 
54Fe was corrected by monitoring chromium on masses 52, but chro-
mium levels were negligible in all samples. The internal precision for 
δ56Fe values was typically better than ±0.1‰ (2σ), and the external 
reproducibility based on multiple measurements of our pyrite refer-
ence material (Balmat with δ56Fe = −0.399‰, (Whitehouse & Fedo, 
2007)) was better than ±0.2‰ (2σ).

Sulfur isotope compositions were measured on the Cameca ims 
1280 HR2 (CRPG) by simultaneous measurements of 32S−, 33S−, and 
34S− in multi-collection mode with three Faraday cups. A Cs+ primary 
beam of 5 nA intensity was focused to a spot of about 15–20 µm in 
diameter and less than 1 µm in depth. The mass resolution was set 
to 5,000 to resolve the isobaric interferences due to hydrides on 
sulfur isotopes. Typical 32S− intensity was between 6 and 10 × 108 
counts per second (cps) depending on the sulfide mineral analyzed. 
A typical analysis consisted of 2 min of pre-sputtering followed by 
data acquisition in 30 cycles of 3 s each. The background of the de-
tectors was measured during pre-sputtering and was then corrected 
for each analysis. Several pyrite standards Maine (δ34S = −20.61‰, 
δ33S = −10.63‰), Spain (δ34S = −1.56‰ and δ33S = −0.78‰), and 
Balmat (δ34S = 15.84‰ and δ33S = 8.12‰(Muller et al., 2017) were 
used to determine (a) the instrumental mass fractionation by con-
sidering the average value obtained on the three standards and 
(b) the reference mass discrimination line, from which Δ33S values 
were calculated. The internal precision achieved under these con-
ditions was better than ±0.05‰ for δ34S and ±0.03‰ for δ33S (2σ). 
The external precision was ±0.40‰ (2σ) for δ34S and ±0.1‰ (2σ) 
for Δ33S values.

3  | RESULTS

3.1 | SEM and TEM observations

Ultrathin sections of selected pyrites were characterized by second-
ary electron microscopy and transmission electron microscopy—in 
order to discriminate primary features from late modifications re-
lated to metamorphism and hydrothermal overprint (Figure 3). On 
the basis of high-resolution TEM and electron diffraction analyses, 
two different textures of pyrite were identified as exemplified with 
samples 114.30 and 147.38. Pyrites from sample 114.30 are com-
posed of nanocrystals with various orientations embedded within 
a single large pyrite mineral (Figure 3a–c). Nanocrystals of pyrite 
support a very early diagenetic origin, consistent with the pres-
ervation of early diagenetic fine laminations. In contrast, pyrites 
present in sample 147.38 consist of homogeneous single crystals, 
typical for a post-diagenetic origin (metamorphic, hydrothermal) and 
indicating recrystallization features overprinting a primary texture 
(Figure 3d–f).

δiX=
[(

iX∕jXsample

)
∕
(
iX∕jXstandard

)
−1

]
×1000
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3.2 | Trace element composition of the pyrite

Various trace elements (Co, Ni, Cu, Zn, Pb, and Mn) have been ana-
lyzed by EPMA in 3 chert samples and are presented in Table 2. The 
average concentrations of trace elements are very low (<0.2 wt.%) 
and often below the detection limit, with for instance no detect-
able Co, Mn, Zn, and Pb. Each pyrite crystal shows limited internal 
variability, with no significant difference between rim and core 
(Table 2).

3.3 | Carbon isotope composition of Mendon cherts

Bulk rock samples have organic C concentrations between 0.03 
and 1.5 wt.% and δ13C values between −32.1 and −26.5‰ (Table 3 
and Figure 4) in the range previously determined for Mendon for-
mation (Hofmann & Bolhar, 2007; Walsh & Lowe, 1999). Data 
from Noel master's thesis (Noel, 2009) are also reported and give 
similar results (Figure 4). Samples with the highest organic carbon 
contents show the lowest δ13C values, as frequently observed in 

F I G U R E  3   Pyrite microphotographs (SEM and TEM) and associated diffraction patterns for samples 114.30 (a, b, c) and 147.38 (d, e, 
f). SEM analyses (a, d) show quartz inclusions in pyrites, whereas the matrix is composed of microquartz, altered iron carbonate (ankerite), 
chlorite, and ganterite (Ba-rich mica) recovered by coating. Sample 114.30 contains disoriented nm-scale pyrite particles (see powder 
diffraction pattern in b and HRTEM image in c) embedded within a pyrite single crystal matrix (see superimposed electron diffraction pattern 
in b, (<10–2> zone axis) and FFT signal of the matrix in c, displaying the same zone axis). In contrast, for sample 147.38, electron diffraction 
analysis (e) and HRTEM (f) indicate that pyrite is present as large single crystals (<−113> zone axis). The black bar in (a) and (b) represents the 
location of the FIB ultrathin section

(a) (b) (c)

(d) (e)(d) (f)

Pyrite group Co (ppm) Cu (ppm) Mn (ppm) Pb (ppm) Ni (ppm) Zn (ppm)

A b.d.l. 408 b.d.l. b.d.l. 434 b.d.l.

B b.d.l. b.d.l b.d.l. b.d.l. 1,750 b.d.l.

C b.d.l. b.d.l. b.d.l. b.d.l. 170 b.d.l.

Note: Detection limits between 145 ppm for Co, 160 ppm for Cu, 115 ppm for Mn, 700 ppm for Pb, 
130 ppm for Ni, and 200 ppm for Zn.
Abbreviation: b.d.l., below detection limit.

