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Abstract

The evolutionary perspective of cancer (which origins and dynamics result from

evolutionary processes) has gained significant international recognition over the

past decade and generated a wave of enthusiasm among researchers. In this con-

text, several authors proposed that insights into evolutionary and adaptation

dynamics of cancers can be gained by studying the evolutionary strategies of

organisms. Although this reasoning is fundamentally correct, in our opinion, it

contains a potential risk of excessive adaptationism, potentially leading to the

suggestion of complex adaptations that are unlikely to evolve among cancerous

cells. For example, the ability of recognizing related conspecifics and adjusting

accordingly behaviors as in certain free-living species appears unlikely in cancer.

Indeed, despite their rapid evolutionary rate, malignant cells are under selective

pressures for their altered lifestyle for only few decades. In addition, even though

cancer cells can theoretically display highly sophisticated adaptive responses, it

would be crucial to determine the frequency of their occurrence in patients with

cancer, before therapeutic applications can be considered. Scientists who try to

explain oncogenesis will need in the future to critically evaluate the metaphorical

comparison of selective processes affecting cancerous cells with those affecting

organisms. This approach seems essential for the applications of evolutionary

biology to understand the origin of cancers, with prophylactic and therapeutic

applications.

Introduction

Following the pioneer works of Cairns (1975) and Nowell

(1976), cancer is perceived as a phenomenon whose origins

and dynamics result from evolutionary processes (Cairns

1975; Nowell 1976; Merlo et al. 2006; Greaves and Maley

2012; Thomas et al. 2013). Placing cancer in an evolution-

ary ecology landscape is not a semantic problem, but rather

a necessity to understand the origins and progression of

cancer with the ultimate aim of developing ways to control

neoplastic progression and, most importantly, to prevent

cancer and improve therapy when cancer occurs (Aktipis

and Nesse 2013; Thomas et al. 2013). Because cancer cells

abort their altruistic behavior in favor of a selfish life his-

tory strategy (that may eventually involve clonal coopera-

tion), their evolution becomes, at least partially, governed

by the same rules that apply to any autonomous entity pri-

oritizing to maximize its own individual fitness. Several
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authors proposed that insights into evolutionary and adap-

tation dynamics of cancers can thus be gained by studying

the evolutionary strategies of organisms (Deisboeck and

Couzin 2009; Lambert et al. 2011; Ben-Jacob et al. 2012;

Sprouffske et al. 2012; Korolev et al. 2014). Although this

reasoning is fundamentally correct, in our opinion, it con-

tains a potential risk of excessive adaptationism, potentially

leading to the suggestion of complex adaptations that are

unlikely to evolve among cancerous cells. Determining the

limits of adaptation resulting from oncogenic selection

(sensu Ewald and Swain Ewald 2013), and more generally

the differences (as well as similarities) between cancer cell

and organismal evolution, is fundamental to the applica-

tions of evolutionary biology to carcinogenesis and has

direct implications for therapies designed to thwart cancer

cell proliferation.

What are the primary differences between cancers and

organisms, with regard to evolution and adaptation? First,

cancer is an ancestral disease that probably developed

almost immediately following the transition from unicellu-

lar to metazoan life, about one billion years ago (Domazet-

Loso and Tautz 2010), but each cancer must ‘reinvent the

wheel’ because their evolutionary products die within the

host. Malignant cells are, at the best, under selective pres-

sures for their altered lifestyle for only few decades, and a

few dozen or hundreds of cell generations, and even less

when the cancer itself reduces the lifespan of its host; for

example, only 45 generations of replication are required, in

principle, to go from a single cell to the 35–40 trillion cells

in the human body. In this context, despite the rapid evolu-

tion of malignant cells, not all adaptive responses observed

in (rapidly) reproducing unicellular organisms exposed to

natural selection over tens of thousands to millions of years

can be applied to cancer cells with short life histories. For

instance, it has been argued that relatedness within tumors

should influence cell decision to migrate (metastasize) and/

or to locally cooperate (Deisboeck and Couzin 2009; Taylor

et al. 2013). Such behavioral responses indeed exist in some

animal species and microbes (West et al. 2006) to reduce

competition and/or to promote the fitness of related indi-

viduals (Kawata 1987; Le Galliard et al. 2003; Moore et al.

