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We investigate the possibility of extracting the probability distribution of the effective environmental tuning and cou-
pling modes during the non-adiabatic relaxation through a conical intersection. Dynamics are dealt with an open
quantum system master equation by partitioning a multi-state electronic subsystem out of all the nuclear vibrators.
This is an alternative to the more usual partition retaining the tuning and coupling modes of a conical intersection
in the active subsystem coupled to a residual bath. The minimal partition of the electronic system generally leads to
highly structured spectral densities for both vibrational baths and requires a strongly non-perturbative non-Markovian
master equation treated here by the hierarchical equations of motion (HEOM). We extend – for a two-bath situation
– the procedure proposed by Q. Shi and coworkers (J. Chem. Phys. 140, 134106 (2014)) whereby the information
contained in the auxiliary HEOM matrices is exploited in order to derive the nuclear dissipative wave packet, i.e. the
statistical distribution of the displacement of the two tuning and coupling collective coordinates in each electronic state
and the coherence. This allows us to visualize the distribution, all along the non-adiabatic decay. We explore a large
parameter space for a symmetrical conical intersection model and a symmetrical initial Franck-Condon preparation.
Some parameters could be controlled by external fields while others are molecule dependent and could be designed by
molecular engineering. We illustrate the relation between the strongly coupled electronic and bath dynamics together
with a geometric measure of non-Markovianity.

I. INTRODUCTION

A conical intersection (CI) of two electronic potential en-
ergy surfaces is one of the key regions where the Born-
Oppenheimer approximation strongly breaks down1–10. It oc-
curs in N−atom systems with N ≥ 3. According to the non-
crossing rule11, two adiabatic electronic states may be energy-
degenerate along a (3N – 8) dimensional seam when they have
the same spin multiplicity or a (3N - 7) one when they are of
different spin multiplicity. In the former case, the other two
degrees of freedom form a subspace, called branching space,
in which the adiabatic potential energy surfaces appear as two
cones touching at the CI (degeneracy is lifted to first order
over the plane tangent to the branching space). This “fun-
nel” is likely to induce ultrafast decay since the non-adiabatic
coupling becomes infinite at the CI. The latter is thus at the
core of photochemical processes in excited states and is giving
rise to a wide research area, both in advanced time-dependent
spectroscopy12–15 and in numerical simulations16–23. Alter-
natively, diabatic representations of the electronic states pro-
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vide a smoother picture of the CI in the branching space24,25.
Even if a rigorous diabatisation raises issues when restricting
the basis to a model made of two electronic states, as abun-
dantly discussed in the literature8,26, a fair approximation may
be derived in practice so that the diagonalization of the dia-
batic model yields the two adiabatic energies of interest23,27.
Within a harmonic approximation, the diabatic potential en-
ergies are described by two paraboloids crossing along a line
(3N – 7 dimensional hyperline). The diabatic electronic cou-
pling is often considered as varying linearly in the vicinity of
conical intersections, where it is zero by construction. In the
branching space, the degeneracy is lifted to first order, except
at the CI point when diagonalizing the diabatic matrix pro-
vides adiabatic potential energies. The two main degrees of
freedom are the tuning mode (TM), Qt , along which the dia-
batic energy gap varies to first order, and the coupling mode
(CM), Qc, that induces the linear electronic coupling28–30.

Simulating excited-state non-adiabatic dynamics in ex-
tended systems remains a challenge and an active topic. This
requires a compromise between the computational scaling and
the need to explore accurately, and in real time, many envi-
ronmental degrees of freedom at any temperature since dis-
sipation is responsible for electronic relaxation. Numerical
methods may be classified according to the explicit or im-
plicit description of the environmental degrees of freedom.
The first strategy involves an explicit description of the elec-
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FIG. 1. Left panel: Schematic view of a conical intersection in the
adiabatic representation along the branching space of the tuning Qt
and coupling Qc modes. Right panel: the diabatic representation in
which the electronic coupling is varying linearly along the coupling
mode.

tronic system and of a large sample of vibrators. It has
been addressed by various strategies ranging from fully quan-
tum methods to semi-classical approaches, for instance multi-
configuration time-dependent Hartree (MCTDH)19,31, multi-
layer-MCTDH32, variational approaches with Gaussian basis
sets (ab initio multiple spawning AIMS33,34, direct-dynamics
variational multiconfiguration Gaussian DD-vmCG)35, tenso-
rial matrix product approaches36 or mixed quantum-classical
trajectories37, semiclassical surface hopping38,39. Full quan-
tum methods based on wave functions suffer from the scal-
ing and from the difficulty of simulating high temperature.
On the other hand, semi-classical strategies may lead to a
questionable description of the quantum noise or of tunneling
effect. An alternative description is dissipative dynamics40,
which treats only implicitly the environment at any temper-
ature with statistical Schrödinger equations41–43, multi-state
quantum Fokker-Planck equation (MSQFPE)44–47, or master
equations in Liouville space. Observables related to the se-
lected active subspace can thus be obtained exactly in the
framework of the harmonic baths with linear couplings by
non-perturbative methods such as the “hierarchical equations
of motion” (HEOM) formalism48,49.

The partitioning between an active subsystem and a thermal
bath determines not only the coupling strength and therefore
the computational scaling and the tractable Markovian or non-
Markovian master equations but also the accuracy of the infor-
mation about some environmental modes. In a two-electronic
state case, the two main strategies are the spin-boson or "star
model" and the effective reaction coordinate model. In the
first case (denoted two-level system TLS), the electronic states
are coupled to the ensemble of environmental modes and in
the second, one or more primary effective coordinates are re-
tained in the active system and are coupled to a residual bath.
In the CI situation, the TM and CM modes are included in the
system denoted two-level system two-coordinate model (TLS-
TC). The relative canonical transformation of the vibrational
modes has been discussed for a long time50–56 and in partic-
ular the relation between the corresponding spectral densities
has been given in a seminal paper about electron transfer57.
This has given rise to an abundant literature using one or the
other partitioning with different dynamical treatments58–68.