TA B L E  2   Average trace element 
concentration (in ppm) of pyrite from 
Mendon Cherts

Pyrite group Sample name δ13C (‰) ±1σ TOC (wt%) ±1σ

A 104.80 −32.10 0.20 1.51 0.06

104.83 −31.39 0.19 1.04 0.01

B 95.41 −30.20 0.08 0.38 0.02

139.8 −28.36 0.16 0.27 0.03

160.12 −26.56 1.40 0.03 0.03

C 114.3 −31.80 0.59 1.13 0.07

144.33 −31.40 0.32 0.82 0.01

TA B L E  3   Total organic carbon (TOC, 
in wt.%) and Corg isotope composition of 
Mendon cherts (δ13C vs. V-PDB, in ‰)
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Precambrian sediments (Guy et al., 2012; Luo et al., 2014; Peng 
et al., 2019).

3.4 | Iron and sulfur isotope compositions of pyrite

In the 12 samples investigated, a total of 109 pyrites were analyzed 
for both S and Fe isotope compositions, with multiple analyses of 
the largest pyrite crystals (Table 4). Pyrites in the Mendon Formation 
show large isotope variability in δ56Fe, δ34S, and Δ33S, which is not 
related to the stratigraphic position within the core (Figure 5). δ34S 
and Δ33S values range from −2.66 to +6.22‰ and −0.39 to +4.25‰, 
respectively (Figures 5 and 6a), consistent with previous reports 
on the same formation (Galić et al., 2016; Montinaro et al., 2015; 
Roerdink, Mason, Whitehouse, & Reimer, 2013). The δ56Fe values 
vary from −4.02 to +2.54‰, covering almost the total terrestrial 
range reported so far (Dauphas, John, & Rouxel, 2017). Some sam-
ples show large δ56Fe variations up to 6‰ (Sample 160.12) with 
small S isotopic variability, while others have large range of δ34S val-
ues (samples 95.41 and 147.38) with smaller range of variations in 
δ56Fe (Figures 5 and 6). There is no correlation between δ34S and 
δ56Fe values (Figure 6b).

In order to better illustrate the isotopic variability of each sample, 
a probability density distribution was calculated for each sample. Each 
measurement (δ56Fe, σ) is replaced by a Gaussian curve fδ56Fe,σ such as:

The integral of fδ56Fe,σ between x1 and x2 gives the probability that 
the true δ56Fe of the sample is between x1 and x2. The probability den-
sity function F(x) describing δ56Fe variations in a sample is defined for 
N measurements as the sum of individual fδ56Fe,σ divided by N:

with the probability P (x)=
+∞

∫
−∞

F (x)×dx=1.

For example, if 
−2.5

∫
−2.0

F (x)×dx=0.4, then the probability for a nano-
pyrite showing δ56Fe values lying between −2.5‰ and −2.0‰ is 40%.

4  | DISCUSSION

Pyrites from the Mendon cherts display a large range of isotopic com-
positions both in Fe and S, which is not correlated with the size or 
shape of pyrites. The sample stratigraphic position does not correlate 
with Fe and/or S isotope compositions (Figure 5). However, Δ33S cor-
relates with crystallinity order, with values around 0‰ for well-crystal-
lized pyrites and values higher than 2‰ for polycrystal-hosting pyrites 
(Figure 7). Three different pyrite populations can be distinguished 
based on their δ56Fe and Δ33S values (Figure 7a). These are Group 
A with mean δ56Fe of −1.76 ± 0.6‰ (1σ) and Δ33S of −0.05 ± 0.3‰ 
(1σ; samples 137.84, 104.8, and 104.83 and few pyrites from 160.12), 
Group B with δ56Fe of +1.05 ± 0.4‰ (1σ) and Δ33S of +0.67 ± 0.5‰ (1σ; 
samples 94.92, 95.41, 133.55, 139.80, 147.38, and 160.12), and Group 
C with δ56Fe averaging +1.01 ± 0.9‰ and Δ33S of +3.5 ± 0.6‰ (1σ; 
samples 114.3 and 114.33). It is worth noting that some samples (e.g., 
160.12) contain pyrite grains that belong to two different groups. The 
following discussion will focus on constraining the origin of the large 
isotopic variability in both Fe and S compositions by assessing first, the 
influence of fluid circulation and hydrothermal overprint, second, the 
different pyrite group origin and pyrite formation pathways, and lastly, 
the potential microbial origin of these isotope compositions.

4.1 | Role of hydrothermal processes on Fe and S 
isotopic compositions

All pyrites from Mendon cherts contain mineral inclusions of either 
quartz or carbonate and can thus be considered as a late phase re-
lated to diagenesis. Post-diagenetic and hydrothermal processes 
should lead to pyrite recrystallization with variable trace element 
enrichments such as Co, Ni, and Pb, depending on the fluid chemis-
try (Large, Maslennikov, Robert, Danyushevsky, & Chang, 2007). In 
Mendon samples, trace element concentrations of the different py-
rite groups are similar (Table 2) and display no detectable enrichments 
in Co, Mn, Zn, and Pb above the detection limits of EPMA technique 
(>100  ppm, see section 2.2.2). Chemical profiles obtained across 
large pyrite grains show homogenous and low concentration in terms 
of trace element distribution patterns (Table 2). The absence of trace 
element enrichment argues against a late stage of pyrite overgrowth, 
which contrasts with SEM and TEM observations. Among the few 
cases where Co was detected, Co/Ni ratio was always below 0.6, 
supporting a sedimentary rather than a metamorphic origin for these 
pyrites (Gregory et al., 2015). It is worth emphasizing that Group B 

(1)fδ56Fe,σ (x)=
1

σ×
√
2�

×exp

⎡
⎢⎢⎣
−
�
−x−δ56Fe

�2
2σ2

⎤
⎥⎥⎦

(2)F (x)=

j=N∑
j=1

fδ56Fej,σj (x)

