C. Friedel and C. R. Hebd, Sur une combinaison naturelle des oxydes de fer et de cuivre, et sur la reproduction de l'atacamite, Seances Acad. Sci, vol.77, p.211, 1873.

H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi et al., P-type electrical conduction in transparent thin films of CuAlO 2, Nature, vol.389, p.942, 1997.

T. Elkhouni, M. Amami, P. Strobel, and A. B. Salah, Structural and magnetic properties of substituted delafossite-type oxides CuCr 1 x Sc x O 2, World J. Condens. Matter Phys, p.3, 2013.

M. Ahmadi, M. Asemi, and M. Ghanaatshoar, Improving the electrical and optical properties of CuCrO 2 thin film deposited by reactive RF magnetron sputtering in controlled N 2 /Ar atmosphere, Appl. Phys. A, vol.124, p.529, 2018.

D. O. Scanlon, A. Walsh, and G. W. Watson, Understanding the p-type conduction properties of the transparent conducting oxide CuBO 2 : a density functional theory analysis, Chem. Mater, vol.21, p.4576, 2009.

E. Guilmeau, A. Maignan, and C. Martin, Thermoelectric oxides: effect of doping in delafossites and zinc oxide, J. Electron. Mater, vol.38, p.1107, 2009.

S. Saini, P. Mele, S. Osugi, and M. I. Adam, Effect of oxygen pressure on thermoelectric properties of p-type CuAlO 2 films fabricated by pulsed laser deposition, J. Mater. Eng. Perform, vol.27, p.6290, 2018.

I. Sinnarasa, Y. Thimont, L. Presmanes, C. Bonningue, A. Barnab-e et al., Influence of thickness and microstructure on thermoelectric properties of Mgdoped CuCrO 2 delafossite thin films deposited by RF-magnetron sputtering, Appl. Surf. Sci, vol.455, p.250, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02335643

I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnab-e, and P. Tailhades, Thermoelectric and transport properties of delafossite CuCrO 2 :Mg thin films prepared by RF magnetron sputtering, Nanomaterials, vol.7, p.157, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01754780

K. Hayashi, R. Fukatsu, T. Nozaki, Y. Miyazaki, and T. Kajitani, Structural, magnetic, and ferroelectric properties of CuFe 1

, Phys. Rev. B, vol.87, issue.2, p.64418, 2013.

J. T. Haraldsen, F. Ye, R. S. Fishman, J. A. Fernandez-baca, Y. Yamaguchi et al., Multiferroic phase of doped delafossite CuFeO 2 identified using inelastic neutron scattering, Phys. Rev. B, vol.82, p.20404, 2010.

K. Hayashi, T. Nozaki, R. Fukatsu, Y. Miyazaki, and T. Kajitani, Spin dynamics of triangular lattice antiferromagnet CuFeO2 : crossover from spin-liquid to paramagnetic phase, Phys. Rev. B, vol.80, p.144413, 2009.

J. T. Haraldsen, R. S. Fishman, and G. Brown, Spin-wave dynamics for the highmagnetic-field phases of the frustrated CuFeO 2 antiferromagnet: predictions for inelastic neutron scattering, Phys. Rev. B, vol.86, p.24412, 2012.

H. Chen and J. Wu, Transparent conductive CuFeO 2 thin films prepared by sol gel processing, Appl. Surf. Sci, vol.258, p.4847, 2012.

Z. Deng, X. Fang, S. Wu, Y. Zhao, W. Dong et al., Structure and optoelectronic properties of Mg-doped CuFeO 2 thin films prepared by sol gel method, J. Alloys Compd, vol.577, p.662, 2013.

F. A. Benko and F. P. Koffyberg, Opto-electronic properties of p-and n-type delafossite CuFeO 2, J. Phys. Chem. Solid, vol.48, p.434, 1987.

Y. Oh, W. Yang, J. Tan, H. Lee, J. Park et al., Photoelectrodes based on 2D opals assembled from Cu-delafossite double-shelled microspheres for an enhanced photoelectrochemical response, Nanoscale, vol.10, p.3729, 2018.

T. Nozaki, K. Hayashi, and T. Kajitani, Electronic structure and thermoelectric properties of the delafossite-type oxides CuFe 1ex Ni x O 2, J. Electron. Mater, vol.38, p.1286, 2009.