The particular CI case has been frequently dealt for instance
with a perturbative Markovian Redfield approach69, time non-
local second-order master equation70, Wigner distribution45,
hybrid quantum master equation71, and recently beyond per-
turbative regime by HEOM72,73. One of the advantages is
the accurate monitoring of the dissipative wave packet in the
branching space that can be mapped by time and frequency
resolved fluorescence spectroscopy73. In particular, it enables
to get information about the vibrational coherence that influ-
ences the dynamics through the CI. However, the dimension
of the basis set for a two-dimension two- or many-electronic-
state system may become prohibitive for HEOM simulations
since all the so-called auxiliary matrices of the correspond-
ing coupled equations have the same dimension as that of
the system. An interesting alternative has been suggested
recently74,75. In this approach, the system describes only two
(or more) electronic states (two-level system TLS) while the
effective TM and CM are included in two highly structured
baths. In most of the cases, this requires non-perturbative,
non-Markovian treatments and, therefore, HEOM with a high
level of hierarchy. The number of auxiliary matrices may be
very large but they have a small dimension (only two by two in
the TLS). This scaling is thus favorable mainly when several
electronic states are considered75.

The main point addressed in the present work is to show
that HEOM techniques enable us to access information about
environmental processes even in the minimal TLS partition.
We define tools able to extract the probability distribution of
the effective modes of the structured spectral densities in real
time from the auxiliary matrices. In this way, we can visualize
the interplay between the electronic transition and the vibra-
tional motion leading to a strong restructuring of the statisti-
cal distribution, which does not remain a passive unperturbed
Gaussian distribution during the non-adiabatic evolution. We
extend for two baths the interesting strategy proposed by Shi
et al.76,77 so as to extract this statistical distribution of the
collective TM and CM from the auxiliary matrices. The time
evolution of the distribution, in particular the average position
or the distortion of the initial Gaussian profile before reaching
the asymptotic regime provide valuable information about the
damped vibrational motion at any temperature.

We illustrate the general trends induced by typical changes
made on the system or on the environmental spectral densities
even if it is not possible to entirely explore the large parameter
space. Some parameters related to the system could be con-
trolled by interaction with laser fields such as the energy gap
and the position of the CI by a Stark shift78–81 or the prepara-
tion of the initial wave packet by modifying the initial super-
position of the electronic states during the ultra fast excitation.
Some parameters are also molecule-dependent, and exploring
the main behaviors is a timely issue in molecular engineer-
ing to design new generations of quantum-assisted molecular
systems for energy transfer82. Indeed it is possible to vary
the parameters entering the model Hamiltonian (potential en-
ergies and couplings) according to the chemical nature of the
chromophore within the molecular system. They will also be
sensitive to the presence of covalent bridges and substituents
(intramolecular interactions) and to the surrounding medium
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(intermolecular interactions with a cage, a protein, or a sol-
vent). For instance, a crossing between a locally excited state
and a charge-transfer state can be displaced both in energy and
position upon playing with the stabilisation or destabilisation
of the charge separation with different types of electroactive
substituents or with solvents of various polarities. The rela-
tive positions, energies, and frequencies of the two minima
will also be affected by the extent of the reorganization of the
bonding pattern induced by the electronic excitation: a large
Stokes shift between absorption and emission spectra will be
the signature of a strong rearrangement. One can choose a sys-
tem in which one electronic state has similar parameters with
respect to the ground state, while the other is strongly shifted.
This is likely to be the case when a state is very bright and the
other is dark. Finally, modulating the intrastate coupling can
be achieved upon changing the nature of the bridge between
the donor and the acceptor in a system experiencing charge or
excitation energy transfer between two sites. Through-bond
and through-space processes should correspond to strong and
weak couplings, respectively.

The paper is organized as follows. In Sec.IIA we define
the main parameters the TLS and TLS-TC models and their
relations. The spectral densities of both models and the cor-
relation functions are given in Sec.IIB. The methodology to
extract the statistical distribution of the baths is summarized
in Sec.IIC while the HEOM equations for two uncorrelated
baths are given in the Appendix. Sec.IID presents one possi-
ble non-Markovianity signature used in this work. Results of
numerical simulations are presented in Sec.III where we illus-
trate the interplay between TM and CM collective modes and
the dissipative electronic wave packet around a CI in a TLS
model.

II. METHODS

A. System-environment partitioning

We consider three electronic states with a ground state |0〉
decoupled from a doublet of coupled excited diabatic states
|1〉 and |2〉. In our model, the ground state |0〉 and the first ex-
cited state |1〉 have the same equilibrium positions but the sec-
ond one |2〉 is spatially displaced. By restricting the electronic
basis set to two excited states, the full vibronic Hamiltonian
in the diabatic representation reads

H = ∑
2
n=1 |n〉Hn 〈n|+(|1〉H12 〈2|+h.c.) (1)

where h.c denotes Hermitian conjugation Hn is the vibra-
tional Hamiltonian associated with each electronic state |n〉
and treated within a harmonic level of approximation. By as-
suming that the frequencies are the same in both states but the
equilibrium positions are different, and by separating the Nt
modes (label t standing for tuning) that tune the energy gap
from the Nc modes (c) that induce a variation of the electronic

TMCM

Tuning bathCoupling
bath

TLS-TC

TLS

FIG. 2. Upper panel: Schematic representation of the TLS-TC
model in which the system includes two two-dimensional vibrational
Hamiltonians associated to two diabatic electronic states while the
environment is formed by modes coupled to the effective TM and
CM of a CI. Lower panel: the TLS in which the electronic energy
gap is coupled to a tuning bath of oscillators and the electronic cou-
pling to a coupling bath.

coupling, Hn reads in mass-weighted coordinates

Hn = εn +1/2∑
Nt
k=1

(
p2

t,k +ω
2
t,k

(
qt,k−q(n)t0,k

)2
)

+1/2∑
Nc
k=1

(
p2

c,k +ω
2
c,k

(
qc,k−q(n)c0,k

)2
)
. (2)

The reference point that defines the equilibrium geometry of
the initial vibrational bath for the partition is the equilibrium
position of the ground state. It is chosen as qt,k = 0 and qc,k =
0. The equilibrium positions of the tuning modes are also
equal to zero in the first electronic state, q(1)t0,k = 0, and those of

the second state will be denoted q(2)t0,k = q0k. The equilibrium
positions of the coupling modes are the same in both states
and equal to zero q(1)c0,k = q(2)c0,k = 0. The electronic coupling is
varying linearly from the CI position,

H12 = ∑
Nc
k=1 ck

(
qc,k−qCI,k

)
. (3)

We consider a symmetrical case for which the CI position cor-
responds to the equilibrium positions of the coupling modes,
qCI,k = qc0,k = 0.