N

F I G U R E  4   TOC and δ13C values of the different pyrite groups. 
Data from the same formation published by Hofmann & Bolhar, 
2007 and master's thesis from Vincent Noel are also reported 
in white and black, respectively
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TA B L E  4   S and Fe isotope composition of pyrite from the Mendon cherts

  Sample d56Fe err d34S err D33S err

Group A              

104.80-2pt70 104-80 −1.99 0.32 5.56 0.16 −0.02 0.07

104.80-2pt71 108-80 −1.51 0.32 2.56 0.18 1.48 0.07

104.80-2pt72 104-80 −3.30 0.32 6.06 0.18 −0.39 0.07

104.80-2pt73 104-80 −4.02 0.32 5.71 0.16 −0.21 0.07

104.80-2pt75 108-80 −2.20 0.32 6.21 0.16 −0.16 0.07

104.80-2pt76 104-80 −2.05 0.32 6.22 0.16 −0.20 0.07

104.80-2pt78 108-80 −1.84 0.32 5.39 0.17 −0.06 0.07

104.80-2pt79 104-80 −1.56 0.32 2.35 0.16 −0.30 0.07

104.80-2pt80 104-80 −1.05 0.32 −0.72 0.17 −0.11 0.07

104.80-2pt81 108-80 −1.88 0.32 2.01 0.16 −0.07 0.07

104.80-2pt82 108-80 −0.89 0.32 4.77 0.16 −0.20 0.07

104.80-2pt83 104-80 −0.51 0.32 5.93 0.17 −0.10 0.07

104.80-2pt84 108-80 −1.95 0.32 5.87 0.17 −0.05 0.07

104.80-2pt85 104-80 −1.85 0.32 5.37 0.17 −0.11 0.07

104.80-2pt87 104-80 −1.54 0.32 5.15 0.17 −0.19 0.07

104.80-2pt88 108-80 −2.00 0.32 6.06 0.16 −0.25 0.07

104.80-2pt89 108-80 −1.93 0.32 1.79 0.16 −0.11 0.07

104.80-2pt91 104-80 −1.25 0.32 −0.11 0.16 −0.02 0.07

104.80-2pt92 108-80 −1.39 0.32 0.09 0.16 −0.13 0.07

104.80-2pt93 104-80 −2.05 0.42 4.63 0.16 −0.29 0.07

104.80-2pt94 104-80 −0.54 0.32 6.00 0.17 −0.24 0.07

104.80-2pt95 108-80 −1.23 0.32 5.71 0.17 0.10 0.07

104.83-1pt99 104-83 −1.54 0.32 5.11 0.17 −0.20 0.07

104.83-1pt100 104-83 −1.48 0.32 2.47 0.16 −0.29 0.07

104.83-1pt101 104-83 −1.55 0.32 0.30 0.17 0.00 0.07

104.83-1pt102 104-83 −1.66 0.32 4.94 0.16 −0.13 0.07

104.83-1pt103 104-83 −1.95 0.32 5.92 0.17 −0.23 0.07

104.83-1pt104 104-83 −1.76 0.32 5.44 0.17 −0.15 0.07

104.83-1pt105 104-83 −1.87 0.32 4.04 0.17 −0.11 0.07

104.83-1pt106 104-83 −1.38 0.32 2.54 0.17 −0.16 0.07

104.83-1pt107 104-83 −1.75 0.33 3.42 0.17 −0.27 0.07

104.83-1pt109 104-83 0.90 0.32 3.32 0.17 −0.14 0.07

104.83-4pt111 104-83 −1.95 0.32 4.87 0.17 −0.33 0.07

104.83-4pt112 104-83 −1.84 0.32 1.04 0.18 −0.09 0.07

104.83-4pt113 104-83 −1.80 0.32 0.47 0.18 0.02 0.07

104.83-4pt114 104-83 −1.47 0.32 2.29 0.17 −0.26 0.07

104.83-4pt115 104-83 −1.76 0.32 3.39 0.17 −0.28 0.07

104.83-4pt116 104-83 −1.84 0.32 4.56 0.17 −0.25 0.07

104.83-4pt117 104-83 −1.77 0.32 4.38 0.17 −0.02 0.07

104.83-4pt119 104-83 −1.92 0.32 4.98 0.17 −0.26 0.07

104.83-4pt120 104-83 −2.17 0.32 5.83 0.17 −0.34 0.07

104.83-4pt122 104-83 −2.08 0.32 0.05 0.17 −0.05 0.07

104.83-4pt123 104-83 −1.81 0.32 3.58 0.17 −0.08 0.07

104.83-4pt125 104-83 −1.96 0.32 1.28 0.17 0.06 0.07

(Continues)
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  Sample d56Fe err d34S err D33S err

