
HAL Id: hal-02510743
https://hal.umontpellier.fr/hal-02510743v1

Submitted on 18 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Structure and metamorphism of a subducted seamount
(Zagros suture, Southern Iran)

Guillaume Bonnet, Philippe Agard, Samuel Angiboust, Patrick Monie, Marc
Fournier, Benoît Caron, J. Omrani

To cite this version:
Guillaume Bonnet, Philippe Agard, Samuel Angiboust, Patrick Monie, Marc Fournier, et al.. Structure
and metamorphism of a subducted seamount (Zagros suture, Southern Iran). Geosphere, 2019, 16
(1), pp.62-81. �10.1130/GES02134.1�. �hal-02510743�

https://hal.umontpellier.fr/hal-02510743v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


62Bonnet et al. | Structure and metamorphism of a subducted seamountGEOSPHERE | Volume 16 | Number 1

Research Paper

Structure and metamorphism of a subducted seamount 
(Zagros suture, Southern Iran)
G. Bonnet1,2, P. Agard1, S. Angiboust3, P. Monié4, M. Fournier1, B. Caron1, and J. Omrani5
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ABSTRACT

Millions of seamounts on modern and past 
seafloor end up being subducted, and only small 
pieces are recovered in suture zones. How they are 
metamorphosed and deformed is, however, criti-
cal to understand how seamount subduction can 
impact subduction zone geometry, fluid circulation 
or seismogenic conditions, and more generally to 
trace physical conditions along the subduction 
boundary. Since geophysical studies mostly reach 
the shallowest subducted seamounts and miss 
internal structures due to low resolution, there 
is a high need for fossil seamount exposures. 
We herein report on a fully exposed, 3D exam-
ple of seamount that we discovered in the Siah 
Kuh massif, Southern Iran. Through a series of 
sections across the whole massif and the combi-
nation of magmatic- metamorphic- sedimentary 
petrological data, we document several distinct 
stages associated with seamount build-up on the 
seafloor and with subduction. In particular, we 
constrain different stages of metamorphism and 
associated mineralogy, with precise conditions for 
subduction-related metamorphism around 250 °C 
and 0.7 GPa, in the middle of the seismogenic 
zone. Extensive examination of the seismogenic 
potential of the Siah Kuh seamount reveals that it 
was not a large earthquake asperity (despite the 
report of a rare example of cm-scale, high-pres-
sure pseudotachylyte in this study), and that 
it possibly behaved as a barrier to earthquake 
propagation. Finally, we discuss the nature of 
high-pressure fluid circulation preserved in this 
seamount.

 ■ 1. INTRODUCTION

Seamounts are “geographically isolated topo-
graphic feature[s] on the seafloor taller than 100 m, 
including ones whose summit regions may temporar-
ily emerge above sea level, but not including features 
that are located on continental shelves or that are 
part of other major landmasses” (Staudigel et al., 
2010). Although most seamounts were recognized 
in the early stages of plate tectonics as products of 
mantle upwelling at hotspots (Wilson, 1965; Morgan, 
1971), many of them also form by hydration-driven 
melting of the forearc mantle of subduction zones 
(e.g., Reagan et al., 2010) or close to ocean ridges (e.g., 
East Pacific Rise seamounts, Niu et al., 1999). There 
are more than 100,000 seamounts on present-day 
seafloor (Hillier and Watts, 2007; Wessel et al., 2010); 
most of these seamounts will at some point enter 
subduction zones (e.g., Lallemand et al., 1989; Ranero 
and von Huene, 2000). Therefore, understanding 
how they form and evolve is critical to assess natu-
ral hazards such as subduction earthquakes, volcanic 
activity, or slope instabilities that may result in tsuna-
mis (Lipman et al., 1988; Keating and McGuire, 2000).

The link between the subduction of rough sea-
floor and subduction earthquakes has been a matter 
of considerable debate since it was recognized that 
seamount size scales with the largest earthquake 
asperities (Cloos, 1992). However, the observation 
that zones where rough seafloor enters subduction 
may coincide with seismic gaps (i.e., zones with no 
record of earthquakes, Kelleher and McCann, 1976; 
Lallemand et al., 2018; van Rijsingen et al., 2018) sug-
gests that (1) seamounts are probably not seismic 
asperities, and (2) they might also act as barriers that 

block rupture propagation and limit the magnitude of 
megathrust earthquakes (Geersen et al., 2015). While 
several studies tend to confirm this (e.g., Wang and 
Bilek, 2011, 2014), direct evidence is still missing.

Seamounts are also suspected to impact upper-
plate topography and trigger subduction erosion 
(i.e., removal of material from the upper plate; 
Vannucchi et al., 2006; Clarke et al., 2018) and to 
experience partial decapitation (Cloos, 1993; Cloos 
and Shreve, 1996; shallow, small-volume [Mariana- 
type margins] and deeper, larger volume, i.e., at the 
base of the accretionary wedge [Chile-type margins]). 
The small volumes of subducted seamounts recov-
ered in underplated units suggest that most of them 
get subducted down to the deep mantle, like “nor-
mal” oceanic crust. In all cases, they are suspected 
to have a large impact on the long-term coupling of 
the subduction interface (Agard et al., 2018).

While oceanographic studies inform us about 
present-day seamounts, geophysical imaging of 
subducting seamounts meets several issues. Resolu-
tion, for example, is generally too low to distinguish 
deformation features within seamounts (with the 
notable exception of the study of Park et al., 1999). 
Additionally, geophysical studies access only the top 
10–15 km, and imaging the nature of the subducting 
plate below this is limited to very exceptional setups 
(e.g., Singh et al., 2011).

Exposed examples of fossil seamounts are 
there fore paramount to directly access a several 
million-year-long history on ocean floor and in a sub-
duction zone, as well as internal deformation and 
metamorphism. As earlier mentioned, preserved fos-
sil examples of seamounts are rare. Some escaped 
subduction and may be good places to study oceanic 
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processes (e.g., Slave Province, Corcoran, 2000; Nica-
sio Reservoir Terrane, Schnur and Gilbert, 2012). Yet 
only two fossil seamounts have so far been reported 
as having once been subducted: the Snow Moun-
tain Volcanic Complex in the Franciscan complex 
(MacPherson, 1983; Shervais et al., 2005) and the 
Anarak-Kabudan seamounts in Central Iran (Bagheri 
and Stampfli, 2008). The Snow Mountain Volcanic 
Complex is a 20 × 15–km-large, at least 1-km-thick 
oceanic unit that was incipiently metamorphosed 
at blueschist facies, as shown by the occurrence of 
metamorphic lawsonite and aragonite (Mac Pherson, 
1983). The Anarak unit is a ~30 × 15–km-large and 
≤500-m-thick unit interpreted to be a seamount. It 
is composed of bimodal volcanics (alkali basalts 
and rhyolite) overlain by a carbonate atoll and a 
pelagic veneer; however, the current structure has 
been strongly dismembered during Paleotethys 
closure and late faulting. It is affected by high-pres-
sure–low-temperature metamorphism, with a 
continuous evolution from pumpellyite-actinolite 
facies to albite- lawsonite and epidote-crossite facies. 
The Kabudan Guyot has a smaller size (~20 × 20 km 
large), and only the carbonate cap, pelagic veneer, 
and slope facies deposits are exposed. Bagheri and 
Stampfli (2008) argue that surrounding tectonic 
structures derive in part from upper-plate deforma-
tion due to seamount subduction.

While volcanism was studied in detail in the Snow 
Mountain Volcanic Complex and the sedimentary 
evolution in the Anarak-Kabudan seamounts, little 
has been done so far to characterize the volcanism, 
sedimentation, subduction-related deformation, 
incipient metamorphism and fluid circulation in a 
single seamount. These observations require a fully 
exposed, almost intact, 3D fossil subducted sea-
mount, as is the Siah Kuh seamount reported here.

 ■ 2. GEOLOGICAL SETTING

The Zagros Mountains in southern Iran result 
from long-lived convergence that is still active 
today between the Arabian and the Eurasian plates 
(convergence rates of 22 ± 2 mm/yr; Vernant et al., 
2004; Masson et al., 2007). Ophiolite belts, locally 
referred to as the Colored Mélange (Gansser, 1955), 

are the remnants of the Neotethys ocean separating 
Arabia from Eurasia (Fig. 1A). Subduction of the 
Neotethys under Eurasia is testified to by Jurassic 
to Quaternary magmatism in the Sanandaj-Sirjan 
zone (SSZ) and in the Urumieh Dokhtar magmatic 
arc (UDMA; mentioned as “arc magmatism” on 
Fig. 1A). While collisional structures are well char-
acterized in the Zagros fold-and-thrust belt and 
in the lower part of the Crush Zone (Agard et al., 
2005; Molinaro et al., 2005a; Omrani et al., 2008), 
oceanic material is little affected by collision-re-
lated deformation and metamorphism (Agard et al., 
2006). Slab break-off occurred during the Pliocene 
and is characterized by adakitic magmatism in the 
UDMA (Omrani et al., 2008) and regional uplift in 
the Central Iranian Plateau (Molinaro et al., 2005b).