We now summarize the operational relations of the two TLS
or TLS-TC partitions for the CI model. They are illustrated in
Fig.2.

1. TLS partition

When partitioning so as to isolate the electronic subsys-
tem, the full Hamiltonian adapted to the CI case is recast as
H = HS +HBt +HBc + StBt + ScBc. According to the chosen
reference point the system Hamiltonian in the basis set |1〉, |2〉
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is :

HS =
∆

2
σz +

1
2
(I−σz)λt +W12σx (4)

where σ are the Pauli matrices, I the unity matrix, ∆ = ε2−ε1
is the energy gap between the two minima of the diabatic po-
tentials, W12 is the electronic coupling at the reference point.
When it is chosen at the equilibrium position of the coupling
modes, qc0,k, one has W12 = 0. λt = ∑k ω2

t,kq2
0k/2 is the renor-

malization energy (also called reorganization energy) of the
tuning bath. With the chosen reference point, it is added
only to the energy of state |2〉. The two baths are HBt =
1
2 ∑

Nt
i=1

(
p2

t,i +ω2
t,iq

2
t,i

)
and HBc =

1
2 ∑

Nc
i=1

(
p2

c,i +ω2
c,iq

2
c,i

)
. The

system-bath interaction involves collective coordinates Bt =

∑
Nt
k=1 dkqt,k with dk = qt0,kω2

t,k and Bc = ∑
Nc
k=1 ckqc,k (ck be-

ing defined through Eq.(3)). Bt is diagonally coupled to the
electronic system through the operator St =

1
2 (σz− I) (since

only state |2〉 is coupled to the bath due to the choice made for
the reference point) while Bc is off-diagonally coupled by the
operator Sc = σx.

2. TLS-TC partition

In order to incorporate the largest part of the vibronic cou-
pling into the enlarged system, a unitary transformation of the
bath oscillators is made to separate in each case the effec-
tive coordinate that captures the whole coupling51–56,60–62,83,{

qt,i

}
⇒

{
Qt ,Q j

}
j = 2,Nt and

{
qc,i

}
⇒{

Qc,Q′ j
}

j = 2,Nc where Qt =
1

Dt
∑

Nt
k=1 dkqt,k with D2

t =

∑
Nt
j=1 d2

j and Qc =
1

Dc
∑

Nc
k=1 ckqc,k with D2

c =
Nc
∑
j=1

c2
j . The uni-

tary transformation is built so that the residual modes are cou-
pled to the effective one but are not coupled with each other.
The transformed Hamiltonian (Eq.1) is by accounting for the
reference point

H̃ = ∑
2
n=1 |n〉H̃n 〈n|+

(
|1〉W̃12 〈2|+h.c.

)
(5)

with

H̃1 = ε1 +1/2(P2
t +Ω

2
t Q2

t )+1/2(P2
c +Ω

2
cQ2

c)+ H̃B (6)

H̃2 = ε2+λ2+1/2(P2
t +Ω

2
t Q2

t )−DtQt +1/2(P2
c +Ω

2
cQ2

c)+H̃B
(7)

H̃B = 1/2∑
Nt
k=2

(
P2

k + Ω̃
2
k(Qk + d̃kQt/Ω̃

2
k)

2
)

(8)

+1/2∑
Nc
k=2

(
P
′2
k + Ω̃

′2
k (Qk + c̃kQc/Ω̃

′2
k )

2)
(9)

H̃12 = DcQc. (10)

The TLS-TC partitioning retains in the system Hamiltonian
H̃S all the terms of H̃ related to the two-dimensional subspace
and the counter-terms coming from Q2

t and Q2
c in H̃B

66,74,84.

For the TM, the coupling constant Dt determines the dis-
placement Dt/Ω2

t between the equilibrium position of the two
effective diabatic parabolas while the coupling Dc fixes the
slope of the linear electronic coupling in the diabatic rep-
resentation. The residual tuning and coupling baths gather
all the new oscillators Q j or Q

′
j and the system-bath cou-

plings now involve cross terms d̃ jQtQ j or c̃ jQcQ
′
j, respec-

tively. The effective frequencies resulting from the trans-
formed Hessian matrix54 are given by Ω2

t = 1
D2

t
∑

Nt
i=1 di

2
ω2

t,i

and Ω2
c =

1
D2

c
∑

Nc
i=1 ci

2ω2
c,i.

B. Spectral densities and correlation functions

In open quantum systems, the system-bath interaction is
characterized by the spectral density, which has a generic ex-
pression:

J(ω) =
π

2 ∑k f 2
k ω
−1
k δ (ω−ωk) (11)

where f 2
k is the strength of the linear coupling at each fre-

quency. In the TLS, the spectral densities of the tuning and
coupling baths are Jt/c(ω) with fk = dk and fk = ck, respec-
tively, while the spectral densities of the residual baths in the
TLS-TC are Jres

t/c(ω) with fk = d̃k and fk = c̃k. The spec-
tral density has been introduced here in a discrete represen-
tation as it should be the case when the displacements come
from an ab initio normal mode analysis. When the frequency
density is high, one may switch to the continuous representa-
tion by broadening the delta distribution by a Lorentzian func-
tion δ (ω −ωk)→ 1

π

Γ

(ω−ωk)
2+Γ2 as suggested for instance in

refs85,86. Note that a continous spectral density is directly pro-
vided by experiments or by molecular dynamics simulations
giving the correlation of the energy gap87,88. A discretization
taking into account the frequency density is then used for sim-
ulations of MCTDH type89.

The temperature-dependent spectral density
C̃(ω) = J (ω)

(
eβω −1

)−1
with β = 1/kBT is the

Fourier transform of the correlation function of the
collective mode C(t) = T rB

[
B(t)B(0)ρeq

B

]
where

ρ
eq
B = exp(−βHB)/T rB [exp(−βHB)] is the Boltz-

mann equilibrium density matrix of the bath and
B(t) = exp(iHBt)Bexp(−iHBt) (with h̄ = 1 a.u.)