104.83-4pt126 104-83 −2.10 0.32 4.55 0.17 −0.28 0.07

104.83-4pt127 104-83 −2.00 0.32 1.45 0.18 −0.16 0.07

104.83-4pt128 104-83 −1.80 0.32 1.56 0.17 1.68 0.07

104.83-4pt129 104-83 −1.52 0.32 5.03 0.17 −0.21 0.07

104.83-5pt130 104-83 −2.71 0.32 3.96 0.18 −0.03 0.07

104.83-5pt131 104-83 −2.38 0.32 5.25 0.18 −0.27 0.07

104.83-5pt132 104-83 −2.21 0.32 3.31 0.18 −0.28 0.07

104.83-5pt134 104-83 −2.75 0.32 5.52 0.17 −0.03 0.07

104.83-5pt135 104-83 −1.89 0.32 5.56 0.16 −0.04 0.07

104.83-5pt136 104-83 −1.95 0.32 3.36 0.17 −0.17 0.07

104.83-5pt137 104-83 −1.59 0.32 0.39 0.18 −0.13 0.07

137.84b-1-pt30 137-84 −1.60 0.31 4.47 0.16 0.34 0.07

137.84b-1-pt31 137-84 −1.81 0.32 4.76 0.16 0.22 0.07

137.84b-1-pt32 137-84 −1.51 0.32 4.57 0.16 0.35 0.07

137.84b-1-pt33 137-84 −1.67 0.32 4.91 0.16 0.43 0.07

137.84b-1-pt34 137-84 −1.68 0.32 4.65 0.16 0.32 0.07

137.84b-1-pt35 137-84 −1.39 0.31 4.62 0.16 0.32 0.07

137.84b-1-pt36 137-84 −1.35 0.31 4.72 0.16 0.13 0.07

Group C              

114-3-pt@03 114-30 0.89 0.26 −0.89 0.24 2.69 0.13

114-3-pt@07 114-30 0.84 0.25 0.43 0.58 3.16 0.07

114-3-pt@09 114-30 1.17 0.26 1.64 0.25 4.11 0.13

114-3-pt@1 114-30 2.24 0.26 0.64 0.58 3.37 0.07

114-3-pt@11 114-30 2.51 0.26 −0.78 0.25 3.82 0.13

114-3-pt@12 114-30 2.54 0.25 2.94 0.30 3.93 0.09

114-3-pt@13 114-30 1.45 0.27 2.87 0.30 4.25 0.08

b114-30@1 114-30 0.53 0.35 0.43 0.58 3.16 0.07

b114-30@02 114-30 1.49 0.36 −2.66 0.58 3.20 0.07

b114-30@03 114-30 1.57 0.36 0.44 0.58 2.79 0.07

b114-30@04 114-30 2.40 0.35 −0.99 0.58 3.35 0.07

b114-30@05 114-30 1.83 0.36 0.64 0.58 3.37 0.07

b114-30@07 114-30 0.65 0.35 0.53 0.58 3.17 0.07

114-33-2-10 114-33 0.39 0.32 2.14 0.63 4.13 0.53

114-33-2-3 114-33 0.41 0.32 2.23 0.63 4.05 0.53

114-33-2-4 114-33 −0.58 0.32 2.26 0.63 3.90 0.53

114-33-2-8 114-33 −0.86 0.32 1.79 0.65 3.64 0.60

114-33-2-9 114-33 −0.25 0.32 1.56 0.63 4.05 0.53

130-80-pt@1 139-80 2.32 0.24 3.94 0.23 2.32 0.05

E2-139-80@1 139-80 0.33 0.35 2.79 0.22 2.32 0.05

E2-139-80@2 139-80 0.40 0.36  n.a  n.a  n.a  n.a

E2-139-80@3 139-80 0.87 0.35 4.50 0.20 3.71 0.05

E2-139-80@4 139-80 0.66 0.35 2.79 0.22 2.32 0.05

E2-139-80@5 139-80 1.05 0.36 1.05 0.22 2.93 0.05

E2-139-80@6 139-80 0.30 0.35  n.a  n.a  n.a  n.a

TA B L E  4   (Continued)

(Continues)
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  Sample d56Fe err d34S err D33S err