Despite this long subduction history, only a 
handful of exposures of blueschist-facies rocks are 
recovered from this subduction: the Hajiabad-Es-
fandagheh zone in southeastern Zagros, close to 
the Makran, is the only place where high-pres-
sure–low-temperature metamorphism has been 
recorded in the Zagros range (Agard et al., 2006; 
synthetic map in Fig. 1B).

In particular, the Soghan region in the northeast-
ern part of the Hajiabad- Esfandagheh zone (Fig. 1B), 
has been recognized as a stack of high-pressure 
nappes by Agard et al. (2006): the uppermost Ashin 
unit, the intermediate Seghin unit, and the lower-
most “Colored Mélange” zone, here named the 
Siah Kuh unit. The Ashin unit is made of a complex 
imbrication of upper blueschist to epidote-amphi-
bolite facies metasedimentary and metavolcanics 
overlying a thick dunite massif. The Seghin unit 
is in turn composed of hectometer-sized slices 
of blueschist-facies metabasites in a serpentinite 
matrix. The Siah Kuh unit has no characteristics 
of a mélange and is an almost continuous piece 
of oceanic lithosphere with serpentinite, gabbro, 
basalt, and associated hyaloclastite, pelagic, and 
platform sediments (Sabzehei, 1974), and it is likely 
a seamount (Angiboust et al., 2016; Bonnet et al., 
2019). The report of boninitic lavas (Moghadam et 
al., 2013) suggests formation of Siah Kuh above 
an intra-oceanic subduction zone. Traces of incip-
ient metamorphism have been recognized in the 
Siah Kuh unit, in particular with the occurrence 

of lawsonite and aragonite (Sabzehei, 1974; Angi-
boust et al., 2016). Sabzehei (1974) also mentions 
the occurrence of glaucophane and aegirine, but 
these might belong to the overlying Seghin unit. 
Pressure-temperature (P-T) conditions reach 1.1–1.3 
GPa and 520–580 °C for the Ashin unit and 1.7 GPa 
and 500 °C for the Seghin blueschists (Agard et al., 
2006). The occurrence of high-pressure minerals in 
the Siah Kuh unit hints to incipient blueschist-facies 
conditions (Sabzehei, 1974; Angiboust et al., 2016; 
Bonnet et al., 2019). Several geochronology studies 
have tried to date the high-pressure metamorphism 
of the Zagros blueschists: K-Ar dating of white 
mica in the Ashin unit yields ages of ca. 100 Ma 
(Delaloye and Desmons, 1980), in situ Ar-Ar dates of 
phengite are 110–82 Ma in the Ashin unit and 127–95 
Ma for the Seghin unit (Agard et al., 2006), while 
step-heating Ar-Ar dates of phengites are 105–93 
Ma for the Ashin unit and 85–80 Ma for the Seghin 
unit (Monié and Agard, 2009). Rb-Sr ages are more 
scattered, between 135 and 79 Ma for the Ashin unit 
and 95–62 Ma for the Seghin unit (Angiboust et al., 
2016; Moghadam et al., 2017).

The objectives of this study are to precisely 
map and characterize the internal structure of the 
Siah Kuh unit, to demonstrate that it once was a 
seamount on the ocean floor and was later sub-
ducted, and to characterize oceanic and subduction 
structures, metamorphism, and the nature of fluid 
circulating at depth.

 ■ 3. STRUCTURES

The Siah Kuh unit lies structurally below the 
Seghin unit and is separated from it by a sedi-
ment-dominated sliver made of radiolarian cherts 
and fine basaltic tuffs mixed with pillow basalt and 
gabbro. Structures are summed up on the map of 
Figure 1C and cross sections of Figure 2.

3.1 Ocean-Derived Structures

The Siah Kuh massif is composed of two main 
units. The heart of Siah Kuh, herein mentioned 
as A1 unit, is composed, from bottom to top, of a 
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>1-km-thick pile of pillow basalts (Fig. 3A), hyaloclas-
tite, pillow breccia and basaltic flows (Fig. 3B). These 
volcanic rocks are intruded by felsic sub-volcanics 
(hereafter plutons; e.g., Fig. 3C), with local contact 
metamorphism; these plutons are linked with rhyo-
dacitic lavas. All these structures are conformably 
overlain by a massive (up to 50-m-thick, but variably 
thick) gray limestone bed (Figs. 3C–3E), typical of rel-
atively shallow platform depositional environments, 
visible only in the southern and eastern parts of Siah 
Kuh (likely of Upper Campanian to Maastrichtian 
age; Sabzehei, 1974). This gray limestone includes 
in places chert nodules and/or regularly spaced 
chert layers. Some exposures are composed of a 
consolidated rudstone to carbonate conglomerate 
comprising cm-sized clasts of the gray limestone in 
a darker carbonate matrix; these exposures testify 
to a high-energy, possibly wave-controlled sedimen-
tary reworking (Fig. 3F). This limestone is unevenly 
recrystallized, and fossils (preserved in places) indi-
cate a shallow-water ecosystem: gastropods (Fig. 3G), 
foraminifera (Fig. 3H), urchin spines, and bivalve 
shells. The gray limestone bed is overlain by a 200- 
to 500-m-thick deepening sedimentary sequence 
(which directly overlies basalt and hyaloclastite in the 
northern part of Siah Kuh), composed of tuffaceous 
sandstone, finely stratified pink pelagic limestone, 
and red radiolarian chert (Figs. 3E and 3M). Exposures 
on the northern side of Siah Kuh represent deeper 
environments as demonstrated by the fact that 
pelagic sediments directly rest on top of the lavas of 
A1, with no reef limestone intercalation. Debris flows 
within this sequence are characterized by variably 
sized lenses (olistoliths) of massive or pelagic lime-
stone, radiolarian chert, and basalt in a tuffaceous or 
limestone matrix (Figs. 3I–3K), as well as slumps of 
turbiditic material, either consolidated or not, some of 
which appear locally as sheath folds (Fig. 3L). Some 
decameter-sized pods of serpentinite (e.g., Fig. 4F) are 
found within the tuffaceous sandstone all around Siah 
Kuh, but they never make a continuous layer. Parts 
of this sedimentary sequence are locally intruded by 
the felsic plutons of the core of Siah Kuh.

The sedimentary sequence is conformably over-
lain by another set of pillow basalts, hyaloclastites, 
and basaltic flows; this set testifies to the resumption 
of volcanic activity and a rejuvenation of the magmatic 
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edifice (namely, the A1’, A2, A3, and A4 units, Figs. 3C, 
3E, 3M, and 3N), yet with no felsic magmatism. Con-
tinuous layers of pelagic sediments are intercalated 
with the basalts of this rejuvenation event (Fig. 3N). 
This rejuvenation event is geographically discontin-
uous and consists of five 1- to 3-km-wide massifs.

The A unit has all the characteristics of a sea-
mount (i.e., size, magmatic activity, and reef 
lime stone), which may have reached (and in any 
case may have been close to) sea level at the end of 
the first phase of activity, but eventually subsided 
to greater, possibly abyssal depths.

In the northeastern part of Siah Kuh, the reju-
venation events are tectonically overthrust by the 
B unit, which consists, from bottom to top, of a fully 
serpentinized ultramafic base (maximum 800 m 
thick, but thinning and disappearing to the north 
and east of Siah Kuh) enclosing meter-sized gabbro 
pods, an almost continuous gabbro layer intruding 
serpentinite, and, finally, rhyodacitic lava and basalt 
with minor sediments (Fig. 3O). It is proposed that 
this B unit is a lateral equivalent of the A unit on 
the side of the seamount.