C(t) = 1/π

∫ +∞

−∞

dωC̃(ω)eiωt . (12)

The relation between the spectral density Jres(ω) of the
one-effective mode two-level model with J(ω) of the two-
level model (spin-boson model) has been derived in ref.57.
When Jres(ω) is Ohmic with a friction coefficient η given
by the slope for ω = 0, the spin-boson spectral density is a
Lorentzian function whose width is proportional to this fric-
tion. A small friction in one-effective mode model leads to a
highly peaked J(ω) in TLS model.
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Here, we assume Lorentzian functions for the spectral den-
sities of the tuning and coupling baths given by the Tannor-
Meier expression90

Jt/c(ω) =
pt/cω[(

ω +ωt/c
)2

+Γ2
t/c

][(
ω−ωt/c

)2
+Γ2

t/c

] (13)

where ωt/c gives the peak position, Γt/c is the width and pt/c
is a parameter fixing the coupling strength. The corresponding
residual spectral density of the TLS-TC model is computed by
the following relation,62,65–68,91

Jres
t/c(ω) =

D2
t/cJt/c(ω)

J2
t/c(ω)+W 2

0,t/c(ω)
(14)

where

W0,t/c(ω) =
1
π

PV
+∞∫
−∞

dω
′ Jt,c(ω

′)

ω ′−ω
(15)

with PV the principal value distribution of the Hilbert trans-
form of the TLS spectral density. By using Eq.(14), the resid-
ual spectral density is an Ohmic function with a friction coef-
ficient ηt/c = 2Γt/c. With this parametrization (Eq.(13)), the
correlation function (Eq.(12)) takes the form of a sum of de-
creasing complex exponentials well adapted for applying the
HEOM algorithm,77

Ct/c(t) = ∑
ncor,t/c
k=1 αt/c,keiγt/c,kt . (16)

As shown in ref.92, the complex conjugate may be expressed
with the same γt/c,k but modified αt/c,k coefficients

C∗t/c(t) = ∑
ncor,t/c
k=1 α̃t/c,keiγt/c,kt . (17)

ncor,t/c contains two terms for each two-pole Lorentzian func-
tion plus a number of Matsubara terms corresponding to the
poles of the Bose function. Analytical expressions of α , α̃ ,
and γ are given in refs.65,92.

In the continuous limit, the renormalization energy λt/c, the
effective mode frequencies Ωt/c, and the coupling constant
Dt/c read

λt/c = 1/π

∫
∞

0
dωJt/c(ω)ω−1 (18)

D2
t/c =

2
π

+∞∫
0

dωJt/c(ω)ω (19)

Ω
2
t/c =

2
πDt/c

2

+∞∫
0

dωJt/c(ω)ω3. (20)

The linear couplings of the TLS-TC model may be related to
the renormalization energies by the relation68,74 given here in
mass weighted coordinates

Dt/c =
√

2λt/cΩt/c. (21)

C. Statistical distribution of Bt/c

The hierarchical equations of motion are one of the ref-
erence dynamical methods for open quantum systems mod-
elled with a bath of harmonic oscillators inducing stochastic
modulation of the diabatic energy gap and of the electronic
coupling. The equations giving the evolution of the reduced
density matrix, ρ(t) = T rB [ρtot(t)], were originally derived
for a Drude-Lorentz spectral density in the high-temperature
limit from the Kubo stochastic Liouville equation93 and the
Feynman-Vernon influence functional formalism48,49. They
have been extended for lower temperature94,95 and for fermion
and boson grand-canonical bath ensembles96. The efficiency
of the algorithm relies on the expansion of the correlation
function C(t) as a sum of ncor complex exponential functions
associated to pseudo decay modes of decay. Different expan-
sions have been proposed77 among which the Tannor-Meier
one leading to Eqs.16 and 1790,92, the Padé approximation97,
and the Fano spectrum decomposition scheme98. A direct de-
composition of the bath correlation function based on Cheby-
shev polynomials and Bessel functions has also been proposed
leading to the so called C-HEOM scheme99.

The method has been applied to several processes,
for instance to simulate excitation energy transfer in
photosynthetic light harvesting complexes100–104, electron
transfer64,84,105,106, quantum transport107, heat transport108,
charge separation dynamics109. We assume here an initial fac-
torization between the system and the bath, ρtot(0) = ρ(0)ρeq

B
valid for an ultrafast electronic transition (vertical Franck-
Condon transition)100. The equilibrium initial bath is then
the Boltzmann distribution of vibrational states in the ground
electronic state projected in the bright excited state, and this
initial condition is valid when the vibrational relaxation is not
faster than the electronic dynamics. Initial correlation could
be taken into account with different strategies105,110,111. The
operational equations adapted for two uncorrelated baths and
to the chosen expansion of C(t) are summarized in the Ap-
pendix. Here, we focus on the way the bath information is
extracted from the auxiliary matrices in the two-bath case (i.e.
the CI TLS model) by generalizing the methodology origi-
nally derived by Shi et al.76,77 and recently illustrated in a
single bath and three-state case112.

The auxiliary operators are matrices of the same dimension
as the system density matrix. They are denoted by a collective
index n = {nt ,nc} giving the excitation number in the pseudo
modes of each correlation function: n j =

{
n1, j, · · · ,nncor , j

}
where j = t,c and nk is the quantum number of the kth pseudo
mode. The system density matrix ρ(t) is given by the top row,
i.e. n = {0, · · · ,0} hence ρ(t) = ρI (t) = ρ{0,··· ,0} (t). The
level of the hierarchy is equal to the sum of all the quantum
numbers of the two baths. For each bath, one can also define
the partial level to which belongs a given auxiliary matrix by
summing the quantum numbers of only nt or nc. Extending
the Shi et al methodology76, one may obtain the high-order
moments of the collective bath coordinate Bt/c in each elec-
tronic state from an operator in the system subspace defined
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for the nth order by

X(n)
t/c(t) = T rBt/c

[
Bn

t/cρtot(t) ] (22)

In particular, each diagonal element Xt/c,αα of X(1)
t/c gives the

expectation value of the collective coordinate Bt/c in the cor-
responding electronic state α . This first moment can be ob-
tained from the matrices contributing to the partial first level
for each bath,

X(1)
t/c(t) =−∑n ρn(t) (23)

where the sum runs over all the collective index n for which
∑k nk,i = 1 and ∑k nk, j = 0 with i = t/c and j = c/t respec-
tively. Each diagonal element Xt/c,αα may be renormalized
to have the dimension of the effective coordinate Qt/c. These
diagonal elements X j,αα/D j with j = t,c will be simply de-
noted Xt/c/Dt/c without notation of the electronic state when
the latter is clearly specified. This quantity may be compared
to the average position

〈
Qt/c(t)

〉
of the effective mode com-

puted in the present work in an undamped two-dimensional
effective space (i.e., with the system Hamiltonian H̃S. The
first moment already provides interesting information about
the TM vibrational relaxation and the evolution towards equi-
librium. However, in the particular case of a CI with a sym-
metric preparation in the bright state, the average of the CM
vanishes and the first moment is not sufficient to analyze the
relaxation.