Group B              

94-92@4 94-92 1.27 0.26 3.01 0.23 0.29 0.05

94-92@6 94-92 1.20 0.26 3.99 0.24 0.12 0.05

94-92@7 94-92 1.63 0.25 2.78 0.23 1.08 0.05

94-92@8 94-92 0.74 0.25 4.76 0.22 0.29 0.05

95-41@07 95-41 0.99 0.25 2.62 0.23 0.13 0.05

95-41@08 95-41 2.21 0.26 1.31 0.19 0.41 0.05

95-41@09 95-41 0.61 0.25 4.16 0.23 0.20 0.05

95-41@10 95-41 0.80 0.25 3.16 0.23 0.78 0.05

95-41@11 95-41 0.95 0.25 2.86 0.22 1.40 0.05

95-41@12 95-41 1.03 0.25 3.25 0.23 0.32 0.05

95-41@19 95-41 0.44 0.25 3.37 0.21 0.13 0.05

95-41@20 95-41 1.04 0.26 4.19 0.22 0.03 0.05

95-41@21 95-41 1.08 0.25 4.77 0.22 0.14 0.05

95-41@22 95-41 1.02 0.25 3.41 0.23 0.33 0.05

95-41@23 95-41 1.17 0.25 −2.31 0.25 1.13 0.05

E2-95-41@1 95-41 0.64 0.36 2.93 0.23 0.19 0.03

E2-95-41@03 95-41 0.12 0.35 1.92 0.23 0.77 0.03

E2-95-41@04 95-41 0.66 0.36 1.63 0.22 1.40 0.03

E2-95-41@06 95-41 0.59 0.36 2.01 0.23 0.31 0.03

135-55-pt@08 135-55 1.30 0.25 2.55 0.34 0.59 0.06

135-55-pt@09 135-55 1.37 0.26 2.68 0.33 0.83 0.06

135-55-pt@12 135-55 0.96 0.25 2.92 0.33 0.56 0.06

135-55-pt@13 135-55 1.06 0.25 3.12 0.33 0.50 0.06

135-55-pt@14 135-55 0.97 0.25 3.31 0.33 0.76 0.06

135-55-pt@15 135-55 1.63 0.25 1.77 0.33 −0.01 0.06

135-55-pt@16 135-55 0.95 0.25 3.37 0.33 0.51 0.06

135-55-pt@17 135-55 0.78 0.25 1.06 0.32 0.28 0.06

135-55-pt@21 135-55 0.81 0.25 3.41 0.33 0.59 0.06

135-55-pt@22 135-55 1.01 0.25 3.48 0.33 0.66 0.06

148-10-pt@02 148-10 1.49 0.25 −0.85 0.33 −0.12 0.06

148-10-pt@04 148-10 1.57 0.25 −2.49 0.31 0.36 0.06

148-10-pt@07 148-10 1.32 0.26 −0.98 0.33 2.28 0.06

148-10-pt@08 148-10 0.71 0.25 4.30 0.33 −0.20 0.06

148-10-pt@12 148-10 1.18 0.25 1.43 0.33 −0.07 0.06

148-10-pt@13 148-10 1.07 0.25 4.42 0.33 −0.20 0.06

148-10-pt@15 148-10 1.79 0.25 3.95 0.33 −0.22 0.03

C147-38@01 148-10 0.69 0.35 −1.88 0.33 −0.15 0.03

C147-38@06 148-10 1.11 0.35 3.17 0.33 −0.02 0.03

C147-38@07 148-10 0.83 0.35 4.50 0.33 −0.07 0.03

C147-38@10 148-10 1.15 0.35 −1.26 0.33 0.06 0.33

160-12-2@02 160-12 0.81 0.25 1.29 0.24 0.12 0.05

160-12-2@03 160-12 0.27 0.25 1.41 0.24 0.04 0.05

160-12-2@05 160-12 −2.39 0.24 1.19 0.24 0.12 0.05

160-12-2@06 160-12 −3.30 0.25 1.94 0.24 0.44 0.05

TA B L E  4   (Continued)

(Continues)
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pyrite can contain up to 1,700 ppm Ni, but that this enrichment is 
homogenously distributed throughout the pyrite grains. Group C 
pyrites show the lowest trace element concentrations, with values 
typically under the detection limits. Therefore even if the Mendon 
cherts have experienced hydrothermal fluid circulations (Busigny 
et al., 2017), these late events have not significantly modified the 
original pyrite trace element concentrations.

The effect of fluid circulation on iron isotope compositions of 
Mendon pyrite can also be evaluated. For an equilibration tem-
perature of ~350°C (Tice et al., 2004), pyrite precipitated from a 
Fe(II)-bearing fluid should have been in, or near to, isotopic equi-
librium. Assuming a hydrothermal fluid with δ56Fe values between 
−0.5 and 0‰ (e.g., Severmann et al., 2004; Rouxel, Sholkovitz, 
Charette, & Edwards, 2008; Johnson et al., 2008) and a frac-
tionation of ~1‰ between pyrite and Fe(II) dissolved in the fluid 
(Polyakov et al., 2019; Syverson, Borrok, & Seyfried Jr, 2013), the 
δ56Fe values of pyrite precipitated from this fluid should range be-
tween +0.5 and +1‰. These values are compatible with the pyrites 
from Groups B and C (Figure 6), but not with those of Group A. 
Additionally, pyrite formed under hydrothermal conditions should 
be well-crystallized, which is not the case of the Group C pyrites. 
We therefore conclude that a secondary hydrothermal alteration 
process could account for the Fe isotope compositions of Group B 
pyrites but not for those of Groups A and C pyrites. We note that 
comparable Fe isotope profiles obtained in Groups B and C pyrites 
(Figure 8) supports a related formation process.

Similarly, the influence of fluid circulations on sulfur isotope 
compositions can be examined. Sulfur in late fluid circulations can 
have a juvenile origin characterized by a δ34S of 0‰ and no S-MIF 
signatures with Δ33S = 0‰ (Labidi, Cartigny, & Jackson, 2015). Sulfur 
isotope profiles through large pyrites (more than 10 isotopic profiles 
measured in different pyrite grains) from each group highlight the 
presence of positive Δ33S values in all the pyrite groups (Figure 8). 
Group C pyrite displays homogenous distributed Δ33S throughout 
the grains, while Group B and Group A show a zoning pattern with 
non-zero Δ33S cores and Δ33S ~0‰ rims (Figure 8). Pyrites from 
sample 147.38 show large isotopic variations in δ56Fe (~2‰) and 
δ34S values (~6‰), with high δ56Fe and low δ34S cores, and low δ56Fe 
and high δ34S rims. These isotopic profiles are consistent with a late 
stage of pyrite overgrowth associated with the infiltration of a fluid 
phase of different S composition as already suggested by Marin-
Carbonne et al. (2014). Note, however, that some Group C pyrites 
(sample 114.30), displaying the same range of ~2‰ δ56Fe variation 
from core to rim, show homogeneous Δ33S and δ34S profiles, thus ar-
guing for different fluid sources during rim crystallization (Figure 8). 
The presence of S-MIF in each pyrite group indicates that the sul-
fur source is of atmospheric origin. The absence of a Δ33S anom-
aly in the rim of pyrite grains from Groups B and C indicates that 
a mantle-derived fluid source (Δ33S = 0‰) contributed to some of 
the pyrite overgrowth. This observation contrasts with the absence 
of core–rim variations recorded from trace element concentra-
tions and Fe isotope compositions, which supports the conclusions 

  Sample d56Fe err d34S err D33S err

160-12-2@08 160-12 −2.15 0.26 1.21 0.24 −0.13 0.05

160-12-2@1 160-12 1.47 0.25 0.00 0.25 −0.25 0.05

E2-160-12@1 160-12 0.65 0.37 −0.03 0.24 −0.13 0.03

E2-160-12@2 160-12 0.73 0.37 0.06 0.24 0.11 0.03

E2-160-12@3 160-12 0.79 0.35 0.93 0.23 0.63 0.03

TA B L E  4   (Continued)

F I G U R E  5   δ56Fe, δ34S, and Δ33S 
isotope profiles along the BBDP2 core. 
There is no relationship between Fe 
and S isotope compositions and the 
sample depth. Some samples display 
homogeneous isotope composition, while 
others (e.g., 104.80 or 114.30) show large 
isotopic variability. Some single grains 
show large internal variability, up to 4‰ 
for δ34S. Most samples have Δ33S values 
close to 0‰, while only 5 samples have 
Δ33S values > 0‰ (94.92, 104.80, 114.30, 
147.38, and 160.12)
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already reached by Marin-Carbonne et al. (2014) on pyrite and Li, 
Konhauser, Kappler, and Hao (2013) on magnetite that there can be 
a decoupling between different geochemical tracers during mineral 
recrystallization.