3.2 Subduction-Derived Structures

The Siah Kuh unit was subsequently subducted, 
and subduction-related deformation affected the 
whole edifice. The deformation is clearly visible in 
sheared pillow breccia in the north part of Siah Kuh; 
these pillow breccia record a top to the SW sense of 
shear (Fig. 4A). Deformation is conspicuous in the 
sedimentary cover of the A1 unit, where the massive 
limestone is highly and sometimes tightly folded 
(Figs. 3, 4B, and 4C), but is less obvious in basalts 
due to the absence of layering. However, portions 
of the A1 unit are folded and form large-scale anti-
clines, and even thrust on the core of A1 unit (cross 
sections of Figs. 2 and 4C). The contact between A1 
and the lavas of the magmatic rejuvenation event 
is locally not faulted in the southeast part of Siah 
Kuh (contact between A1 and A1′, Fig. 3C). In general, 
the base of the detrital-pelagic sequence acts as a 
décollement with hectometer-scale displacement 
and strongly sheared (top to the W) serpentinite 
pods pinched inside the fault (Figs. 4E and 4F).
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olistolith within the massive limestone cliff; (K) sheath fold in pelagic sediments resulting from slumping; (L) resumption of basaltic volcanism after deep sedimentation in the A2 unit; 
(M) continuous layer of pelagic sediments (pelagic limestone and radiolarian chert) within the basalts of the A2 unit; (N) structure of the B unit; and (O) structure of the B unit showing an 
ultramafic base, felsic lavas, a gabbroic intrusion, and basalts erupted on top of the sequence.
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The main fault within Siah Kuh is the thrust 
fault separating the A unit from the B unit (mainly 
observed in the northeastern part of Siah Kuh) and 
is associated with kilometer-scale displacement, 
since it is rooting in the mantle (i.e., the serpentinite 
base of unit B). Some gabbro exposures at the 
base of the B unit are cataclastically deformed, with 
many cm2-scale slip planes along grain boundaries 

(Fig. 4G). This deformation is accommodated over 
an ~100-m-thick zone. Striations and rare stretching 
lineations in the gabbro indicate a dominant displace-
ment along N060° (inset in Fig. 1C), with a sense of 
shear dominantly top to the NE (Fig. 4G). A network 
of lawsonite-quartz veins is observed along this fault, 
within basalt (Fig. 4H); these veins are high-pressure 
brittle events, likely due to hydraulic brecciation.

Lawsonite veins are frequent in the basalts of 
the top of the A unit. Gabbros of the B unit are 
in most cases isotropic, but they are crossed by 
small (< mm-thick) shear bands filled by chlorite 
or amphibole. One example of a pseudotachylyte 
vein in gabbro was found within Siah Kuh (Bonnet 
et al., 2019; Fig. 4I); this vein is associated with cen-
timeter-to-decimeter displacement.
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Figure 4. Pictures of subduction-related structures. (A) Sheared pillows and pillow breccia in the A unit; (B) folded massive limestone on top of the A unit; (C) large-scale anticline in 
the A unit affecting basalt and massive limestone; (D) tight folding of limestone of the core of the seamount; (E) thrusting (décollement) of pelagic sediments on top of the A unit; 
(F) sheared serpentinite pod pinched in a fault zone; (G) cataclastically deformed gabbro at the base of the B unit; (H) lawsonite-quartz vein with basalt clasts in a basalt of the A2 unit; 
and (I) pseudotachylyte vein in gabbro of the B unit.
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 ■ 4. PETROGRAPHY, GEOCHEMISTRY, AND 
P-T ESTIMATES

4.1 Analytical Methods

A selection of samples is given in Table 1. Anal-
yses and imaging of thin sections were done at the 
scanning electron microscopy (SEM) facilities at 
École Normale Supérieure (ENS), Institut de Phy-
sique du Globe (IPGP), and Institut des Sciences de 
la Terre de Paris (ISTeP); and other analyses have 
been done using the electron microprobe SX5 and 
SX100 (15 kV, 10 nA, 1 µm spot and wavelength-dis-
persive spectrometry [WDS]) at the CAMPARIS 
facility (Sorbonne Université), with diopside (Si, Ca, 
and Mg), orthoclase (K and Al), MnTiO3 (Mn and Ti), 
Fe2O3 (Fe), and albite (Na) as standards. Structural 
formulas were calculated with Fe3+ estimated using 
the method of Leake et al. (1997) for amphibole, and 
considering all iron as ferric in lawsonite. Analyses 
of pseudotachylyte minerals were exclusively per-
formed by energy-dispersive spectroscopy (EDS) 
quantification at the SEM due to small crystal size; 
however, the precision of the analyses was con-
firmed by structural formula calculations.

Element maps were captured with the electron 
microprobe using similar beam conditions as for 
points, with a dwell time of 140 ms and step size of 
3 µm for lawsonite and 100 ms/0.2 µm for amphi-
bole, and they were processed using XMapTools 
v. 2.5.1 (Lanari et al., 2014).

In situ trace-element content of silicates (law-
sonite, pumpellyite, and amphibole, analyzed in 
polished 100 µm section 1529) was determined by 
laser ablation–inductively coupled plasma mass 
spectrometry (LA-ICP MS) (Photon Machine Ana-
lyst G2 193 nm ArF excimer laser ablation system 
coupled to an Agilent 8880 QQQ-ICP-MS) at the 
ALIPP6 laboratory, ISTeP, Sorbonne Université. The 
background was measured for 18 s before and after 
sample analysis by laser ablation. Samples were 
spot ablated for 60 s at an 8 Hz repetition rate in a 
helium gas atmosphere using a 40 μm beam and 
laser energy of 3.54 J/cm2. Argon was employed 
as the plasma gas. International glass standard 
BHVO2G (Jochum et al., 2005) was used as the pri-
mary standard to calculate elemental concentrations 

(using 27Al as the internal standard element with 
electron probe microanalyzer [EPMA] analyses of 
minerals) and to correct for instrument drift. The 
mass spectra were reduced using an in-house Excel 
spreadsheet and macro. Repeated analyses of inter-
national standards ATHO-G and BCR2-G were used 
to estimate the precision of the analyses. Analyses 
reproducibility is within 1%–15% for most trace ele-
ments, except Cs (62%) and Be (36%).

Raman spectroscopy on carbonaceous matter 
(RSCM) has been performed using Raman spec-
trometer Renishaw InVia at ENS on three samples. 
Peak deconvolution was done using PeakFit®. 
Raman spectroscopy was also used to determine 
the nature of polymorphs of calcium carbonates 
and serpentine (Groppo et al., 2006; Schwartz et 
al., 2013; De La Pierre et al., 2014).

Mineral abbreviations are after Whitney and 
Evans (2010).

4.2 Textures

The whole Siah Kuh unit is strongly affected by 
hydrothermal recrystallization close to the seafloor. 
Destabilization of magmatic minerals is ubiquitous: 
glassy mesostase is recrystallized, and magmatic 
pyroxene and feldspars are partly replaced by albite, 
prehnite, pumpellyite, epidote, and chlorite, some-
times as veins (Figs. 5A and 5B). This destabilization 
characterizes the hydration of magmatic rocks by 
hydrothermal processes at the seafloor.

High-temperature contact metamorphism is 
located near felsic plutons. It affects mostly the 
sediments within the A unit. Birefringent garnet 
(hydrogarnet) growth followed by optically isotro-
pic (nominally anhydrous) garnet growth is visible 
in calc-silicate sediments from the heart of Siah Kuh 
(Fig. 5C), and red contact areolas are visible from 
afar in the massive limestone bed.

High-pressure recrystallization imprinting within 
Siah Kuh is localized and mostly occurs in the 
northeastern part of Siah Kuh. Lawsonite occurs in 
veins or as plagioclase pseudomorphs (Figs 5D–5I). 
Lawsonite-quartz veins brecciate greenschist-facies 
hydrothermalized basalt, which contains pumpelly-
ite veins from a previous event (Figs. 5D and 5E). 

However, growth of pumpellyite around lawsonite 
also shows that some of the pumpellyite is retro-
grade (Fig. 5F). Lawsonite crystals are euhedral, 
some have greenish cores and colorless rims, with 
pumpellyite retrogression rims. Rhyolites within 
the core of Siah Kuh also contain lawsonite within 
veins (Fig. 5H). Gabbros are affected by (partly 
high-pressure) recrystallization: plagioclase is pseu-
domorphed into lawsonite and pumpellyite, while 
pyroxene, former olivine, and/or hydrothermal and/
or greenschist-facies amphiboles have overgrowths 
of green amphibole (Figs. 5I–5L).

Aragonite veins are found within basalt, rhyolite, 
and carbonates (Fig. 5M). One sample of tuffaceous 
sandstone contains albite and disorganized mica 
and amphibole and is crosscut by epidote-titanite 
veins (Fig. 5N). Serpentinite is mostly made of liz-
ardite, with bastite and mesh textures.