Deeper insight is provided by the full statistical distribution
of the collective modes Bt/c or of the collective coordinate
xt/c = Bt/c/Dt/c in each electronic state. We first discuss the
projection on the collective coordinates Pα(xt/c, t) where α

denotes the electronic state. Pα(xt/c, t) may be compared to
the projection of the two-dimensional undamped wave packet
in each electronic state

Pα

(
Qt/c, t

)
=
∫

dQc/t |Ψα(Qt ,Qc, t)|2 (24)

Pα(xt/c, t) is expanded in a Hermite polynomial basis set,

Pα(x j, t) = ∑n aα, j,n(t)Φn(x j) (25)

with

Φn(x j) =
D j√

2πC j(0)
√

2nn!
Hn

(
D jx j/

√
2C j(0)

)
e
−

D jx2

2Cj(0)

(26)
where j = t/c, Hn is the Hermite polynomial of order n and
C j(0) is the initial value of the correlation function (Eq.(16)),
i.e. the integral of the temperature-dependent spectral density
C̃ j(ω). The expression is adapted from refs.76,77 to ensure
a correct normalization of the distribution and to map from
B j to coordinate x j = B j/D j. The procedure may be under-
stood from an early interpretation of the auxiliary matrices as
time dependent coefficients of an expansion of the stochastic
Liouville equation93 in a basis set of the eigenvectors of the
corresponding relaxation operator98,113. The ratio D2

j/C j(0)

in P(x j) does not depend on the coupling strength. For each
electronic state α the coefficient aα, j,n(t) is the diagonal el-
ement of a matrix built from the auxiliary matrices of partial
level n for the bath j

A j,n(t) =
(−1)n√
n!Cn

j (0)
∑
n

n!
∏
k

nk, j!
ρn(t) ∑k nk, j = n (27)

where j = t,c. The sum runs over the index n for which the
partial level of bath j is equal to n and that of the other bath
is equal to zero. It is worth noting that a similar treatment
has been proposed to extract the distribution of the moment
conjugated to the collective mode in order to calculate thermal
fluxes108.

We now generalize the procedure to get the more in-
formative two-dimensional distribution Pα(xt ,xc, t) that may
be compared to the square modulus of the undamped
two-dimensional wave packet |Ψα(Qt ,Qc, t)|2. The co-
herence χα,β (xt ,xc, t) corresponds to the cross product of
the wave packets in each electronic state ξαβ (Qt ,Qc, t) =
Ψ∗α(Qt ,Qc, t)Ψβ (Qt ,Qc, t). We build an array of matrices of
the same dimension as ρ(t)

Mn,m(t) =
(−1)nDt√

n!Cn
t (0)

(−1)mDc√
m!Cm

c (0)
∑
nt

n!
∏k nk,t !

∑
nc

m!
∏k nk,c!

ρnt ,nc(t)

∑k nk,t = n ∑k nk,c = m. (28)

The two-dimensional distribution Pα(xt ,xc, t) in the electronic
state α is then given by

Pα(xt ,xc, t) = ∑n,m Mαα
n,m(t)Φn(xt)Φm(xc) (29)

where Mαα
n,m is the corresponding diagonal element. Moreover,

one can extract information about the electronic coherence as
a function of the two coordinates from the off diagonal ele-
ments:

χαβ (xt ,xc, t) = ∑nm Mαβ
n,m(t)Φn(xt)Φm(xc). (30)

The quantities extracted from the auxiliary matrices are here
related to the diabatic description of the dynamics. The adia-
batic electronic coherence during relaxation through a CI has
been recently computed by the MSQFPE method45.

The distribution Pα(xt ,xc, t) and the coherence
χα,β (xt ,xc, t) are computed here in the diabatic repre-
sentation. Transforming to the adiabatic representation
is possible by using the parameters of the corresponding
two-dimensional TLS-TC model. At each point (xt ,xc)
one may compute the real orthogonal diabatic-to-adiabatic
transformation matrix by diagonalizing the local two-by-two
diabatic electronic matrix. The adiabatic electronic states are
then given by :

ψ
ad
k (xt ,xc) = ∑k′=1,2 S(xt ,xc)ψ

dia
k′ (xt ,xc). (31)

As the distribution Pα(xt ,xc, t) maps the product
ψ∗dia

α (xt ,xc)ψ
dia
α (xt ,xc), one easily gets at each point
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(xt ,xc) :

Pad
1 = S2

11Pdia
1 +S2

21Pdia
2 +2S11S21ℜe(χ12)

Pad
2 = S2

12Pdia
1 +S2

22Pdia
2 +2S12S22ℜe(χ12)

(32)

D. Non-Markovianity signature

Definition and measure of non-Markovianity has given rise
to an abundant literature in the last decade114,115. The first
crude estimation is based on the comparison between a char-
acteristic timescale of the system dynamics and the bath cor-
relation time. Assuming a delta-function for C(t) and there-
fore a flat spectral density (white noise) leads to memoryless
dynamics which may be treated by Markovian Lindblad or
Redfield approaches (at least in perturbative regime)116. In
the TLS model of a CI, the spectral density is expected to be
strongly structured, thus leading to long correlation times so
that CI electronic dynamics described by this partition should
be strongly non-Markovian. It is commonly said that non-
Markovianity means back-flow from the bath to the system40.
In the electronic dynamics, this involves a boost of electronic
average energy from the vibrational modes, in other words
a non-monotonic electronic relaxation. We use here a non-
Markovianity witness given by the volume of the accessible
states in the Bloch sphere117. This geometric measure is not
a very sensitive method to detect the non-Markovianity118

mainly at long times but it is easy to compute and is inde-
pendent of the initial conditions of the system.