Altogether, the trace element concentrations, δ56Fe and Δ33S 
isotope variabilities at a micrometer scale, pinpoint a sedimentary 
origin of these pyrites or their precursors.

4.2 | Pyrite origin and formation pathways

Pyrite formation is a complex two-step process involving slow py-
rite nucleation and fast crystal growth (Rickard, 2012). Pyrite can be 
formed from various precursors either iron monosulfide like mack-
inawite (FeS) or polysulfide like greigite (Fe3S4) (Rickard, 2012). The 
precursor minerals always dissolve to form aqueous FeS complexes, 
which then react with H2S or polysulfides to form pyrite (Rickard, 
2012).

The presence of positive Δ33S values in all pyrite groups suggests 
that pyrite precipitated from elemental sulfur. Elemental sulfur with 
positive Δ33S values was likely produced via photochemical reactions 
in oxygen-free Archean atmosphere (e.g., Farquhar et al., 2000) and 
was preferentially delivered to the sediments rather than processed 
in the water column, as insoluble and unreactive particles (Rickard, 
2012). However, pyrite cannot form directly from particulate ele-
mental S (Rickard & Luther, 2007). Before reacting with a dissolved 
pyrite precursor, an intermediate step to break S8 rings is required 
(Rickard, 2012). In sedimentary pore waters, S8 rings were possibly 
gradually opened and sulfur chains and compounds were biologically 
converted to H2S, for example, through disproportionation. The py-
rites from Mendon Formation likely formed by late recrystallization 
of pyrite precursors. As discussed above, this recrystallization pro-
cess modified the S isotope composition but not the Fe isotope com-
position. As the formation of pyrite after mackinawite only requires 
sulfur addition, the lack of Fe isotope composition changes suggests 
that mackinawite rather than greigite was the precursor phase.

How confidently pyrite δ56Fe values reflect the isotopic compo-
sition of the parent Fe(II) remains subject of debates (Beard et al., 

1999; Busigny et al., 2014; Frierdich, Nebel, Beard, & Johnson, 2019; 
Guilbaud, Butler, & Ellam, 2011; Mansor & Fantle, 2019; Rolison 
et al., 2018). For instance, as shown by Guilbaud et al. (2011) and 
Rolison et al. (2018), the transformation of mackinawite to pyrite can 
induce an Fe isotope fractionation of ~−3‰ without involvement 
of any redox reaction. Such a kinetic fractionation process could 
therefore account, in principle, for most of the isotopic heteroge-
neities recorded in the studied samples. However, a kinetic frac-
tionation process also implies that the resulting pyrite δ56Fe values 
should display a Rayleigh distribution with a maximum centered on 
the δ56Fe value of the Fe(II) source, which is not observed. Instead, 
our data show a bimodal distribution with two major peaks around 
−1.8 and +1.0‰ (Figure 7b). In addition, as reported in modern envi-
ronments like the Black Sea, a kinetic fractionation process requires 
transient ferruginous and euxinic conditions (Rolison et al., 2018). 
This is at odd with our current knowledge of ocean chemistry at 
3.2 Gyr, where ferruginous conditions were likely persistent (Lyons, 
Reinhard, & Planavsky, 2014).

A recent study of Mansor and Fantle (2019) proposed that py-
rite δ56Fe value can be controlled by its precipitation rate. Negative 
δ56Fe values would reflect the expression of kinetic isotopic effect 
(KIE), while positive δ56Fe values would correspond to equilibrium 
isotopic effect (EIE). Taken at face value, this would imply that the 
bimodal distribution of δ56Fe values reflects different rates of py-
rite precipitation controlled either by kinetic or equilibrium frac-
tionation. If correct, some correlation between pyrite morphology, 
size, and iron isotope composition would be expected. As suggested 
by Mansor and Fantle (2019), precipitation rate will be different for 
large cubic pyrite grain than for small pyrite aggregates. However, 
large pyrite grains show either negative (sample 104.83) or positive 
δ56Fe values (sample 114.30), and there is no apparent correlation 
between the size and Fe isotope composition of the pyrites. For 
example, sample 133.55 displays a large range of pyrite sizes, from 
10 μm to 1 mm, while the Fe isotope composition of these pyrites 
is quite homogeneous (mean δ56Fe of +1.12 ± 0.28‰ for 24 pyrite 
grains with variable size).

In addition, the marked change from positive to negative δ56Fe 
values across a single pyrite grain from Group B and C (Figure 8) 

F I G U R E  6   (a) δ34S and Δ33S 
compositions and (b) δ34S and δ56Fe values 
of the Mendon pyrites. Error bars are 
comprised in the dot
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would imply that the rate of pyrite precipitation changed dras-
tically during pyrite formation. The model of Mansor and Fantle 
(2019) predicts that pyrite nucleation and early stages of crystal 
growth should be associated with high rate of precipitation (i.e., 
kinetically dominated and low δ56Fe values), while later stages 
should evolve toward lower rates of precipitation (closer to equi-
librium, with higher δ56Fe values). This prediction is opposite to 
our Fe isotope profiles in Groups B and C pyrite and is not clearly 
observed in Group A (Figure 8). This prediction is also not con-
sistent with textural observations, as all pyrite cores from the 
different groups are polycrystalline and should therefore reflect 
a same precipitation rate, but group A displays negative δ56Fe 
values, while Group B and C pyrites display positive δ56Fe val-
ues. Additionally, if Fe isotope compositions were influenced by 
the rate of pyrite precipitation and kinetic effect, this should have 
also influenced the S isotopic compositions as suggested by mod-
eling studies (Hegyi & Halevy, 2019; Johnston, Hemingway, Gill, & 
Halevy, 2019; Raiswell, Whaler, Dean, Coleman, & Briggs, 1993). 
Pyrite rims and cores should display different δ34S values, which 
has been recorded in only one sample from Group B (147.38) but 
not in Groups A and C pyrites and other samples from Group B 
(95.41, Figure 8). With the exception of one sample from Group B, 
there is no marked variation of δ34S values between pyrite cores 
and rims.