The single pseudotachylyte vein in Siah Kuh con-
tains fine magmatic crystals of twinned plagioclase 
(forming chromosomes) locally surrounded by 
clinopyroxene (Figs. 6A and 6B). Sulfide minerals 
are abundant in the pseudotachylyte. Some of the 
plagioclase-clinopyroxene crystals are arranged 
as spherulite (Fig. 6B). A former magmatic glass 
is replaced by fine (a few micrometers long) crys-
tals of green amphibole and albite. These features 
correspond to the altered pseudotachylyte identi-
fication criteria described by Kirkpatrick and Rowe 
(2013). One glaucophane crystal was found within 
the tremolite-albite matrix (Fig. 6C).

The southern limit of the Siah Kuh seamount is 
separated from the Seghin unit by a 300–500-m-thick 
sliver of meta sediments (tuffs and radiolarian cherts) 
associated with a few microgabbro and metabasalt 
blocks. Metamorphism of this unit has not been 
further studied here; however, one sample was col-
lected for temperature determination.

4.3 Mineral Compositions

Metamorphic minerals have been analyzed in 
eight samples: metagabbro (1530, 1531, 1532, 1727, 
and 1728), lawsonite-quartz vein (and metabasalts 
matrix, 1734 and 1529), and metasediment (1722). 
Representative analyses are shown in Table 2.
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TABLE 1. SAMPLE DESCRIPTION, LOCATION, MINERALOGY, AND TECHNIQUES USED

Sample Description Unit Latitude N Longitude E Lws Arg Blue amp. SEM/EDS EPMA Raman Ar‑Ar

1428 Fracture in basalt Intermediate sliver 28°28.825’ 56°52.260’ x
1513 Organic‑matter‑rich carbonate Seghin 28°26.780’ 56°50.943’ x
1517 Tuffaceous sandstone Intermediate sliver 28°27.368’ 56°50.723’ x
1518 Rhyolite A1 28°27.462’ 56°50.738’ x x x
1529 Lawsonite vein in basalt B 28°30.887’ 56°51.725’ x x x
1530 Pseudotachylyte and host gabbro B 28°30.935’ 56°51.572’ x x x x
1531 Gabbro B 28°30.963’ 56°51.525’ x x x
1532 Gabbro B 28°31.082’ 56°51.397’ x
1603 Calc‑silicate metasediment A1 28°29.745’ 56°45.539’
1607 Basalt A1 28°32.719’ 56°47.345’ x
1609 Basalt A2 28°32.945’ 56°47.754’ x
1610 Basalt A2 28°32.099’ 56°48.698’ x
1613 Pillow basalt A4 28°32.987’ 56°49.403’
1625 Lawsonite vein in andesite B 28°30.870’ 56°51.719’ x
1628 Aragonite vein in basalt A1 28°28.433’ 56°43.412’ x
1632 Tuffaceous sandstone A1 28°27.178’ 56°47.708’ x
1634 Basalt A1’ 28°26.821’ 56°48.278’ x
1637 Pillow breccia B 28°30.045’ 56°51.600’ x
1640 Lawsonite vein in basalt A2 28°30.321’ 56°50.949’ x
1702 Tuff A2 28°32.924’ 56°47.980’ x
1704 Hydrothermal basalt A2 28°32.225’ 56°48.663’ x
1714 Tuff A1 28°28.702’ 56°48.841’ x
1716 Prehnite‑clinozoisite vein in basalt B 28°30.658’ 56°50.891’ x
1717 Gabbro B 28°30.718’ 56°50.878’ x
1719 Basalt A4 28°30.774’ 56°50.642’ x
1721 Lawsonite vein in basalt A2 28°30.217’ 56°50.895’ x
1722 Tuffaceous sandstone A1 28°30.250’ 56°50.447’ x x
1727 Gabbro B 28°30.722’ 56°51.296’ x x
1728 Gabbro B 28°30.732’ 56°51.308’ x x
1729 Basalt B 28°30.745’ 56°51.312’ x
1730 Gabbro B 28°30.752’ 56°51.320’ x
1731 Gabbro B 28°30.864’ 56°51.443’ x
1732 Gabbro B 28°30.852’ 56°51.519’ x
1733 Gabbro B 28°30.940’ 56°51.577’ x
1734 Gabbro B 28°31.128’ 56°51.525’ x x
1735 Basalt B 28°31.128’ 56°51.525’ x
1736 Lawsonite vein in basalt B 28°31.133’ 56°51.401’ x
1738 Gabbro B 28°28.894’ 56°52.269’ x
1745 Gabbro B 28°28.262’ 56°51.895’ x
pst Pseudotachylyte B 28°30.935’ 56°51.572’ x

Abbreviations: Arg—aragonite; blue amp—blue amphibole; EPMA—electron probe microanalyzer; Lws—lawsonite; Raman—Raman spectroscopy on carbonaceous matter; 
SEM/EDS—scanning electron microscope/energy‑dispersive spectroscopy.
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Figure 5. Microphotographs and backscattered electrons images. (A) Pumpellyite-quartz vein in a basalt (1613); (B) prehnite-clinozoisite vein in gabbro (cross-polarized light, 1716); 
(C) hydro andradite and andradite crystallization in a calc-silicate rock (1603); (D) microstructures of a lawsonite-quartz vein in basalt at the thin-section scale (1529); (E) composite im-
age in a lawsonite- quartz vein in basalt (1529; (F) backscattered electron (BSE) image of a lawsonite- quartz vein, showing destabilization of lawsonite by pumpellyite (1529); (G) small 
lawsonite-quartz vein in basalt (1607); (H) lawsonite-quartz vein in rhyolite with destabilization of lawsonite into pumpellyite (1518); (I) texture of metagabbro with pristine augite 
partially replaced by tremolite and plagioclase fully replaced by lawsonite and pumpellyite (1530); (J) overgrowth of Na-rich amphibole over tremolite in gabbro (1530); (K) overgrowth 
of Na-rich amphibole over hornblende in a high-pressure matrix (1531); (L) complex zoning of amphibole in gabbro (1530); (M) aragonite vein in basaltic rock with quartz-filled vacuoles 
(1628); and (N) hydrothermal vein crossing a deformed metasediment (1722).
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Figure 6. Backscattered electron images of pseudotachylyte vein. (A) Chromosome-shaped plagioclase in a tremolite-albite matrix (devitrified glass) and sulfide; (B) plagioclase- 
clinopyroxene spherulite; and (C) glaucophane in the tremolite-albite matrix.
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TABLE 2. REPRESENTATIVE ANALYSES

Mineral group Amphibole (core to rim) Glaucophane Plagioclase Fassaite Phengite Lawsonite

Sample 1530 1530 1530 1530 1530 pst pst pst pst pst pst pst 1530 1722 1531 1529

SiO2 55.34 42.79 47.76 45.63 52.52 57.10 56.18 53.43 53.73 47.10 49.20 54.35 52.19 50.66 38.97 38.89
TiO2 0.12 0.29 0.65 0.58 0.09 ‑ ‑ 0.17 0.13 1.94 0.66 0.17 0.25 0.20 0.00 0.00
Al2O3 3.02 15.30 9.26 12.93 4.53 20.12 19.71 26.08 26.59 7.56 8.10 25.28 22.87 26.84 31.93 31.82
Cr2O3 0.00 0.00 0.00 0.00 0.00 ‑ ‑ ‑ ‑ ‑ ‑ 0.02 0.04 0.02 0.03
FeOT 3.53 7.13 6.29 6.19 6.53 3.71 3.73 1.47 1.29 12.24 13.06 3.26 4.94 3.08 0.17 0.59
MnO 0.06 0.02 0.14 0.08 0.30 ‑ ‑ 0.06 0.01 0.20 0.24 0.05 0.09 0.03 0.00 0.00
MgO 21.41 16.38 17.71 17.46 19.98 9.32 10.75 1.28 1.46 9.29 14.27 4.07 5.20 3.53 0.12 0.00
CaO 12.75 12.30 12.25 11.81 11.60 0.48 0.47 13.62 12.44 20.80 11.27 0.18 3.49 0.26 18.27 18.41
Na2O 0.68 2.78 1.68 2.47 0.75 7.28 7.17 3.54 4.16 0.70 1.32 0.08 1.63 0.49 0.01 0.02
K2O 0.05 0.16 0.08 0.13 0.03 ‑ ‑ 0.10 0.10 0.02 0.13 10.33 6.12 9.13 0.01 0.00
Total 96.96 97.15 95.82 97.29 96.34 98.00 98.00 99.76 99.92 99.85 98.25 97.77 96.80 94.27 89.50 89.76