For an N-level system, HEOM defines a non-Markovian
dynamical map, ρ(t) = φt [ρ(0)], that may be expressed in
a basis set of N2 operators in the Liouville space including
the identity G0 = I/

√
N and the N2−1 generators of SU(N),

Gi(i = 1, ...,N2 − 1)119,120. These generators are the Pauli
spin matrices when N = 2. In matrix form the map reads
Fm,n(t) = Tr (Gmφt [Gn]) and the volume of accessible states
is obtained from the determinant of the matrix of the map,

V (t) = det(F(t)). (33)

A non-monotonic decrease of this volume is a signature of
non-Markovianity.

The V (t) decay of a TLS results from two processes, the
dephasing and the electronic population relaxation. In a pure
dephasing case for which the electronic coupling vanishes,
the populations remain constant and the volume is closely re-
lated to the decoherence function given by116,121,122 ν(t) =
exp(−Λ(t)) with

Λ(t) =
∫

∞

0
dωJ(ω)coth(βω/2)(1− cos(ωt))/ω

2. (34)

The bumps in the non-monotonic decay of ν(t) or V (t) occur
with the same period as the correlation function C(t) and de-
pends only on the spectral density. The volume decays with-
out bumps when C(t) does not exhibit any oscillation, i.e.

when the spectral density is very flat and broad. The popu-
lation exchange when the electronic coupling is active, accel-
erates the decay of the volume and reduces or possibly flattens
the bumps.

The volume evolution depends on the return of the collec-
tive mode back to its initial position leading to the bumps
and on the non-adiabatic transition rate. Switching to the
two-level-system one-coordinate representation, the volume
behaves in a similar way as the autocorrelation function of
the initial wave packet, which exhibits oscillations if the co-
ordinate is not overdamped and has a decreasing norm due to
the electronic transition. The decay of the initial wave packet
norm depends on several factors, the time for reaching the
crossing region and its usual Landau-Zener characteristics.
The non-adiabatic dynamics is thus expected to be intrinsi-
cally non-Markovian when the collective mode is not over-
damped (very thin spectral density) and the electronic decay
is not too fast to avoid the blurring of the bumps.

In the CI case with a reference point where the electronic
coupling vanishes, removing the off-diagonal coupling in-
duced by the CM should lead to a pure dephasing case for
the TM. A non-monotonic profile should be obtained as long
as it is not overdamped. The population decay that flattens
the bumps is due to the coupling bath. In the TLS-TC repre-
sentation, it depends on the non-adiabatic evolution of a wave
packet centered at the equilibrium position of the CM (since
we consider here a symmetrical case).

III. RESULTS

We consider two diabatic excited states |1〉 and |2〉 and we
assume that the system is initially prepared in the upper state
|2〉 by an ultra fast excitation from a ground state |0〉 not in-
cluded in the basis set. Modifying the parameters of the TLS
model or of its spectral densities generates different shapes
of the corresponding TLS-TC diabatic and adiabatic potential
energy surfaces, in particular the CI position and the slopes at
this point. This strongly influences the behavior of the elec-
tronic wave packet. The highly structured environment of the
TLS is characterized by two peaked spectral densities Jt/c(ω)
(Eq.(13)) with three main parameters (position, height, and
width). Typical spectral densities used in the simulations are
displayed in Fig.3a and the corresponding real part of the cor-
relation functions (Eq.(12)) for T = 298K are given in Fig.3b.

The positions of the spectral density peaks fixed by the
ωk parameters (Eq.(13) nearly correspond to the effective fre-
quencies of the TM and CM in the TLS-TC model when the
functions are sharply peaked. We choose ωt = 1000 cm−1

and ωc= 500 cm−1 (different frequencies are considered in
the supporting information123). The widths Γt/c are propor-
tional to the friction coefficient of the Ohmic spectral density
of the residual bath in the TLS-TC model. In other words,
this determines the damping of the TM or CM in this TLS-TC
model. Two delta-function spectral densities ( with Γt/c = 0)
should lead to undamped TLS-TC dynamics, i.e., simple two-
dimensional dynamics. In most simulations, we take Γt = Γc=
60 cm−1 but we will also illustrate the effect of a variation of
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FIG. 3. (Color online) Panel (a): Spectral densities for the tuning
(solid blue line) and coupling (dashed red line) baths of the TLS
model. The renormalization energies (Eq.18 ) are λt= 188 cm−1

and λc= 300 cm−1, respectively. Panel (b): real parts of the cor-
responding normalized bath correlation functions Ct/c(t) (Eq.( 12))
for T = 298K. The parameters of the spectral densities (Eq.(13)) are
pt = 1.95×10−11 a.u., pc = pt/2.5 ; ωt = 4.5639×10−3 a.u. (1000
cm−1), ωc = ωt/2; Γt = Γc = 2.7188× 10−4 a.u. (60 cm−1). λt=
188 cm−1 and λc= 300 cm−1. The pt/c are taken as parameters to
modify the renormalization energy λt/c and therefore the linear cou-
plings.

Γc. The weight pt (Eq.(13)) with constant Γt determines the
renormalization energy λt , which is added to the energy differ-
ence ∆ to built HS of the TLS (Eq.(4)). In the TLS-TC model,
modifying pt alters the distance Dt/Ω2

t (Eq.(21)) between the
minima of the diabatic parabolas. Varying pc modifies λc,
which does not directly appear in the TLS system Hamilto-
nian but affects the linear coupling Dc through the same re-
lation (Eq.(21)) and therefore the shape of the adiabatic po-
tential energy curves along the CM. In summary, frequencies,
spatial displacement and slope of the electronic coupling de-
pend on the spectral densities. The relative position in energy
is fixed by the difference ∆ between the minima corrected by
λt . Finally, the reference point defining the initial equilibrium
position of the bath determines the Franck-Condon (FC) re-
gion. We assume here that the equilibrium geometry of the
ground electronic state also corresponds to that of the lower
dark excited state |1〉 while the bright state |2〉 is displaced.
When the reference point is located at the equilibrium posi-
tion of the CM, the corresponding electronic coupling W12 of
the TLS model vanishes. By varying its position one could
also explore situations where the electronic coupling W12 is
not zero in the center of the FC region.