The large range of Fe and S isotope compositions recorded in 
Mendon pyrites can be explained by various pyrite precursors. In 
this case, the bimodal distribution of δ56Fe values (Figure 7) would 
reflect two different pyrite precursors, one with negative δ56Fe and 
positive Δ33S values and one with positive δ56Fe and Δ33S values. 
The negative δ56Fe origin of the pyrite precursor may be explained 
by a kinetic process (see below), while the positive δ56Fe values of 
the precursor would have originated from iron oxides reduction ei-
ther abiotically or biologically induced by DIR (Yoshiya et al., 2015). 
How concomitant these pyrite precursors would have been formed 
is still unknown. In such a scenario, different pyrite groups would 
reflect different pyrite generations. The similarity in microscale 
mineralogy and trace element contents is difficult to reconcile with 

different pyrite precursors but most likely reflects diagenetic pro-
cesses. Accordingly, we suggest the Mendon pyrites were most likely 
formed through the transformation of the precursor mackinawite, 
which would be best represented by the fine-grained and polycrys-
talline nature (Rickard, 2012) of some pyrite cores (Group C).

4.3 | Biosignature of dissimilatory iron reduction 
recorded in pyrites

Groups A and B display similar Δ33S but distinct δ56Fe values (Figures 
7 and 8). The negative δ56Fe values of Group A are comparable to 
most Archean sedimentary pyrites (Planavsky et al., 2012), which are 
usually interpreted as reflecting DIR (Johnson et al., 2008), kinetic 
isotope fractionation associated with pyrite precipitation (Guilbaud 
et al., 2011; Rolison et al., 2018), and/or a distillation effect of oce-
anic dissolved Fe(II) due to Fe oxide precipitation (Rouxel, Bekker, & 
Edwards, 2005). In contrast, high δ56Fe values of Group B pyrites are 
more occasional for Archean pyrites (Johnson et al., 2008; Rouxel 
et al., 2005), but rather typical of iron oxides formed from partial 
oxidation of a large Fe(II) reservoir (Planavsky et al., 2012; Rouxel 
et al., 2005). Interestingly, the samples hosting Group B pyrites do 
not contain iron oxide contrary to samples from Group A (Figure 9). 
This suggests that Group B pyrites with positive δ56Fe values were 
derived from total reduction in former iron oxides, thus preserving 
their original Fe isotope compositions (near + 1‰). In contrast, Group 
A pyrites with negative δ56Fe values could have formed from dis-
solved Fe(II) released by partial reduction in iron oxides and, there-
fore, could record the composition of dissolved Fe(II). Although—as 
discussed above—a kinetic isotope fractionation associated with py-
rite precipitation cannot be ruled out, the absence (in Group B) or 
presence (in Group A) of residual Fe oxides is more supportive of a 
prominent effect of Fe reduction. Following this scenario, the differ-
ence in Fe isotope composition between Group A and B pyrites could 
reflect the fractionation associated with iron oxide reduction, which 
can be estimated at about −2.8‰ (Figure 7). This Fe isotope frac-
tionation is remarkably similar to the one determined experimentally 

F I G U R E  7   (a) δ56Fe and Δ33S values of the Mendon pyrites display three different groups (A in blue, B in green, and C in orange/yellow). 
There is no correlation with the stratigraphic location (Figure 5). Error bars are comprised within the dots. The mean value of each group is 
reported as a square with the respective color of each pyrite group. (b) Probability density function of δ56Fe values for all pyrites showing 
bimodal distribution with a difference of ~2.8‰ interpreted as reflecting isotope fractionation associated with microbial Fe respiration
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for microbial DIR (Crosby et al., 2007; Johnson & Beard, 2005), but 
also with abiotic reduction at low temperature (e.g., Frierdich et al., 
2019). However, this isotopic fractionation is not compatible with 
abiotic reduction related to burial and/or interaction with metamor-
phic fluids. A reduction associated with hydrothermal overprints 
such as those experienced by Mendon cherts is unlikely because re-
equilibration at about 350°C should have reduced, not increased the 
Fe isotope fractionation (Dauphas et al., 2017). Therefore, the large 
and consistent Fe isotope fractionation can suggest that pyrite δ56Fe 

values were inherited from early diagenetic microbial reduction and 
remained unaffected by subsequent hydrothermal alteration pro-
cesses (Figure 10). Groups A and B pyrites were thus likely formed by 
a DIR process through partial and total Fe reduction, respectively. In 
contrast, the well-ordered crystallinity and Δ33S values near 0‰ of 
Groups A and B pyrites point to sulfide recrystallization in the pres-
ence of S-rich mantle-derived fluids (Roerdink, Mason, Whitehouse, 
& Brouwer, 2016). The modification of the primary S isotope signa-
ture but preservation of the original Fe isotope imprint possibly arose 
from interaction of a precursor sulfide (e.g., most likely mackinawite) 
with a S-rich and Fe-poor hydrothermal fluid. Considering the min-
eralogy of the rocks and the diagenetic and metamorphic processes 
that are known to have affected the Barberton area, production and 
circulation of fluids enriched in sulfides must have been common, 
which could account for the precipitation of pyrite with no S-MIF 
signatures (Agangi, Hofmann, Eickmann, & Marin-Carbonne, 2019; 
Agangi, Hofmann, Eickmann, Marin-Carbonne, & Reddy, 2016).