Si 7.66 6.08 6.83 6.41 7.34 7.53 7.41 2.45 2.45 1.79 1.85 3.53 3.45 3.41 2.02 2.02
Ti 0.01 0.03 0.07 0.06 0.01 ‑ ‑ 0.01 0.00 0.06 0.02 0.01 0.01 0.01 0.00 0.00
Al 0.49 2.56 1.56 2.14 0.75 3.13 3.06 1.41 1.43 0.34 0.36 1.93 1.78 2.13 1.95 1.94
Cr 0.00 0.00 0.00 0.00 0.00 ‑ ‑ 0.00 0.00 0.00 ‑ ‑ 0.00 0.00 0.00 0.00
Fe3+ 0.19 0.67 0.41 0.67 0.76 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.03
Fe2+ 0.22 0.18 0.34 0.06 0.00 0.41 0.41 0.06 0.05 0.36 0.41 0.18 0.27 0.17 0.00 0.00
Mn 0.01 0.00 0.02 0.01 0.00 ‑ ‑ 0.00 0.00 0.01 0.01 0.00 0.00 0.00
Mg 4.42 3.47 3.77 3.66 4.16 1.83 2.11 0.09 0.10 0.53 0.80 0.39 0.51 0.35 0.01 0.00
Ca 1.89 1.87 1.88 1.78 1.74 0.07 0.07 0.67 0.61 0.85 0.45 0.01 0.25 0.02 1.01 1.02
Na 0.18 0.76 0.47 0.67 0.20 1.86 1.83 0.31 0.37 0.05 0.10 0.01 0.21 0.06 0.00 0.00
K 0.01 0.03 0.01 0.02 0.00 ‑ ‑ 0.01 0.01 0.00 0.01 0.86 0.52 0.78 0.00 0.00
Sum cat 15.08 15.67 15.36 15.47 14.96 14.83 14.89 5.00 5.02 4.01 4.00 6.92 7.00 6.94 5.00 5.01

#(O,OH) 23 23 23 23 23 23 23 8 8 6 6 11 11 11 8 8
Tr Mhst Mhb Tsch Mhb Gln Gln An0.68 An0.62

Abbreviations: cat—cation; Tr—tremolite; Mhst—magnesiohastingsite; Mhb—magnesiohornblende; Tsch—tschermakite; Gln—glaucophane; An—anorthite.
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White Mica

White mica is rare overall in Siah Kuh, due to the 
mainly mafic lithologies, but it is found in metased-
imentary sample 1722 and in the pseudotachylyte 
(Fig. 7A). Core mica in this sample has tetrahedral Si 
(TSi) values of ~3.3 atoms per formula unit (apfu), but 
rims have higher TSi values of ~3.4 and up to 3.52 apfu 
(Fig. 7A). The pseudotachylyte part of sample 1530 also 
contains rare white mica with TSi of 3.45–3.55 apfu.

Chlorite

Chlorite is ubiquitous in Siah Kuh mafic and sed-
imentary rocks. In all lithologies, its composition is 
clinochlore (Fig. 7B).

Lawsonite

Lawsonite occurs as veins in metabasalts and as 
pseudomorphs of plagioclase, with only small com-
positional differences. Lawsonite crystals in veins 
are enriched in Fe in the core and rim compared 
to the mantle (Figs. 7C and 7D). Substitution for 
aluminum in octahedral sites is very limited (max-
imum 0.12 apfu on a total of two octahedral sites 
per eight oxygens), and all points in veins plot on 
the Cr-Fe3+ joint of Vitale-Brovarone et al. (2014; see 
Supplemental Materials1). Trace-element patterns 
(Fig. 7E) show enrichment in Cs, Be, Pb, Sr, Eu, and 
Ni and a strong depletion in Zr, Hf, Ti, Mn, and Cr 
and heavy rare-earth elements (HREEs) compared to 
the primitive mantle, Pb, Sr, and Eu positive anom-
alies, and Zr, Hf, and Ti negative anomalies. This 
pattern is similar to what is observed by Martin et 
al. (2014) and Vitale-Brovarone et al. (2014) but with 
lower HREE content. Cores of lawsonite have lower 
REE-Ti concentrations than the rims and a smaller 
Pb positive anomaly, but higher Sr concentrations.

Pumpellyite

Pumpellyite is Mg- to Al-pumpellyite (Supplemen-
tal Materials [footnote 1]). Higher iron concentrations 

are observed in prograde pumpellyite compared to 
retrograde pumpellyite in veins. Prograde pumpel-
lyite is overall poor in rare-earth elements (REEs) 
but enriched in Cs, Be, V, and Ni compared to the 
primitive mantle (Fig. 7E). It has positive Pb and Eu 
anomalies but no Sr anomaly.

Amphibole

Amphibole is very frequent in metagabbro, 
where it displays complex zoning as shown by 

X-ray maps (Figs. 8A and 8B); this zoning testifies 
to multi-stage metamorphism. Composition plots 
(Figs. 8C–8F) show that cores of amphibole have 
an increasing A(Na + K + 2Ca) “pargasitic” content 
(from tremolite to pargasite), whereas rims have 
no pargasitic content. In contrast, rims are enriched 
in BNa (sodic ferri-magnesiohornblende). High-Al 
glaucophane is found within the pseudotachylyte 
vein. Amphibole in the matrix of lawsonite-quartz 
veins and in metasediment is tremolite to magne-
sio-hornblende that shows no sign of high-pressure 
recrystallization.

1 Supplemental Materials. Item S1: Striation and 
fault plane orientation in gabbro. Item S2: Addi-
tional chemistry plots for chlorite, pumpellyite, and 
lawsonite. Item S3: Results of Raman spectroscopy 
on carbonaceous material. Item S4: Methods and re-
sults of Ar-Ar geochronology. Item S5: Major- and 
trace- element analyses of lawsonite and pumpellyite. 
Please visit https://doi.org/10.1130/GES02134.S1 or 
access the full-text article on www.gsapubs.org to 
view the Supplemental File.
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Figure 7. Chemistry of metamorphic minerals. (A) TSi versus XMg of white mica; (B) OAl versus XMg of chlorite; (C) Al2O3 map of a 
lawsonite vein (1529); (D) FeOT map of lawsonite inside a lawsonite vein (1529); and (E) trace-element patterns of lawsonite in vein.
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Clinopyroxene

Clinopyroxene (other than primary, magmatic 
augite) is only found within the pseudotachylyte 
vein. It corresponds to sodium-rich augite with a 
significant incorporation of Al in the octahedral site 
and no vacancy, along a Ca-Tschermak substitution 
(Mg, Fe2+) + Si = 2 Al (Table 2 and Fig. 9A). These 
analyses are similar to those of clinopyroxene 
in blueschist-facies pseudotachylytes in Corsica 

(Austrheim and Andersen, 2004; Deseta et al., 2014) 
close to the fassaite described by Deer et al. (2013).

Plagioclase

Plagioclase (other than magmatic) is found 
within the pseudotachylyte. It is chemically labra-
dorite, with anorthite fractions from 0.55 to 0.68 
(Fig. 9B) but also incorporates up to 0.35 apfu of Fe 

and Mg, replacing Al in the tetrahedral site. Charge 
balance is accommodated by a jadeite-like substi-
tution: Na + Al = Ca + (Mg, Fe2+).

4.4 P-T Estimates

Precise P-T estimates on low-grade rocks are 
challenging, due to the existence of only local 
recrystallizations (i.e., limited rock reactivity). We 
hence used a multi-step approach to determine 
approximate P-T conditions in the Siah Kuh edifice.

Raman Spectroscopy on Carbonaceous Matter

Calibrations used are by Beyssac et al. (2002) 
for samples 1513 and 1517 and Lahfid et al. (2010) 
and Kouketsu et al. (2014) for sample 1632. While 
sample 1632 is a metasediment from within the 
Siah Kuh seamount, 1513 and 1517 are found on the 
flanks of Siah Kuh at the limit with the Seghin unit. 
For sample 1632, all preferred calibrations agree 
within 10 °C and record a maximum temperature 
of 220 ± 50 °C for the core of the seamount.

In contrast, sample 1513 records a maximum 
temperature of 500 °C, similar to the peak tempera-
tures determined in Seghin (Angiboust et al., 2016).

Sample 1517, located in the sliver between 
Siah Kuh and the Seghin unit, records a maximum 
temperature of 400 °C, advocating for peak P-T con-
ditions between Siah Kuh and Seghin.

