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Understanding of ecologic factors favoring emergence 
and maintenance of highly pathogenic avian infl uenza 
(HPAI) viruses is limited. Although low pathogenic avian in-
fl uenza viruses persist and evolve in wild populations, HPAI 
viruses evolve in domestic birds and cause economically 
serious epizootics that only occasionally infect wild popula-
tions. We propose that evolutionary ecology considerations 
can explain this apparent paradox. Host structure and trans-
mission possibilities differ considerably between wild and 
domestic birds and are likely to be major determinants of 
virulence. Because viral fi tness is highly dependent on host 
survival and dispersal in nature, virulent forms are unlikely 
to persist in wild populations if they kill hosts quickly or affect 
predation risk or migratory performance. Interhost transmis-
sion in water has evolved in low pathogenic infl uenza vi-
ruses in wild waterfowl populations. However, oropharyn-
geal shedding and transmission by aerosols appear more 
effi cient for HPAI viruses among domestic birds.

Wild birds, especially waterbirds of the orders An-
seriformes (ducks, geese, and swans) and Char-

adriiformes (gulls, terns, and waders), are natural hosts 
for infl uenza A (avian infl uenza) viruses. Avian infl uenza 
viruses are classifi ed on the basis of genetic, antigenic, and 
structural characteristics of hemagglutinin and neuramini-
dase proteins. These proteins are involved in binding of 
virus to host cells and release of new virions from these 
cells, respectively. Sixteen hemagglutinins (H1–H16) and 

9 neuraminidases (N1–N9) have been described. For avian 
infl uenza viruses of subtypes H5 and H7, there are 2 types 
of virulence: low pathogenic avian infl uenza (LPAI) virus 
generally produces benign intestinal tract or respiratory in-
fections; highly pathogenic avian infl uenza (HPAI) virus 
generally produces multiorgan systemic infections.

LPAI viruses naturally infect wild waterbirds accord-
ing to host species, age, immune status, feeding behavior, 
premigration aggregation, and aquatic survival of the vi-
rus. Long-term studies in Europe and North America also 
identifi ed seasonal variation in prevalences of infection of 
LPAI virus and circulating subtypes. HPAI viruses primar-
ily infect poultry in which viruses of subtypes H5 and H7, 
presumably from wild birds or contact with their deriva-
tives, sporadically switch to highly virulent strains.

At the end of the 19th century, a disease that caused 
high mortality rates and spread rapidly was described in 
domestic birds in Italy. This fowl plague spread through 
Europe in the early 20th century, most likely through trad-
ing of domestic birds. In 1955, the pathogen responsible 
for the disease was classifi ed as an infl uenza A virus, 
and its relationship to human infl uenza viruses was rec-
ognized. Domestic birds have been affected by recurrent 
outbreaks of HPAI viruses, generally limited to localized 
geographic areas but responsible for high mortality rates 
and substantial economic losses. In contrast, wild birds 
have rarely been involved in HPAI virus infections. Be-
fore 1996, only 1 HPAI virus outbreak was documented 
in the wild, resulting in the death of ≈1,300 common terns 
(Sterna hirundo) in South Africa (1). Since then, emer-
gence and spread of the HPAI virus lineage from Asia 
(H5N1), fi rst discovered in domestic geese in southern 
People’s Republic of China in 1996, has been responsible 
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for the death of thousands of wild birds, occasionally 
through mass mortality events (e.g., Lake Quinghai, Peo-
ple’s Republic of China, in May–June 2005). Extensive 
surveillance of apparently healthy wild populations has 
rarely detected HPAI virus (H5N1), even in areas where 
the virus is endemic in domestic birds (2). In addition, 
some reports of asymptomatic infection by HPAI virus 
(H5N1) in apparently healthy free-living wild birds lack 
important substantiating information and such cases of in-
fection have yet to be convincingly demonstrated (3).

Although recent studies have focused on environmen-
tal factors that contributed to the persistence and spread of 
HPAI virus (H5N1) in southeastern Asia, Europe, and Af-
rica (4–6), general knowledge concerning mechanisms of 
emergence and persistence of HPAI viruses is limited. We 
propose that because the ecologic landscape in which avian 
infl uenza viruses evolve differs markedly between natural 
(i.e., wild birds) and artifi cial (e.g., intensive poultry farm-
ing, free-grazing ducks, and live bird markets) conditions, 
selective pressures differ. These phenomena are likely to 
explain virulence heterogeneity among avian infl uenza vi-
ruses and why HPAI viruses do not naturally emerge or 
persist in natural ecosystems.