Pyrites from Group C show more variable but mostly positive 
δ56Fe values, averaging +1.01  ±  0.90‰ (1σ). The positive δ56Fe 
values together with the absence of iron oxides in the samples 
suggest pyrite formation after total iron oxide reduction, like for 
Group B pyrites. Positive Δ33S values of Group C pyrites argue for 
a volcanic source of sulfur equilibrated in an anoxic atmosphere 
(Johnston, 2011). Photochemical reactions of volcanic SO2 in the 
Archean atmosphere are generally supposed to produce elemen-
tal sulfur (S0) and sulfate (SO2

4
) aerosols, with positive and negative 

Δ33S values, respectively (Farquhar et al., 2000). Accordingly, our 
results suggest that pyrites from Group C derived, at least partly, 
from Archean atmospheric elemental sulfur. Pyrite δ34S values are 

F I G U R E  8   SEM pictures, δ56Fe, δ34S, Δ33S isotopic profiles in individual pyrite grain from each pyrite groups. Errors bars are comprised in 
the dot

F I G U R E  9   SEM picture of iron oxides present in Group A 
pyrites. These iron oxides, potentially hematite, are embedded in 
the microquartz matrix and often associated with iron carbonates
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also consistent with microbial disproportionation of elemental sul-
fur (Figure 5, Johnston, 2011), as most disproportionating organ-
isms produce fractionations between S0 and H2S smaller than 8‰ 
(Canfield, 2001). TEM analyses of pyrites from Group C reveal the 
persistence of polycrystalline particles (Figure 3b,c). These obser-
vations, as well as the finely laminated texture of the cherts hosting 
these pyrites, suggest a sedimentary origin, with better preserva-
tion than those of Groups A and B. Moreover, carbon isotope com-
position of organic matter hosted by Mendon black cherts ranges 
between −26 and −32.1‰ (Figure 4) and is consistent with a bio-
logical origin from phototrophic organisms (Schidlowski, Hayes, & 
Kaplan, 1983; Zerkle, House, & Brantley, 2005). Previous studies 
have highlighted the presence of micro-organisms during the depo-
sition of cherts in the Onverwacht Group (Hofmann & Bolhar, 2007; 
Tice & Lowe, 2006; Walsh, 1992; Walsh & Lowe, 1999) and have 
excluded an hydrothermal origin of the organic matter (Hofmann & 
Bolhar, 2007; van Zuilen, Chaussidon, Rollion-Bard, & Marty, 2007). 
The presence of this fossil biomass supports the possibility for DIR 
activity, as this metabolic pathway involves iron-based oxidation 
of organic matter. It is worth noting that samples hosting Group A 
pyrites, which have experienced partial Fe reduction, have similar 
organic carbon contents and δ13C values to those of Group C, which 

corresponds to total Fe oxide reduction (Corg ~0.82 to 1.51 wt.%, 
δ13C ~−31.38 to −32.30‰; Figure 4). This indicates that organic 
matter availability was not the main limiting factor controlling par-
tial versus total Fe reduction. Samples hosting pyrites from Group 
B have lower organic carbon content (Corg ~0.03 to 0.38 wt.%) and 
slightly less negative δ13C values (δ13C ~−26.57 to −30.18‰), show-
ing that in this case the total reduction in iron has almost entirely 
consumed the organic matter (Figure 10).

5  | CONCLUSIONS

Taken together, Fe isotope data of Mendon pyrites from Groups A, 
B, and C show a bimodal distribution, demonstrating a large Fe iso-
tope fractionation process (~2.8‰, Figure 7b) that can be ascribed 
to DIR. Anaerobic microbial respiration can simultaneously account 
for (a) the measured δ56Fe systematic and variability and (b) the pro-
duction of the reduced sulfur species necessary for pyrite forma-
tion. In addition, the light δ13C values recorded in associated organic 
matter likely reflect the residual biomass derived from phototrophic 
organisms and consumed through joint Fe and S metabolisms dur-
ing diagenesis. In contrast, the mineral assemblages and associated 
isotopic signals are difficult to explain by the abiotic processes dis-
cussed above. Our data extend reliable evidence of DIR metabolism 
back more than ~500 Myr than previously accepted (2.7 and 2.5 Gyr, 
Archer & Vance, 2006; Craddock & Dauphas, 2011). This supports 
indirect evidence from phylogenetic analyses and microbial culture 
studies for DIR origin in the early Archean, and therefore a close 
relation to the last universal common ancestor (Lonergan et al., 
1996; Lovley, 2002; Vargas, Kashefi, Blunt-Harris, & Lovley, 1998). 
Interestingly, some DIR bacteria are known to reduce elemental sul-
fur enzymatically through disproportionation reactions producing 
both sulfide and sulfate (Flynn, O’Loughlin, Mishra, DiChristina, & 
Kemner, 2014; Thamdrup, Finster, Hansen, & Bak, 1993). This meta-
bolic process could explain the formation of sulfide even in a very 
low sulfate environment (Berg et al., 2019; Crowe et al., 2014), but 
also the occurrence of pyrite displaying S isotopic compositions in-
herited from elemental sulfur in the Archean geological record. The 
presence of DIR in the Mendon Formation predating the deposition 
of banded iron formations (BIF) in the overlying Fig Tree Formation 
is also significant, as this metabolism is considered to be essential in 
the formation of BIF (Konhauser et al., 2017; Li et al., 2013). Indeed, 
DIR could explain the low content of organic carbon, the negative 
carbon isotope values of iron carbonates (Craddock & Dauphas, 
2011), as well as the presence of other Fe(II)-bearing minerals (Li 
et al., 2013) in BIF. Combined with the positive Δ33S values recorded 
in Mendon pyrites, this may indicate the antiquity of coupled micro-
bial iron and sulfur metabolic pathways.
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