Lawsonite Stability

Pseudosection modeling using Perplex v. 6.7.7 
(Connolly, 1990, 2005) has been performed in order 
to determine the P-T conditions for pure lawsonite 
formation in quartz-lawsonite veins, using the 
internally consistent data set of Holland and Pow-
ell (2003). Although pumpellyite is present in the 
veins, it mostly occurs within parts where early 
hydrothermal veins are reworked and as a retro-
grade phase destabilizing lawsonite. The starting 
composition used is the one of lawsonite (equiv-
alent of 1 mol% CaO, 1 mol% Al2O3), with quartz 
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Figure 8. Chemistry of amphiboles. (A) Complex zoning of amphibole revealed by TSi mapping, and (B) BNa mapping; (C) dis-
crimination diagram of amphibole after Hawthorne et al. (2012); (D) discrimination diagram of amphibole after Leake et al. 
(1997); (E) plot for amphibole, where BNa is a proxy for pressure and ANa a proxy for temperature; and (F) plot for amphibole, 
according to Bonnet et al. (2018).
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and water saturated. Carbonate minerals are never 
found in these veins; so the activity of CO2 was fixed 
to 0. No solid solutions were used. This pseudo-
section model defines a temperature-independent 
high-pressure field above 0.3 GPa (Fig. 10).

Aragonite Stability

Pure aragonite in veins in the Siah Kuh sea-
mount can be modeled using the same method, 
with 1 mol% CaO and saturated CO2. This defines 
a high- pressure– low- temperature domain above 
0.6 GPa at 250 °C.

Absence of Antigorite

The stability of serpentine minerals is highly 
temperature dependent. In our study, the presence 
of lizardite and the absence of antigorite and talc 
point to temperatures below ~300 °C (Evans, 2004; 
Schwartz et al., 2013).

Absence of Sodic Pyroxene

Despite the ubiquitous occurrence of pure albite 
(formed from magmatic plagioclase during hydro-
thermalism or prograde metamorphism), no pure 
jadeite has been found in the rocks. This defines 
a possible high-pressure limitation for the P-T 
conditions reached by Siah Kuh, below 0.8 GPa 

at 250 °C. However, impure jadeite could form at 
lower pressures, and its absence might point to the 
low reactivity of rocks.

Reactions in Metagabbro

Metamorphic textures in metagabbros, as in 
most rocks from Siah Kuh, are far from equilib-
rium. The complex zoning pattern is probably 
inherited from seafloor hydrothermalism, while 
the BNa overprint results from high-pressure meta-
morphism. Magnesium-rich glaucophane is only 
found in the devitrified glass of a high-pressure 

pseudotachylyte. Recrystallization only concerns 
rims of pyroxene, shear bands, or plagioclase. In 
spite of this, element transfer at some stage of the 
metamorphism must be efficient as shown by open- 
system plagioclase replacement (influx of Mg, Fe, 
and H2O to form pumpellyite and lawsonite).

The riebeckite-bearing samples of Angiboust et al. 
(2016) belong to the high-pressure, slightly warmer 
sliver between Siah Kuh and Seghin; riebeckite was 
not found anywhere else in the seamount. Glauco-
phane occurs only in the pseudotachylyte vein.

Reactions in Metasediment

Most of the metamorphism in metasedimentary 
sample 1722 seems to be related to low-pressure reac-
tions. Mica cores (and amphiboles) perpendicular to 
the foliation are supposed to be of detrital origin, as 
shown by Ar-Ar dating of white mica (age of 123 Ma, 
older than the underlying limestone; Supplemental 
Materials [footnote 1]). However, high-TSi rims (up to 
3.52 apfu) around white mica advocate for a high-pres-
sure record (e.g., Angiboust et al., 2014), although this 
interpretation might be challenged by the occurrence 
of pure hydrothermal celadonite on the seafloor (e.g., 
Alt and Teagle, 2003) and the assemblage missing bio-
tite, K-feldspar, and quartz (Massonne and Schreyer, 
1987). We deduce that much of the metamorphic 
recrystallization within Siah Kuh results from seafloor 
alteration and relatively high-temperature hydrother-
malism, while subduction metamorphism is restricted 
to only a few index minerals.

Peak P-T conditions for the Siah Kuh seamount 
can therefore be estimated with temperatures ~220 
± 50 °C and pressures of 0.7 ± 0.1 GPa (Fig. 10).

 ■ 5. DISCUSSION

5.1 Seamount Genesis and Oceanic Stage

5.1.1 Seafloor Roughness

Identification of the A unit Siah Kuh as a sea-
mount, i.e., as a discrete volcano on the seafloor 
is due to (1) the conical shape of the edifice; 
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(2) voluminous amounts of erupted material build-
ing up a continuous, >1.5-km-thick pile of pillow 
lavas, lava flows, and hyaloclastite; (2) shallow-wa-
ter column for the sedimentation of massive 
(possibly reef) limestone on top of this volcanic edi-
fice, with high-energy reworking of sediments and 
benthic fauna; (3) deepening sediments from shal-
low-water limestone to pelagic limestone (although 
the subsidence might not be linked with the load of 
the seamount; see discussion in 5.1.2); and (4) slope 
destabilization processes recorded in sediments 
of the Siah Kuh unit by abundant mass transport 
deposits (MTDs; such as olistoliths, debris flows, 
and slumps; Figs. 3F and 3I–3L) affecting diversely 
consolidated lithologies.

While the current shape of the Siah Kuh unit 
partly results from thrusting (i.e., B onto A unit) and 
antiformal arching (Fig. 2), the core of the Siah Kuh 
unit is relatively unaffected by thrusting and thus 
probably close to its initial shape.

The large amount of (pillow) lavas is frequently 
used to characterize seamounts (e.g., Corcoran, 
2000). The exposed thickness of the Siah Kuh unit 
is, however, much less than what is observed in 
the largest seamounts on Earth (e.g., Hawaii or the 
Canary islands), where the base lies at ~4–5 km 
depth and the summit reaches a few km above sea 
level. The Siah Kuh seamount was, however, not 
a mid-ocean seamount (with alkaline geochemical 
signatures) but more likely formed in a supra-sub-
duction environment as an arc volcano (Moghadam 
et al., 2013). Due to upper-plate bending, the base 
of arc volcanoes is often situated at shallower 
depths, ~1.5–3 km (e.g., the Izu-Bonin-Mariana 
arc, somewhat shallower in the Tonga-Kermadec 
arc), which is more compatible with the top of 
the >1.5-km-thick Siah Kuh unit reaching or being 
close to the surface. More importantly, there are 
no modern or fossil examples of smooth oceanic 
crust reaching the ocean surface only due to upper-
plate bending.

Given its estimated height, the Siah Kuh sea-
mount would classify among the 10,000 largest 
seamounts on modern ocean floors (Hillier and 
Watts, 2007).

The build-up of the core of Siah Kuh is a long-
term process, as suggested by the diversity of 

volcanic products (basalts and rhyolite) in Siah Kuh. 
The end of volcanic activity in the core of Siah Kuh 
is marked by a progressive increase in the amount 
of sediments with respect to lavas, from mm- to 
cm-scale sedimentary layers associated with hyalo-
clastites to tens-of-meters-thick beds of massive 
limestone deposited at shallow depths intercalated 

with lava flows. Whether the seamount reached 
the surface or not cannot be ascertained by current 
observations. The absence of massive limestone in 
the topographically highest portions of the core of 
Siah Kuh might be due to early erosion or absence 
of deposition when Siah Kuh was an oceanic island 
or late erosion during Zagros uplift. In the northern 
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part of Siah Kuh, pelagic sediments were depos-
ited directly on top of basalts and hyaloclastites 
from the core of Siah Kuh, thus lacking shallow 
limestone intercalations. This suggests that the 
northern portion of the Siah Kuh unit remained at 
greater depths than its southern counterpart, imply-
ing the existence of steep submarine slopes around 
the summit of the Siah Kuh seamount.

These steep slopes are also suggested by ubiq-
uitous syn-sedimentary mass transport deposits. 
Similar observations made in modern seamounts 
and volcanic islands point to the potential tsuna-
migenic character of these events (e.g., McMurtry 
et al., 2004).

The B unit is very different because it comprises 
an ultramafic base and fewer volcanics than the A 
unit. Initial continuity between the A and B unit is 
suggested by the occurrence of very similar felsic 
lavas in A and B and the continuity in metamor-
phic grades. The scarcity of sediments in B could 
be explained by a larger sedimentation depth and 
potential erosion.