Natural Selection
The avian infl uenza virus genome is composed of 8 

segments of negative single-stranded RNA coding for 11 
proteins. Replication by these viruses is termed low fi delity 
because RNA mutations, due to imprecision in the replica-
tion processes, lead to a wide diversity of genetic varia-
tions in progeny. Genetic reassortment between segments 
of different virus subtypes during co-infection of a host cell 
further contributes to progeny diversity, providing a basis 
for rapid evolution and emergence of new avian infl uenza 
viruses in the wild (7). The switch from an LPAI virus to 
an HPAI virus phenotype is achieved mainly by introduc-
tion of multiple basic amino acid residues into the hemag-
glutinin cleavage site. This introduction generally occurs in 
poultry, as has been demonstrated experimentally (8,9).

Transmission–virulence trade-off models proposing 
that high rates of pathogen transmission indirectly select 
for higher levels of virulence have long dominated scien-
tifi c thinking. Along with recent criticisms of these sim-
plistic models (10), we consider that differences in host 
conditions and environments are also major determinants 
of virulence evolution. In many host-pathogen interac-
tions, evolution toward an optimal virulence can occur, 
more or less rapidly, after successful introduction into a 
new host species (11). Virulence evolution involving the 
occasional switch from an LPAI virus to an HPAI virus, 
after introduction into domestic birds (12), does not solely 
result from host species switch but is probably driven by a 
larger set of ecologic parameters encountered in artifi cial 

ecosystems. These ecosystems include poultry farming 
(especially when intensive), free-grazing duck production, 
and live bird markets. Thus, it is likely that LPAI viruses 
and HPAI viruses are adapted respectively to natural and 
artifi cial ecosystems in which they face different ecologic 
constraints such as host population structure, density and 
genetic diversity, and optimal opportunities for virus trans-
mission (Figure).

Under the conditions in which domestic birds are 
maintained, the range of host species available for infec-
tion, compared with natural ecosystems, is considerably 
reduced and limited mainly to galliform birds and water-
fowl, often in monospecifi c fl ocks. Poultry host density is 
often considerably higher than the virus would encounter 
in the wild, and in intensive systems the high density is 
maintained throughout the life of the fl ock. Age structure 
is generally more uniform and environmental conditions 
are frequently kept more equable and constant. In addi-
tion, wider opportunities for viral transmission exist in the 
form of multiple physical transport mechanisms for living 
poultry and their products. The latter mechanisms include 
feces, feathers, and meat, and physical transport can in-
clude cages, packaging, farm workers and their clothes, 
and vehicles used on farms and over long distances. Dur-
ing these physical modes of transport, the ability of the 
virus to survive in the various environments encountered 
is likely to be subject to selection, but at this stage patho-
genicity per se to potential hosts will assume no major 
role, unless this also affects environmental survival. Un-
der these circumstances, selective pressures differ greatly 
from those encountered by the virus in their natural, pri-
marily aquatic, ecosystems. Avian infl uenza virus strains 
that have evolved to survive under these domestic condi-
tions are highly likely to be maladapted to natural ecosys-
tems and hosts. In particular, HPAI viruses, which often 
induce high and rapid lethality in their hosts, require high 
and sustained host contact rates that are rare under natural 
conditions, being restricted to extreme weather conditions 
or to particular stages of the life cycle.
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Figure. Comparison of natural versus artifi cial ecosystems showing 
different ecologic constraints for evolution of avian infl uenza virus 
(AIV).
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HPAI viruses in wild birds appear to retain their high 
virulence, leading to infections being discovered almost 
entirely in sick or dead birds (13). After HPAI virus out-
breaks in wild birds, LPAI viruses with genetic affi nities 
to HPAI virus lineages have not been reported. Although 
there have been examples of mutual host–pathogen co-
evolution when new highly virulent viruses enter new wild 
hosts, e.g., amelioration of myxomatosis virulence in wild 
rabbit (Oryctolagus cuniculus) populations (14), there is 
no indication that co-evolution occurs when HPAI viruses 
gain access to wild bird populations.