2006). However, these life history strategies are the result of

Darwinian evolution occurring over thousands and/or mil-

lions of years, not over mere decades. Unless ancestral heri-

table traits acquired prior to multicellularity are reactivated

in cancerous cells, it is very unlikely that malignant cells

would be able to display adaptive responses necessitating

the ability of recognizing related conspecifics and adopting

accordingly behaviors that depends on the kin context.

Additional examples arise from the multistep process of

metastasis. Studies have been arguing that the production

and dissemination of metastatic cells should be counter

selected at the initiation and early stages of tumors due to

local resource availability (the selection should favor cells

resistant to anoikis (programmed cell death) and contact

inhibition, but with no migratory potential (Gatenby and

Gillies 2008). At later stages when damage to the tumor

accommodating organ significantly restricts resource avail-

ability, tumor cells with increased motility should have

selective advantage (and higher fitness) despite the cost of

most migrating cells dying without establishing a new col-

ony (Merlo et al. 2006). However, recent studies challenge

the traditional view of a late acquisition of metastatic

potential and instead propose that tumor cells acquire the

motile phenotype early in tumorigenesis (Eyles et al. 2010)

as a result of selection favoring expansion of primary

tumors. Pathologic cell mobility could indeed contribute

significantly not only to metastasis but also to primary

tumor growth (cancer self-seeding theory (Norton and

Massagu�e 2006)), but the pathways to the self-seeding that

the primary tumor will take depends on the cues and con-

comitant selective forces of tumor microenvironment.

Welcoming nutrient rich or hostile-depleted primary

tumor site will result in different outcomes (i) dislodging,

then reattaching in/at the primary site, (ii) dislodging, cir-

culation in blood stream then reattachment in/at the pri-

mary site, (iii) dislodging, circulation in blood stream then

reattachment in a novel (metastatic) site (Norton and

Massagu�e 2006).

Variability in temporal resource quality generating dif-

ferent selection pressures, and resulting in phenotypic

divergence, including sympatric speciation, has been

observed in numerous species (Ehlinger 1990; Spinks et al.

2000; Garant et al. 2005). However, in our mind, the rele-

vance of these examples to cancer remains questionable

because they involve adaptive context-dependent behav-

iors that result from long-term evolutionary processes, at

least more than a few years or decades. The extent to

which the context-dependent behaviors can be favored

during oncogenic selection remains to be determined. Sec-

ond, cancer cell evolution through oncogenic selection

involves different mechanisms for the generation of

genetic and phenotypic variability than organismal evolu-

tion: cancer cell lineages are asexual, they undergo very

high rates of mutation often due to genomic instabilities,

and the mutations and epimutations generated most com-

monly involve losses of gene functions and large altera-

tions to gene dosages, rather than the small alterations to

functions and dosages that appear to typify adaptive

organismal evolution. Organismal adaptations often

involve changes to cellular regulation that decrease cellular

reproduction (e.g., through cell cycle arrest) and survival

(e.g., through apoptosis) when such regulation increases

the evolutionary fitness of the organism; selection during

oncogenesis, however, typically favors abrogations of these

regulatory adaptations (Ewald and Swain Ewald 2013).
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Selection during oncogenesis is therefore commonly

destructive of organismal adaptations. Because destructive

mutations are more common than mutations that gener-

ate or improve sophisticated biological mechanisms,

mutation-driven evolution of cancer is feasible over short

periods of time. The genomic variability of cancer cells,

which may be due to mutagenic microenvironments

favoring deficiencies in DNA repair (Breivik 2011), is

among the causes of both malignancy itself and failures of

chemotherapy due to evolved resistance (Merlo et al.