While unit B comprises a basal serpentinite 
enclosing gabbroic pods as part of the oceanic 
sequence (i.e., below gabbros and basalts), the 
basement of the A unit is not exposed. Serpentinite 
pods within thrusts of the A unit suggest it is partly 
made of serpentinite but may also include older 
crustal material.

The oceanic evolution of Siah Kuh is presented 
on Figure 11 (Late Cretaceous).

5.1.2 Record of Subsidence in the Siah Kuh 
Seamount

Sediments within the Siah Kuh seamount show 
a progression from subsurface (<100 m depth) to 
pelagic sedimentation (including radiolarian chert 
commonly forming at several km depth). These 
sediments are in place directly on top of the sea-
mount, and Cretaceous sea level varies by <100 m 
(Haq et al., 1987), thus pointing to the subsidence 
of the whole edifice. Many hypotheses can explain 
subsidence, such as (1) continuous thermal subsid-
ence of the oceanic plate, (2) thermal subsidence 
after thermal rejuvenation of the lithosphere, or 

(3) isostatic equilibration of the oceanic lithosphere 
under the load of the seamount. Subsidence could 
also result from (4) bending of the downgoing plate 
before subduction (i.e., forebulge and foredeep; 
Ranero et al., 2003), (5) modifications of astheno-
spheric mantle upwelling and therefore dynamic 
topography (Detrick and Crough, 1978), or (6) cou-
pling changes on the subduction interface (Agard 
et al., 2018).

The Siah Kuh seamount was located close to the 
Equator during the Late Cretaceous (<15° latitude, 
Barrier et al., 2008), and the biogenic activity was 
likely high as were sedimentation rates (>50 m/m.y.; 
Bosscher and Schlager, 1993). The subsidence 
must have been faster than sedimentation pro-
cesses, leading to the drowning of the seamount. 
This fast subsidence in the Siah Kuh seamount is 
not compatible with passive processes such as the 
long-term cooling of the underlying oceanic litho-
sphere (hypotheses 1 and 2, responsible for a mean 
subsidence of ~30 m/m.y.; Detrick and Crough, 
1978; Smith and Sandwell, 1997) or dynamic 
topography (hypothesis 5, <50/m.y.; Flament et al., 
2013). The large volume of basalt erupted during 
magmatic rejuvenation, intercalated with pelagic 
sediments tends to prove that the seamount had a 
long postsubsidence history that would not be com-
patible with the forebulge and foredeep hypothesis 
(hypothesis 4).

We consider hypothesis 3 to be the most likely, 
because isostatic equilibration of the lithosphere 
under the load of a seamount is very fast (<1 m.y., 
Campbell, 1986) and expected to be of the order of 
several kilometers (e.g., Hawaii, Watts and ten Brink, 
1989). The boninites reported in Siah Kuh (Mogha-
dam et al., 2013) also point to an intra-oceanic (and 
supra- subduction) setting.

Precise dating of the time interval between shal-
low and deep sedimentation could help quantify 
subsidence rates and characterize the nature of the 
oceanic lithosphere, in particular its thermal age 
(e.g., Smith and Sandwell, 1997).

Resumption of magmatism in Siah Kuh has a 
limited impact on the subsidence of the oceanic 
lithosphere (and potential thermal uplift), since 
only pelagic sediments are interbedded with 
the lavas.

5.2 High-Pressure Metamorphism and 
Regional Implications

The subduction and later evolution of the Siah 
Kuh seamount is presented in Figure 11 (from 
Paleocene–Eocene to present).

5.2.1 Pressure-Temperature Conditions and 
Potential Complexities

Although limited, the metamorphic imprint 
within Siah Kuh implies peak pressure-tempera-
ture conditions of 200–300 °C and 0.5–0.9 GPa. 
These conditions are typical of high- pressure– low- 
temperature metamorphism developed in cold 
geothermal gradients such as subduction zones. 
The metamorphic imprint (both the density of 
metamorphic veins and extent of recrystalliza-
tion) increases toward the NE of Siah Kuh, which 
is consistent with the past direction of subduction: 
the deepest subducted units are more metamor-
phosed. The occurrence of one aragonite vein in 
the western part of Siah Kuh (sample 1628) implies 
that pressures above 0.5 GPa are expected even 
for the shallowest part. Hence, the whole Siah Kuh 
seamount was subducted down to 20–30 km.

A comparable trend in metamorphic conditions 
is observed in the Anarak seamount (Bagheri and 
Stampfli, 2008). This evolution of metamorphism 
could correspond to the depth difference between 
the front and the back of a subducted seamount 
(~7 km, ~0.2 GPa, and 40 °C for the Siah Kuh sea-
mount on a 20° dip slab). An alternative explanation 
for this metamorphic trend involves tectonic over-
pressure and underpressure (Gerya, 2015; Ruh et 
al., 2017), but this would result in estimated pres-
sure differences between the front and back of the 
subducting seamount ≤0.2 GPa.

The increasing density of metamorphic veins 
toward the deepest parts requires the occurrence 
of brittle failure, which in theory is impeded by 
increased confining pressure, and requires an 
excess of either shear stress (i.e., tectonic overpres-
sure) or pore-fluid pressure (i.e., fluid overpressure 
leading to hydraulic brecciation). The apparently 
random vein orientation in Siah Kuh favors the 
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second hypothesis. This observation and lawsonite 
crystallization in gabbro exclusively in the northeast 
part of Siah Kuh could be explained by warmer 
temperatures that increase the solubility of solutes 
in super-critical metamorphic fluids. Fast exhuma-
tion of the Siah Kuh unit is required to allow the 
preservation of fresh metamorphic aragonite and 
lawsonite (Gillet and Goffé, 1988).

5.2.2 Regional Significance

The Siah Kuh seamount is one of the few 
remnants of Neotethyan oceanic lithosphere sub-
ducted below Eurasia (which later evolved into the 
Zagros collision; Agard et al., 2006, 2011). Given 
its structural position below subducted units (oce-
anic and offscraped from the slab or as part of a 
forearc, i.e., the Seghin and Ashin units, respec-
tively; Angiboust et al., 2016), it can be concluded 
that Siah Kuh was located outboard of Eurasia, 
as part of the lower plate with respect to the Eur-
asian subduction zone. The presence of boninites 
(Moghadam et al., 2013) suggests that the Siah 
Kuh seamount was also in a supra-subduction 
position with respect to a second, more southerly 
subduction (which is well documented by regional 
studies; e.g., Searle and Cox, 1999; Agard et al., 
2006, 2007). Due to its structural position below 
the Ashin unit and the Seghin blueschists, the Siah 
Kuh unit most likely underwent subduction and 
metamorphism after them. The age of oceanic sed-
iments overlying Siah Kuh is Upper Campanian to 
Maastrichtian (76–66 Ma, Sabzehei, 1974), making 
it indeed younger than almost all metamorphic 
ages in the Ashin and Seghin units. Subduction 
of the Siah Kuh seamount may have favored the 
final exhumation of older blueschist units in the 
Hajiabad-Esfandagheh area because it represents 
a more buoyant piece of slab (Cloos, 1993). The 
123 Ma age of white mica in Siah Kuh metasedi-
ments, in any case, does not constrain the timing 
of metamorphism, because the ages are older than 
sedimentation in the Siah Kuh unit (76–66 Ma) and 
may correspond to detrital micas showing an age 
mixing between earlier and high-pressure meta-
morphism (Fig. 7A).

5.3 Implications for Subduction Interface 
Processes

5.3.1 Location at the Subduction Interface

The Siah Kuh seamount was subducted down to 
~30 km. While the top of Siah Kuh clearly was at the 
top of the slab (i.e., along the subduction interface; 
Agard et al., 2018), the nature of the upper plate is 
debatable. The present-day Seghin unit and the 
small intermediate sliver thrust onto Siah Kuh are, 
however, good candidates. This is suggested by the 
greater abundance of low TSi phengite crystals in 
samples from the bottom part of the Seghin unit 
(Angiboust et al., 2016); these crystals may reflect 
the juxtaposition with the Siah Kuh unit. Chaotic 
metamorphic blueschist-facies lineation in parts 
of the Seghin unit could reflect postlineation dis-
turbance by the subducting Siah Kuh seamount 
(Fig. 1D). There are, however, no clues for major 
tectonic erosion of the Seghin unit due to subduc-
tion of the Siah Kuh seamount (Vannucchi et al., 
2006; Clarke et al., 2018).