Host Density and Diversity
The infl uence of host population structure in selection 

for virulence is often critical (15). Levels of virulence are, 
in part, determined by and proportional to the frequency 
with which interhost transmission opportunities occur (10). 
Low virulence can be selected for when host–host contacts 
are infrequent, and high virulence can be selected when 
the host contact rate is high (16). In wild bird populations, 
contact rates between individuals differ markedly between 
seasons (e.g., reproductive period, molt, migration, winter-
ing), species (e.g., colonial birds), and age. High densities 
of birds are reached by some species in molting and win-
tering areas. However, these seasonal aggregations do not 
lead to selection and emergence of HPAI viruses. Com-
pared with conditions in the wild, host densities in farming 
conditions are not only high (even extreme under intensive 
poultry production), but consistently so, which may be a 
major determinant for selection of high virulence.

In the wild, in addition to variable host contact and 
thus transmission rates, avian infl uenza viruses encounter 
high host-species diversity, as in multispecies waterfowl 
aggregations. In this context, generalist pathogens are prob-
ably favored because they can infect a large spectrum of 
host species, thereby maximizing replication and dispersal 
opportunities (17). LPAI viruses have been isolated from 
>105 bird species in 26 families (13), suggesting that they 
are able to infect a large diversity of host species. Under 
farming conditions, the low (sometimes null) host species 
diversity is likely to select for species-specifi c or ecosys-
tem-specifi c pathogens.

Recently, some studies investigated species-related 
variation in susceptibility (from ducks to passerine birds) 
and clinical signs generated by infection with HPAI virus 
(H5N1). Among the bird species artifi cially challenged 
with virus, some laboratory-maintained mallards (Anas 
platyrhynchos) did not show clinical or pathologic signs 
related to HPAI virus (H5N1) infections (18,19). Varia-
tions related to virus excretion have been reported between 
studies, but 1 study reported that the domestic mallard can 
excrete HPAI virus (H5N1) for long periods (<17 days de-
pending on the virus strain) (20). Such a long duration con-

trasts with LPAI virus excretion recently reported in wild 
mallard populations, in which virus was shed for <8 days 
with a mean minimum duration of only 3 days (21). The 
domestic mallard could act as an effi cient host reservoir in 
domestic birds and favor viral transmission during an ex-
tended period, without clinical evidence of infection. Such 
evolution of host specifi city is believed to have contributed 
to the spread and endemicity of HPAI viruses (H5N1) in 
Asia through domestic ducks (20,22,23).

Similarly, LPAI viruses must evolve in the face of in-
traspecifi c variability between individuals of a host popula-
tion. In the wild, immune response varies among birds of 
the same species, depending on their genetic backgrounds, 
age, breeding, molting, migration, health status, and expo-
sure to previous infections with pathogens and other para-
sites (24). LPAI viruses are adapted to this diversity in wild 
birds. Conversely, under many modern farming conditions, 
potential hosts have low genetic diversity and highly struc-
tured age distribution and are regularly protected from some 
pathogens through vaccination and antimicrobial drugs. 
Such artifi cial conditions are likely to select for specialist 
pathogens. Knowledge on the effects of intraspecifi c diver-
sity on the evolution of avian infl uenza viruses is limited to 
extrapolations from experimental studies. However, these 
experimental conditions do not refl ect intraspecies diver-
sity encountered in the wild and avoid detection of poten-
tial individual variation in response to avian infl uenza virus 
infection, according to host life history traits. Development 
of experimental and theoretical studies focusing on the ef-
fects of host density and diversity at the community and 
species levels and in different environments (ranging from 
totally enclosed to open air) should provide useful infor-
mation regarding evolution of virulence of avian infl uenza 
viruses in natural and artifi cial ecosystems.

Should I Kill My Host?
In many host–pathogen associations, the pathogen-

esis related to infection leads to an overall weakening of 
infected individuals. Although LPAI virus infections in 
wild birds are generally considered to be benign, in poultry 
they can cause mild disease, depression, and problems with 
egg production (25). However, physiologic and behavioral 
effects in wild birds may have been overlooked. van Gils 
et al. (26) reported impaired foraging and migration effi -
ciencies in infected Bewick swans (Cygnus columbianus 
bewickii), suggesting that host behavior might be affected 
by LPAI viruses in subtle ways not previously envisaged. 
Latorre-Margalef et al. (21) also reported that body mass 
was lower in infected wild mallards than in uninfected wild 
mallards and that the amount of virus shed by infected juve-
niles was negatively correlated with body mass. These re-
cently discovered effects of LPAI virus infection, although 
mild, could nevertheless have implications for host fi tness. 
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For example, delayed migration and impaired foraging of 
Bewick swans likely retarded their arrival on their arctic 
breeding grounds, reducing the chances of these birds re-
producing successfully in the year of infection. The impli-
cations of such mild symptoms for transmission and evolu-
tion of avian infl uenza viruses remain to be determined.