We will present below different examples focusing on pa-
rameters which could be controlled by external laser fields
(energy gap and initial state). We also illustrate the influ-
ence of the damping of the coupling mode, i.e., the impact
of the residual friction coefficient ηc (linked to the width via
ηc = 2Γc) of the CM in the corresponding TLS-TC situation.

FIG. 4. (Color online) Potential energy curves of the TLS-TC model
corresponding to the TLS with the spectral densities given in Fig.3 at
the reference point Qt = 0 and Qc = 0. Top panels: diabatic energy
gap ∆ = 1000 cm−1; lower panels: ∆ = 0. Left panels: tuning mode
Qt (the diabatic and adiabatic curves coincide). The curves corre-
spond to an inverted Marcus-type crossing when ∆ = 1000 cm−1

and to a normal Marcus-type crossing when ∆ = 0. Right panels:
coupling mode Qc, dashed lines diabatic curves, solid lines adiabatic
curves. The renormalization energy λt= 188 cm−1 is added to ε2.
λc= 300 cm−1.

The supporting information analyzes the variation of other
molecule-dependent parameters (linear couplings and effec-
tive frequencies)123.

In the HEOM simulations, the correlation function of each
bath is expanded on three exponential functions. Two sets of
coefficients in Eqs.(12) and (17) come from the poles of the
chosen spectral density (Eq.(13)). A single Matsubara term is
enough to ensure convergence at room temperature. A high hi-
erarchy level is necessary for analyzing the statistical distribu-
tion even if the populations converge at a lower level. Conver-
gence of the expansions (Eqs.(25) and (29)) may require about
20 or 25 terms and therefore the same hierarchy level. A typ-
ical computation at levels 20/25 involves 230230/736281 ma-
trices respectively. The integration is carried out by the Cash-
Karp Runge-Kutta algorithm with adaptative time step124.
The wave packet is computed on a two-dimensional grid by
the non-adiabatic split-operator algorithm125 using only the
system Hamiltonian of the TLS-TC model H̃S. For each di-
mension, the grid contains 210 points. The time step is 10 a.u.

A. Variation of the energy gap

Fig.4 presents cuts in the TLS-TC potential energy surfaces
along the TM (left panel) and CM (right panel) at the refer-
ence position (Qt = 0 and Qc = 0) for two typical situations
in which the adiabatic lower curve along the CM has either a
single minimum or a barrier at the equilibrium position.
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1. Environmental statistical distribution

Fig.5 gives iso-value contours of the projected distribu-
tion Pα(xt/c, t) (Eq.(25)) on the collective bath coordinate in
each electronic state for the two contrasting cases illustrated
in Fig.4. In each case, the initial distribution is a Gaussian
one in the upper excited state. When the electronic gap is
∆ = 1000 cm−1 (upper panels of Fig.4), the environmental
dynamics of the TM presented in the left panels of Fig.5 are
similar to the behavior already obtained in a previous work
in a one-dimensional model112. One observes the initial dis-
placement of the average position towards the equilibrium po-
sition of the upper state after the preparation in the FC re-
gion and during about 50fs the average position is similar to
the trajectory of a Gaussian wave packet with a decreasing
norm due to the non-adiabatic transition induced by the CM.
This can be related to the so-called "Zeno time" as analyzed
in ref.73. The component appearing in the lower state also ex-
hibits damped oscillations. The equilibrium distribution in the
final state is reached after 250 fs in agreement with the correla-
tion time scale (Fig.3b). For the coupling mode (right panels),
the Gaussian distribution smoothly melts at the initial equilib-
rium position. The density appears in the lower state with two
symmetric lobes, fulfilling for a short time (about 10fs) the
expected node at the equilibrium position since the electronic
coupling is zero at this point. The damping then evolves to-
wards a uni-modal distribution in agreement with the shape of
the potential energy curves with a single minimum.

The distribution Pα(xt , t) (Eq.(25)) of the tuning bath in the
∆ = 0 case (lower panels of Fig.4) evolves during the first fifty
femtoseconds as in the previous example but the final norm is
not zero since the final population is the same in both states.
The asymptotic distribution is Gaussian in both states and cen-
tered at the respective equilibrium positions. When the energy
gap decreases, the profile of the diabatic and adiabatic lower
potential energy curves along the coupling mode are very dif-
ferent, with either a minimum or a barrier at the equilibrium
position. Interestingly, the asymptotic distribution of the cou-
pling bath becomes bi-modal. Even if for the reduced elec-
tronic system Hamiltonian HS the diabatic and adiabatic basis
sets coincide for the chosen reference point, the full entan-
gled system-bath dynamics provide a vibrational asymptotic
distribution that correctly “feels” the adiabatic potential of the
coordinate representation. This reveals the efficiency of the
information extracted from the auxiliary matrices.

Fig.6 compares the full statistical distribution Pα(xt ,xc, t)
(Eq.29) in the two diabatic electronic states at two times with
the square modulus of the two-dimensional undamped wave
packet |Ψα(Qt ,Qc, t)|2 in the diabatic representation. We il-
lustrate only the case with ∆ = 1000 cm−1 (first two rows in
Fig.5 and corresponding TLS-TC model in the first row of
Fig.4). The first chosen time t = 25 fs is shorter than the Zeno
time so that the behaviors are expected to be very close. The
only noticeable difference concerns the nodal line in the wave
packet map that is already blurred at this short time in the
damped case. On the contrary, for t = 120fs, the damped dis-
tribution has nearly reached its asymptotic shape around the
equilibrium position of the lower electronic state while the

undamped wave packet remains fully delocalized.
For the same example with ∆ = 1000 cm−1, Fig.7 gives the

imaginary part of the coherence (Eq.(30)) in the diabatic rep-
resentation for the damped and the undamped wave packet.
At short time t = 25 fs, this confirms the efficiency of the ex-
traction of information from the off diagonal elements Mαβ

n,m(t)
(Eq.(28)). At longer time t = 120 fs, the coherence becomes
two orders of magnitude smaller in the damped case while it
remains at the same order of magnitude in the undamped case,
as expected.