5.3.2 Strain Localization

Subduction-related deformation is mostly local-
ized in serpentinite between the A and the B unit, 
and in sediments (with minor serpentinite) below 
magmatic rejuvenation events of the A unit. This 
deformation migrates from within the A unit to 
the contact between the A and B units, as shown 
by faults within the A unit that are crosscut by 
the major thrust fault separating A from B. Small 
offsets (maximum hectometric) are observed 
within the A unit, while kilometer-scale offsets are 
observed between the A and the B unit. By contrast, 
the later, Neogene deformation is highlighted by 
the folding of the reef limestone, which is likely 
related to the activity of a collisional blind thrust 
below Siah Kuh.

Most of the deformation within A and B is duc-
tile: pressure solution seams in sediments, subgrain 
formation, twinning and moderate dynamic recrys-
tallization in calcite, incipient bulging and undulose 
extinction of quartz, and growth of phyllosilicate 

along grain boundaries (this study; Angiboust et 
al., 2016). Brittle deformation is rather observed 
in veins (mainly lawsonite veins) within the A unit, 
in cataclastic gabbros and in one pseudotachylyte 
vein in the B unit.

The long-term tectonic evolution of Siah Kuh 
unit suggests that (1) the main subduction interface 
was initially located above the seamount Fig. 11), 
with incipient deformation localizing within the 
A unit, ultimately leading to the detachment of the 
seamount from the slab (2) at peak burial, the main 
subduction interface was locked, and the A and B 
units juxtaposed (with some evidence for brittle 
deformation, as discussed above), and (3) ductile 
deformation prevailed during and after detachment 
of the seamount from the downgoing slab around 
peak metamorphic conditions. Detachment must be 
in part rooted in the serpentinized mantle, as shown 
by the occurrence of serpentinite within faults 
(basal serpentinite of the B unit and serpentinite 
pods within the A unit). The interface might also be 
the contact between oceanic lithosphere underlying 
the seamount, because this has been shown to be 
a weak layer where deformation is localized (e.g., 
in Hawaii; Got et al., 2008). The complex nature of 
the Neotethyan lithosphere (potentially involving 
extensional continental allochthons) can also favor 
this detachment.

5.3.3 Seismogenic Behavior

The Siah Kuh seamount was subducted down 
to ~30 km at ~250 °C, i.e., within the subduction 
seismogenic zone (Hyndman et al., 1997). Fossil 
earthquake rocks in subduction contexts are diverse 
since they depend on strain rate, from high strain 
rate frictional melting creating pseudotachylytes 
to intermediate strain rates involving small slip on 
thick fault zones (e.g., Rowe et al., 2011; Angiboust 
et al., 2015). Pseudotachylytes are rare in exhumed 
units, possibly due to alteration (Kirkpatrick and 
Rowe, 2013), but examples of subduction-related 
ones are found in metasediments (e.g., Ikesawa 
et al., 2003), around the Moho of the subducted 
plate (e.g., Corsica: Austrheim and Andersen, 2004; 
Andersen et al., 2014; Deseta et al., 2014; Magott 
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et al., 2016; Lanzo Massif, W. Alps: Scambelluri et 
al., 2017) or within subducted continental crust 
(e.g., pseudotachylyte and breccia, Austrheim and 
Boundy, 1994; Menant et al., 2018).

The decameter-to-hectometer-long pseudotachy-
lyte vein in the gabbros of the B unit records one 
fracturing event with centimeter-to-decimeter-scale 
slip at high strain rate (hence possibly recording 
a single Mw~2–3 earthquake). The crystallization 
of fassaitic clinopyroxene from the melt indicates 
that frictional melting of the host gabbro occurred 
under high-pressure conditions (Wenk and Weiss, 
1982; Spray, 1988; Austrheim and Andersen, 2004; 
Deseta et al., 2014). The rest of the pseudotachylyte, 
initially made of glass, was completely devitrified 
into (1) glaucophane and phengite at high pressure 
and (2) tremolite and albite at lower pressure. There 
is, however, no record of larger magnitude earth-
quakes nucleated within the seamount that would 
involve networks of thicker pseudotachylyte veins.

The occurrence of such a small earthquake is 
reminiscent of what has been observed around the 
Moho of the subducting plate in Corsica (Ander-
sen et al., 2014; Magott et al., 2016) and probably 
represents an analog of the low-magnitude earth-
quakes detected in present-day subduction zones.

Cataclastic deformation along grain boundar-
ies (~1cm2) in gabbros at the base of B could be 
late, but striation agrees with subduction conver-
gence direction. Whether these could correspond 
to small magnitude earthquakes with complex rup-
ture properties and/or low-frequency earthquakes 
or seismic tremor (Fagereng et al., 2011) is com-
pletely unknown but could be further studied. In 
contrast, sediments within Siah Kuh experience 
mainly ductile deformation that would be associ-
ated with creep (Fagereng and den Hartog, 2017).

Variations in fluid pressure are also critical to 
generate or impede subduction earthquakes. While 
high pore-fluid pressure facilitates small-scale rup-
ture and creep processes (e.g., Kodaira et al., 2004; 
Wang and Bilek, 2014), low pore-fluid pressure can 
favor the accumulation of stress in faults that can 
ultimately lead to large earthquakes. Geophysical 
and seismic imaging suggests high pore-fluid pres-
sure along the subduction interface, in particular in 
and at the front of seamounts, which is commonly 

used to infer a mainly aseismic behavior of sea-
mounts (Mochizuki et al., 2008; Bell et al., 2010; Kato 
et al., 2010). High-pressure veins in Siah Kuh attest 
to the existence of high-fluid pressures responsible 
for the fracture and brecciation of the surrounding 
rocks. The absence of major slip within these veins 
suggests that shear stress does not build up, pos-
sibly due to high pore-fluid pressures.

All these observations indicate that the Siah 
Kuh seamount never behaved as a mega-earth-
quake asperity, and possibly impeded earthquake 
propagation.

5.3.4 Fluid Circulation in the Seismogenic Zone

Fluid has a very strong influence on the creeping 
and seismogenic properties of subducted materials. 
Examining the origin of fluid (using geochemical 
tools) is therefore critical.

High-pressure veins in the Siah Kuh seamount 
are markers for fluid circulation in the seismogenic 
zone (Fig. 12). They relate to a minimum of two dif-
ferent fluids, one responsible for lawsonite veins 
and another one that forms aragonite veins.

Geochemical data on lawsonite in this paper 
are the first to be published in these kinds of 

lithologies and metamorphic grade (for deeper 
examples: Martin et al., 2014; Vitale-Brovarone et 
al., 2014). Progressive enrichment of lawsonite in 
REE from core to rim suggests a continuous fluid 
circulation and open-system crystallization and 
potential dissolution-reprecipitation mechanisms. 
This, however, involves a single source, as attested 
to by the similarity of all spectra. A more detailed 
work, focusing on different veins within the Siah 
Kuh seamount could help decipher whether the 
fluid signature is homogeneous or not at a larger 
scale and potentially trace the origin of these fluids.

The higher density of lawsonite veins in the 
deepest subducted part of Siah Kuh supports local 
dehydration, brecciation, and reprecipitation.

 ■ 6. CONCLUSIONS

The Siah Kuh unit is an exceptionally preserved 
and fully exposed seamount in the Zagros suture 
zone. Our study reveals the complete history 
recorded by this average-sized seamount (~12 × 20 
km, ~3 km high). The main volcanic activity occurred 
during the Late Cretaceous and formed a bathy-
metric relief, a seamount, or possibly an ocean 
island. Simultaneous fast subsidence and slope 

seismogenic zone external
fluids?

seamount 
decapitation 

and exhumation
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effective fluid
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250°C
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Figure 12. Provenance of fluids in the Siah 
Kuh seamount. Local or deep source?

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/16/1/62/4925035/62.pdf
by guest
on 18 March 2020

http://geosphere.gsapubs.org


79Bonnet et al. | Structure and metamorphism of a subducted seamountGEOSPHERE | Volume 16 | Number 1

Research Paper

instabilities anomaly are followed by a resumption 
of volcanism. This edifice was subducted down to 
~30 km during Paleocene–Eocene, and deformation 
is mainly localized within the structural heteroge-
neities of the seamount. There is no proof for a 
large subduction earthquake through the Siah Kuh 
unit, which suggests that it did not behave as a 
seismogenic asperity (and even possibly behaved 
as a barrier to earthquakes). Metamorphic veins 
record subduction-related fluid circulation within 
the seamount. These results (1) constrain the 
long-standing geological evolution of an exception-
ally preserved subducted seamount; (2) document 
the mechanical and chemical transformations of a 
seamount during subduction at lower blueschist- 
facies conditions; and (3) show how fluids migrate 
in the slab during subduction.
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