Given that predators sometimes prey preferentially on 
sick animals, differential susceptibility between several host 
species (or individuals) can lead to greater predation on the 
more susceptible ones (27). Adverse physiologic or behav-
ioral effects of infection might decrease host antipredator 
performance, favor predation on infected birds, and thus 
decrease transmission of avian infl uenza viruses among tar-
get hosts of the pathogen (i.e., immunologically unexposed 
waterbirds). Conversely, host antipredator performance re-
duction can favor infection of predators, and host fatality 
can lead to infection in scavengers. Such virus transmission 
between prey and predators and scavengers has been shown 
for HPAI virus (H5N1), with reported deaths in crows, 
birds of prey, and mammals (e.g., Felidae and Mustelidae). 
However, transmission of avian infl uenza viruses has not 
been sustained within predator and scavenger populations, 
indicating that these host infections represent a dead-end 
for virus transmission. Viruses inducing strong physiologic 
effects, even if they do not directly lead to death, are there-
fore unlikely to be selected in wild waterbird populations if 
they affect host antipredator performance. Studies focusing 
on differential fi tness and predation rates on avian infl u-
enza virus–infected wild bird species, considering the ef-
fects of the infection itself, but also differences in behavior 
induced by infection, would help to clarify these aspects. In 
terms of fi tness, experiments on artifi cially infected captive 
waterfowl, examining egg mass, clutch size, incubation be-
havior, hatching success, chick mass, and chick survival 
could also be illuminating.

Pathogen distributions and abundances in the envi-
ronment can alter the decisions hosts make with regard to 
whether to stay and resist or to disperse from 1 place to 
another with lower pathogen risk (28). Pathogen transmis-
sion and dispersal are intricately linked, and it is widely 
acknowledged that pathogens may benefi t from investing 
in dispersal strategies. Dispersal of avian infl uenza viruses 
is poorly documented in natural conditions. For HPAI vi-
ruses, current knowledge of the potential for virus disper-
sal through long-distance migration is mainly limited to 
extrapolations from experiments on captive-reared ducks 
performed under laboratory conditions (19). These birds 
are not subjected to sustained high-energy expenditure and 
unlikely to experience immunosuppression, for which there 
is increasing evidence in birds undertaking migration (29). 
Although infected birds might be able to disperse virus over 
short distances, e.g., during periods of cold weather (4), ex-
periments in which birds are subjected to physiologic stress-

es associated with migration are needed to determine their 
capacity to spread virus over long distances. Experimental 
studies with captive wild waterbirds could test responses 
to infection during exposure to realistic physiologic or nu-
tritional stresses that replicate long-distance migration or 
winter food shortage. In addition to monitoring the extent 
of virus shedding, effects on physical activity, response to 
stimuli, or time spent feeding should be investigated. Indi-
rect estimations of virus dispersal derived from knowledge 
of bird migrations could also provide complementary infor-
mation related to the spread of avian infl uenza viruses.

Life Outside the Host
Transmission of LPAI viruses among wild waterbirds 

is considered to be mainly by the fecal–oral route, with 
virus particles excreted from infected birds directly from 
feces into water and contracted by potential hosts by inges-
tion of virions in water or on food therein (30). Although 
no evidence has been provided, potential fecal–fecal trans-
mission through fecal drinking could also favor infection 
of the cloaca and the lower part of the digestive system. 
Recent studies have highlighted that HPAI virus (H5N1) 
replicates more (and for longer periods) in the host bird 
trachea than in the digestive tract (18,19). In addition, se-
vere lung congestion and alveolar and bronchiolar edema, 
together with virus isolation from tracheal swab speci-
mens, suggested that oropharyngeal excretion occurred in 
infected wild birds (31). Preponderance of oropharyngeal 
excretion is associated with systemic infections caused by 
HPAI viruses, in contrast to the propensity for cloacal virus 
excretion associated with digestive tract infections of LPAI 
viruses. Thus, oropharyngeal and fecal excretion represent 
2 strategies that may be selected according to ecosystem 
characteristics. Production of viral particles in aerosols is 
probably the most effi cient transmission strategy in con-
fi ned environments with high densities of birds, high ambi-
ent temperature and humidity, and forced air circulation, 
as under intensive farming conditions (32). Selection for 
systemic infection, accompanied by oropharyngeal excre-
tion and airborne transmission, could potentially be fa-
vored under these circumstances (33). Experimental stud-
ies focusing on the evolution of wild-origin LPAI viruses 
in domestic birds in confi ned environments could provide 
interesting insights regarding selection for oropharyngeal 
excretion and airborne transmission.