C. Ruttanapun, Effects of Pd substitution on the thermoelectric and electronic properties of delafossite Cu 1 x Pd x FeO 2 (x 0.01, 0.03 and 0.05), J. Solid State Chem, vol.215, p.49, 2014.

C. Rudradawong and C. Ruttanapun, Effect of excess oxygen for CuFeO 2.06 delafossite on thermoelectric and optical properties, Phys. B Condens. Matter, vol.526, p.27, 2017.

C. Ruttanapun, P. Jindajitawat, W. Thowladda, W. Neeyakorn, C. Thanachayanont et al., Thermoelectric properties of Sn 2þ -substituted CuFeO 2 delafossite-oxide, Adv. Mater. Res, vol.802, p.21, 2013.

C. Ruttanapun, A. Wichainchai, W. Prachamon, A. Yangthaisong, A. Charoenphakdee et al., Thermoelectric properties of Cu 1 x Pt x FeO 2 (0.0 x 0.05) delafossite-type transition oxide, J. Alloys Compd, vol.509, p.4594, 2011.

T. Nozaki, K. Hayashi, and T. Kajitani, High temperature thermoelectric properties of delafossite-type oxides CuFe 0.98 M 0.02 O 2 (M Mg, vol.2, pp.167-170, 2007.

T. Stocker, J. Exner, M. Schubert, M. Streibl, and R. Moos, Influence of oxygen Fig. 11. Thermal conductivity of 300 nm thick CuFeO 2 :Mg film annealed at 700 C as a function of the measuring temperature. partial pressure during processing on the thermoelectric properties of aerosol-deposited CuFeO 2, Materials, vol.9, p.227, 2016.

Y. J. Jang, Y. B. Park, H. E. Kim, Y. H. Choi, S. H. Choi et al., Oxygen-intercalated CuFeO 2 photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production, Chem. Mater, vol.28, p.6061, 2016.

A. Wuttig, J. W. Krizan, J. Gu, J. J. Frick, R. J. Cava et al., The effect of Mgdoping and Cu nonstoichiometry on the photoelectrochemical response of CuFeO 2, J. Mater. Chem, vol.5, p.171, 2017.

M. S. Pr-evot, X. A. Jeanbourquin, W. S. Bour-ee, F. Abdi, D. Friedrich et al., Evaluating charge carrier transport and surface states in CuFeO 2 photocathodes, Chem. Mater, vol.29, p.4962, 2017.

T. Crespo, Potentiality of CuFeO 2 -delafossite as a solar energy converter, Sol. Energy, vol.163, p.166, 2018.

D. H. Choi, S. J. Moon, J. S. Hong, S. Y. An, I. Shim et al., Impurity dependent semiconductor type of epitaxial CuFeO2 (111) thin films deposited by using a pulsed laser deposition, Thin Solid Films, vol.517, p.3989, 2009.

S. Z. Li, J. Liu, X. Z. Wang, B. W. Yan, H. Li et al., Epitaxial growth of delafossite CuFeO 2 thin films by pulse laser deposition, Phys. B Condens. Matter, vol.407, p.2415, 2012.

T. Joshi, T. R. Senty, R. Trappen, J. Zhou, S. Chen et al., Structural and magnetic properties of epitaxial delafossite CuFeO 2 thin films grown by pulsed laser deposition, J. Appl. Phys, vol.117, p.13908, 2015.

R. A. Wheatley, S. Rojas, C. Oppolzer, T. Joshi, P. Borisov et al., Comparative study of the structural and optical properties of epitaxial CuFeO 2 and CuFe 1 x Ga x O 2 delafossite thin films grown by pulsed laser deposition methods, Thin Solid Films, vol.626, p.116, 2017.

A. Barnab-e, E. Mugnier, L. Presmanes, and P. Tailhades, Preparation of delafossite CuFeO 2 thin films by rf-sputtering on conventional glass substrate, Mater. Lett, vol.60, p.3470, 2006.

E. Mugnier, A. Barnab-e, L. Presmanes, and P. Tailhades, Thin films preparation by rf-sputtering of copper/iron ceramic targets with Cu/Fe 1: from nanocomposites to delafossite compounds, Thin Solid Films, vol.516, p.1456, 2008.

L. Zhang, P. Li, K. Huang, Z. Tang, G. Liu et al., Chemical solution deposition and transport properties of epitaxial CuFeO 2 thin films, Mater. Lett, vol.65, p.3291, 2011.