2006). Given that most mutations are deleterious to cell

survival or replication, especially high variability must by

first principles reduce the probability, precision, and sus-

tainability of adaptive evolution in the context of complex

fits to the environment. A possible example could be the

neovascularization in cancer which involves the evolution

of structures that are similar to blood vessels but less

effective at transport because of aberrant angioarchitecture

(Nagy et al. 2010). Larger mutations, as expected under

genomic instabilities, are also expected to be less likely to

generate adaptive change (Orr 2005). Asexual reproduc-

tion will also prevent or delay the coincidence of adaptive

gene combinations within individual cells and thus

should, in theory, hinder or delay the evolution of adapta-

tions that rely on epistatic effects (De Visser and Elena

2007). Cancer cell populations surmount such popula-

tion-genetic challenges, in part, through their very large

population sizes, which greatly increase the scope for rare,

favored alterations and reduce the efficacy of drift.

Contagious cancers [Tasmanian devil facial tumor dis-

ease (DFTD) and canine transmissible venereal tumor

(CTVT) (Morgia et al. 2006; Murchison 2009)] present

unique exceptions to the expectation, based on these con-

siderations, of reduced adaptive evolution in cancer cells.

In such cancers, fitness is not restricted by the death of the

host, and the transmission of these clonal cancer cell lin-

eages ensures their survival even after the carrying animal

succumbs to the disease. CTVT and DFTD are the two old-

est naturally occurring cancer cell lines, appearing approxi-

mately 11 000 and 20 years ago, respectively (Hawkins

et al. 2006; Murchison et al. 2014). The evolutionary his-

tory of these cancers has allowed the development, pursu-

ance, and implementation of highly elaborate adaptive

strategies that maintain reproductive potential in the hos-

tile micro- (stroma) and macro- (host’s genotype) environ-

ment of their canine and devil hosts.

Finally, even though cancer cells can theoretically dis-

play highly sophisticated adaptive responses, it would be

crucial to determine the frequency of their occurrence in

patients with cancer, before therapeutic applications can

be considered.

The extent to which selection akin to Darwinian evolu-

tion occurs in tumors is an old debate (Tarin et al. 2005;

Scheel et al. 2007; Talmadge 2007); while it undoubtedly

contributes to cancer development and progression (e.g.,

resistance to therapies), certain adaptive traits including

the metastatic cascade could also be explained by pheno-

typic plasticity rather than selection (Scheel et al. 2007;

Gatenby and Gillies 2008; Gatenby et al. 2011). Although

the role of phenotypic plasticity in creating pathogenic

cell motility is now a generally accepted and well-sup-

ported concept (Scheel et al. 2007; Gatenby and Gillies

2008; Gatenby et al. 2011), restrictively using Darwin’s

theories to explain metastasis would remain a misconcep-

tion. Therefore, we think that it is important to add and

emphasize the risk of excessive adaptationism applied to

cancer evolution, and we hope to stimulate additional

debate in this topic. Clearly, further work, especially the-

oretical models, based in population genetics, genomics,

and the evolution of adaptation, is necessary to properly

address this point.

The evolutionary perspective on cancer has gained signif-

icant international recognition over the past decade and, as

all novel scientific paradigms, generated a wave of enthusi-

asm among researchers. The heightened interest is under-

standable as somatic cellular selection and evolution indeed

offer an elegant adaptive explanation for carcinogenesis

with its many manifestations (neoangiogenesis, evasion of

the immune system, metastasis, and resistance to thera-

pies). However, scientists who try to explain oncogenesis

will need to critically evaluate the metaphorical comparison

of selective processes affecting cancerous cells with those

affecting organisms—both similarities and differences need

to be carefully considered. This approach seems essential

for the applications of evolutionary biology to understand

the origin of cancers, to control neoplastic progression, and

to improve therapies.
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