P. Bastien, C. Blaineau, and M. Pages, Leishmania: sex, lies and karyotype, Parasitol Today, vol.8, pp.174-177, 1992.

M. Bessat and K. Ersfeld, Functional characterization of cohesin SMC3 and segregation of large and minichromosomes in Trypanosoma brucei, Mol Microbiol, vol.71, pp.1371-1385, 2009.

C. Blaineau, P. Bastien, and M. Pages, Multiple forms of chromosome I, II and V in a restricted population of Leishmania infantum contrasting with monomorphism in individual strains suggest haploidy or automixy, Mol Biochem Parasitol, vol.50, pp.197-204, 1992.

C. Britto, C. Ravel, P. Bastien, C. Blaineau, M. Pages et al., Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes, Gene, vol.222, pp.107-117, 1998.

S. L. Croft and P. Olliaro, Leishmaniasis chemotherapy--challenges and opportunities, Clin Microbiol Infect, vol.17, pp.1478-1483, 2011.

A. K. Cruz, R. Titus, and S. M. Beverley, Plasticity in chromosome number and testing of essential genes in Leishmania by targeting, Proc Natl Acad Sci U S A, vol.90, pp.1599-1603, 1993.

M. Den-boer, D. Argaw, J. Jannin, and J. Alvar, Leishmaniasis impact and treatment access, Clin Microbiol Infect, vol.17, pp.1471-1477, 2011.

T. Downing, H. Imamura, S. Decuypere, T. G. Clark, G. H. Coombs et al., Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance, Genome Res, vol.21, pp.2143-2156, 2011.

P. Dubessay, C. Ravel, P. Bastien, L. Crobu, J. P. Dedet et al., The switch region on Leishmania major chromosome 1 is not required for mitotic stability or gene expression, but appears to be essential, Nucleic Acids Res, vol.30, pp.3692-3697, 2002.

P. Dubessay, C. Ravel, P. Bastien, M. F. Lignon, B. Ullman et al., Effect of large targeted deletions on the mitotic stability of an extra chromosome mediating drug resistance in Leishmania, Nucleic Acids Res, vol.29, pp.3231-3240, 2001.

N. M. El-sayed, P. J. Myler, G. Blandin, M. Berriman, J. Crabtree et al., Comparative genomics of trypanosomatid parasitic protozoa, Science, vol.309, pp.404-409, 2005.

I. Y. Iourov, S. G. Vorsanova, and Y. B. Yurov, Structural alterations of chromosome 2 in Leishmania major as evidence for diploidy, including spontaneous amplification of the mini-exon array, Mol Biochem Parasitol, vol.1, pp.177-188, 1989.

S. Kramer, Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids, Mol Biochem Parasitol, vol.181, pp.61-72, 2012.

P. Leprohon, D. Legare, F. Raymond, E. Madore, G. Hardiman et al., Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum, Nucleic Acids Res, vol.37, pp.1387-1399, 2009.

S. Martinez-calvillo, K. Stuart, and P. J. Myler, Ploidy changes associated with disruption of two adjacent genes on Leishmania major chromosome 1, Int J Parasitol, vol.35, pp.419-429, 2005.

A. Mukherjee, L. D. Langston, and M. Ouellette, Intrachromosomal tandem duplication and repeat expansion during attempts to inactivate the subtelomeric essential gene GSH1 in Leishmania, Nucleic Acids Res, vol.39, pp.7499-7511, 2011.

C. Ravel, P. Dubessay, P. Bastien, J. Blackwell, and A. Ivens, The Complete Chromosomal Organization of the Reference Strain of the Leishmania Genome Project, L. major ;Friedlin', Parasitol Today, vol.14, pp.301-303, 1998.

F. Raymond, S. Boisvert, G. Roy, J. F. Ritt, D. Legare et al., Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species, Nucleic Acids Res, vol.40, pp.1131-1147, 2012.

M. B. Rogers, J. D. Hilley, N. J. Dickens, J. Wilkes, P. A. Bates et al., Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania, In Genome Res. Rustchenko, E, vol.7, pp.2-11, 2007.

J. K. Scholler, S. G. Reed, and K. Stuart, Molecular karyotype of species and subspecies of Leishmania, Mol Biochem Parasitol, vol.20, pp.279-293, 1986.

A. K. Singh, B. Papadopoulou, and M. Ouellette, Gene amplification in amphotericin B-resistant Leishmania tarentolae, Exp Parasitol, vol.99, pp.141-147, 2001.

Y. Sterkers, L. Lachaud, L. Crobu, P. Bastien, and M. Pagès, FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major, Cell Microbiol, vol.13, pp.274-283, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02499180

S. M. Sunkin, P. Kiser, P. J. Myler, and K. Stuart, The size difference between leishmania major friedlin chromosome one homologues is localized to sub-telomeric repeats at one chromosomal end, Mol Biochem Parasitol, vol.109, pp.1-15, 2000.

J. M. Ubeda, D. Legare, F. Raymond, A. A. Ouameur, S. Boisvert et al., Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy, Genome Biol, vol.9, p.115, 2008.

P. Wincker, C. Ravel, C. Blaineau, M. Pages, Y. Jauffret et al., The Leishmania genome comprises 36 chromosomes conserved across widely divergent human pathogenic species, Nucleic Acids Res, vol.24, pp.1688-1694, 1996.

C. Zeyl, Experimental studies on ploidy evolution in yeast, FEMS Microbiol Lett, vol.233, pp.187-192, 2004.

, In the L. major Friedlin strain, for example, chromosome 2 is 60% monosomic and 40% disomic, chromosome 5 is 30% disomic and 70% trisomic and chromosome 27 is 80% disomic, pp.10-10

. Sterkers, In the presented model, two homologs of chromosome 'a' and 'b' are represented in interphase in a diploid hypothesis. In A, chromosome 'b' replicates properly and, during mitosis, segregates in a symmetric manner. Chromosome 'b' was disomic (Di) before cell division and remains disomic afterwards. Chromosome a does not replicate properly due to the non-firing of a replication origin: following the S phase, there are only three copies of chromosome a; an asymmetric segregation occurs, leading to a cell disomic for chromosome 'a' and another one monosomic (Mono) for chromosome 'a'. In B, chromosome 'a' replicates and segregates properly. For chromosome b, replication begins properly but restarts for one of the sister chromatid an over-replication occurs, 2011.