H. Y. Chen and J. R. Fu, Delafossite CuFeO 2 thin films prepared by atmospheric pressure plasma annealing, Mater. Lett, vol.120, p.49, 2014.

A. Bera, K. Deb, S. Sinthika, R. Thapa, and B. Saha, Chemical modulation of valance band in delafossite structured CuFeO 2 thin film and its photoresponse, Mater. Res. Express, vol.5, p.15909, 2018.

C. G. Read, Y. Park, and K. S. Choi, Electrochemical synthesis of p-type CuFeO 2 electrodes for use in a photoelectrochemical cell, J. Phys. Chem. Lett, vol.3, p.1876, 2012.

A. H. Omran-alkhayatt, S. M. Thahab, and I. A. Zgair, Structure, surface morphology and optical properties of post-annealed delafossite CuFeO 2 thin films, Opt. -Int. J. Light Electron Opt, vol.127, p.3749, 2016.

M. V. Vedernikov and N. V. Kolomoets, Thermoelectric properties of solid solutions of chromium, vanadium and titanium in nickel, Sov. Phys. Solid State, vol.2, p.2420, 1961.

I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnab-e, and P. Tailhades, Determination of modified figure of merit validity for thermoelectric thin films with heat transfer model: case of CuCrO 2 :Mg deposited on fused silica, J. Appl. Phys, vol.124, p.165306, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02337361

E. Mugnier, A. Barnabe, and P. Tailhades, Synthesis and characterization of CuFeO 2þd delafossite powders, Solid State Ionics, vol.177, p.612, 2006.

M. Lalanne, A. Barnab-e, F. Mathieu, and P. Tailhades, Synthesis and thermostructural studies of a CuFe 1 x Cr x O 2 delafossite solid solution with 0 x 1, Inorg. Chem, vol.48, p.6071, 2009.

H. L. Trong, T. M. Bui, L. Presmanes, A. Barnab-e, I. Pasquet et al., Preparation of iron cobaltite thin films by RF magnetron sputtering, Thin Solid Films, vol.589, p.297, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168678

M. Beaudhuin, . Van-der, and . Tampel, Thermal Conductivity Measurement of Thin Layers by the 3u, 2006.

D. G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3u method, Rev. Sci. Instrum, vol.802, p.808, 1990.

E. Trofimov, Thermodynamic Analysis of Phase Equilibrium in Multicomponent Systems Including Metallic Melts, 2014.

J. Schorne-pinto, L. Cassayre, L. Presmanes, and A. , Barnab e, Insights on the stability and cationic nonstoichiometry of CuFeO 2 delafossite, Inorg. Chem, vol.58, p.6444, 2019.

D. Shishin, T. Hidayat, E. Jak, and S. A. Decterov, Critical assessment and thermodynamic modeling of the Cu Fe O system, Calphad, vol.41, p.179, 2013.

O. Aktas, K. D. Truong, T. Otani, G. Balakrishnan, M. J. Clouter et al., Raman scattering study of delafossite magnetoelectric multiferroic compounds: CuFeO 2 and CuCrO 2, J. Phys. Condens. Matter, vol.24, p.36003, 2012.

. Key-geoffrey-lyon, Thermal expansion of glasses at low temperatures, p.6571, 1978.

Z. Xia and J. W. Hutchinson, Crack patterns in thin films, J. Mech. Phys. Solid, vol.48, p.1131, 2000.

X. Wu, J. Lee, V. Varshney, J. L. Wohlwend, A. K. Roy et al., Thermal conductivity of wurtzite zinc-oxide from first-principles lattice dynamics a comparative study with gallium nitride, Sci. Rep, vol.6, p.22504, 2016.

T. Nozaki, K. Hayashi, and T. Kajitani, Thermoelectric properties of delafossite-type oxide CuFe 1ex Ni x O 2 (0 x 0.05), J. Chem. Eng. Jpn, vol.40, pp.1205-1209, 2007.

C. Ruttanapun and S. Maensiri, Effects of spin entropy and lattice strain from mixed-trivalent Fe 3þ /Cr 3þ on the electronic, thermoelectric and optical properties of delafossite CuFe 1 x Cr x O 2 ( x 0.25, 0.5, 0.75), J. Phys. D Appl. Phys, vol.48, p.495103, 2015.

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin et al., Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations, Appl. Phys. Lett, vol.101, p.211908, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00763238