However, after excretion, virus must survive in the envi-
ronment long enough to be able to contact and infect suscep-
tible hosts. Although persistence of avian infl uenza viruses 
in water appears to be the natural mechanism to maintain and 
transmit infl uenza viruses in wild bird populations, Brown 
et al. (34) compared 2 strains of HPAI virus (H5N1) with 
several wild bird–origin LPAI viruses and found that HPAI 
virus (H5N1) does not persist in water as long as LPAI vi-
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ruses, at least under experimental conditions. This fi nding 
suggests that HPAI viruses could be less adapted than LPAI 
viruses to spread by the fecal–oral route in water. Inactiva-
tion processes of avian infl uenza viruses in the environment 
are far from being well understood, but abiotic factors such 
as salinity, temperature, relative humidity, or ultraviolet ra-
diation are likely to play a key role (33,35).

Avian Infl uenza Virus in a Human-Made World
Technologic and cultural changes in human popula-

tions open new ecologic niches for pathogens, which differ 
from niches available in the wild, and inevitably infl uence 
their evolution (36). Networks of poultry production are 
likely to favor persistence of virulent strains, with continu-
ous circulation of avian infl uenza viruses between con-
nected farms or markets. Such networks probably favor 
the endemicity of HPAI virus (H5N1) in Southeast Asia 
(6). Multispecies live-animal markets are good examples of 
how humans have artifi cially created a dynamic system in 
which a large variety of avian infl uenza viruses can be gen-
erated and maintained, thus offering enhanced opportuni-
ties for genetic reassortments (37). Connectivity in modern 
human populations through transportation has increased 
during the past century, especially during the past few de-
cades, in volume and, with regard to virus spread, in speed 
and geographic extent. The past 2 decades have seen a huge 
increase in poultry production and associated national and 
international trade in Southeast Asia. After adapting to in-
tensive farming processes, avian infl uenza viruses can be 
spread intercontinentally among domestic bird populations 
by human activities. This fi nding appears to be the most 
likely scenario for spread of HPAI virus (H5N1) from Asia 
to Europe and Africa, in which the poultry trade (legal, un-
regulated, and illegal) seems to have been the predominant 
mechanism (38).

Thus, human activities are likely to artifi cially shape 
evolutionary ecology of avian infl uenza viruses and select 
for traits (e.g., virulence, oropharyngeal excretion, host 
specialization) that confer optimal viral fi tness under the 
artifi cial conditions of poultry production, distribution, and 
processing. Evolution of this host–pathogen system created 
by humans might represent one of the main threats to hu-
man health. Because of an increasing number of studies fo-
cused on genetic characteristics of avian infl uenza viruses, 
we are aware of the mechanistic basis of high pathogenesis. 
However, our efforts to predict and control emergence of 
these viruses through this complex host–pathogen system 
must consider host ecology and ecosystem characteristics 
(natural or linked with human activities) in which these 
viruses evolve.

If application of evolutionary theory to medical sci-
ences enables a predictive framework for long-term host–
pathogen interactions, it also provides interesting possi-

bilities for design of medical and public health protection 
measures (39). Integration of ecologic and evolutionary 
theory in epidemiology and human diseases has shown in-
creased interest (40). These theories could provide useful 
information for long-term disease management. However, 
such approaches and their possible applications for avian 
infl uenza viruses are lacking.

Do we have to favor developments of poorly diversi-
fi ed farming conditions with high densities of genetically 
impoverished birds? What are the long-term effects of 
mass vaccination? Can we avoid virus exchanges between 
wild and domestic birds? Answering such key questions 
fi rst requires sound understanding of natural mechanisms 
of virulence selection and, from that knowledge, taking ac-
count of ecologic features that may select for HPAI viruses 
in artifi cial ecosystems.
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