We compare in Fig.8 the two-dimensional distribution in
the lower excited state in the diabatic (left panels) and in the
adiabatic (right panels) representations, for the two gaps ∆ =
1000 cm−1 and ∆ = 0 illustrated in Fig.4 and for two times, a
short ( t = 25 fs) and a long one (t =240 fs). The adiabatic
representation is obtained through Eqs.(32) using the param-
eters of the TLS-TC model to build the diabatic-to-adiabatic
transformation matrix at every point of the grid.

2. Electronic dynamics

Fig.9 gives the population of the TLS model in the up-
per excited state when the energy gap ∆ decreases from 1500
cm−1 to zero in the situation where the spectral densities are
centered at Ωc= 500 cm−1 for Jc(ω) and Ωt = 1000 cm−1 for
Jt(ω) with renormalization energies λc = 150 cm−1 and λt=
188 cm−1. The population evolution for the undamped TLS-
TC is shown in Fig.9b. One observes a perfect agreement dur-
ing the first thirty femtoseconds before the damping operates.
This corresponds to a period of the tuning mode as may be
seen in Fig.9c where is drawn the first moment of the col-
lective mode Xt/Dt of the tuning bath in the upper electronic
state. The damped TLS decay curves show markedly differ-
ent profiles from a smooth overdamped decay (long dashes in
Fig.9) for the large gap ∆ = 1500 cm−1 to damped oscillatory
decay with variable periods of partial recurrence and asymp-
totic values. The different recurrence periods and initial decay
yields during the first oscillation are already observed in the
undamped TLS model (Fig.9b).

These general trends may be explained by the way the FC
wave packet will explore the CI region. Varying the diabatic
gap modifies the location of the CI and the slopes at the cross-
ing. In the present examples, the CI is of the sloped type (see
upper panels in Fig.4), except for the case ∆ = 0 leading to
a peaked case (see lower panels in Fig.4)30. For the largest
gap ∆ = 1500 cm−1, the CI is above the FC region and the
smooth decay occurs via tunneling. In the case ∆ = 500 cm−1

on the contrary, the CI is close to the turning point. In the ∆

= 0 case, the CI is very close to the FC region, thus leading to
early Stueckelberg oscillations126.

Another way to explain the different oscillation timescales
in the population evolution is the way the initial wave packet
is expanded in the eigen vibronic basis set. This superposi-
tion depends on the gap ∆ and involves different energy gaps
between the main eigenstates and therefore different oscilla-
tion periods. The variation of ∆ also leads to different asymp-
totic populations (Fig.9a) and different average positions of
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FIG. 5. Projected statistical distributions Pα (xt/c, t) (Eq.25) on the collective coordinates computed in the TLS model for the corresponding
TLS-TC model represented in Fig.4. The color code gives P(xt/c, t)×10. The left/right panels show the tuning/coupling baths, respectively.
The diabatic energy gaps are ∆ = 1000 cm−1 and ∆ = 0. λt= 188 cm−1 and λc= 300 cm−1. The spectral densities are given in Fig.3a. T =
298K.
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FIG. 6. Statistical distributions Pα (xt ,xc, t) (Eq.(29)) computed by HEOM in the TLS model and undamped wave packet |Ψ(Qt ,Qc, t)|2 of the
TLS-TC model represented in the upper panels of Fig.4, for two times, t = 25 fs and t = 120 fs. The color code gives (xt ,xc, t)×103. The gap
between the two diabatic minima is, ∆ = 1000 cm−1, λt= 188 cm−1 and λc= 300 cm−1 . The spectral densities are given in Fig.3a. T = 298K.

the collective mode (Fig.9c). The final equilibrium Botzmann
mixture concerns the eigen vibronic states and not only the
electronic states66.

Finally Fig.9d gives the volume of the accessible states in
the Bloch sphere, which is a signature of non-Markovianity
when the decay is not monotonic. The non-Markovianity
signature is given rigorously by the integrals of the region
where the volume increases but the shape of the bumps pro-
vides a qualitative information. In the context of non-adiabatic
dynamics, we have already discussed112 that this volume is
closely linked to the correlation function of the wave packet
in the corresponding effective mode model. It reveals the ten-
dency of both the electronic and vibrational wave packets to

return towards the initial position. The black solid curve in
Fig.9d gives the volume for the pure dephasing case of the
only TM. The bumps merely correspond to the recurrences of
the bath correlation function of the TM alone C(t) (see Fig.3b)
and should match with the oscillations of the wave packet in
the effective coordinate model. When the CM is taken into
account, the electronic transition (see populations in Fig.9b)
increases the decay rate and blurs the bumps. Electronic dy-
namics of a CI described by a TLS is non Markovian in the
present example even if the population decay seems smooth
(however non exponential) as it is the case for ∆ = 1500 cm−1

(long dashes).
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DAMPED HEOM UNDAMPED WAVE PACKETt = 25 fs

t = 120 fs
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FIG. 7. Electronic coherence χ(xt ,xc, t) (Eq.(30)) computed by
HEOM in the TLS model and wave packet coherence ξ (Qt ,Qc, t)
for two times, t = 25 fs and t = 120 fs. The corresponding TLS-TC
model is represented in the upper panels of Fig.4. The gap between
the two diabatic minima is ∆ = 1000−1, λt= 188 cm−1 and λc= 300
cm−1 . T = 298K.

B. Initial electronic state

We now examine the difference of behaviors related to the
initial preparation of the electronic system. The energy gap
is ∆ = 1000 cm−1 and the renormalization energies are λt=
188 cm−1 and λc = 150 cm−1. Control strategies with ultra-
fast designed laser fields could modify the initial superposed
electronic state. For the examples in the previous section, the
initial state is prepared as |2〉. As the center of the FC region
is located at Qc = 0, the electronic coupling vanishes and the
diabatic and adiabatic electronic states coincide. The initial
state is thus a pure state, which does not involve electronic co-
herence. The relaxation of the coupling vibrational bath and
the evolution towards equilibrium in the final state maintain
the symmetry as it has been illustrated in the previous exam-
ples.

When the initial state is a superposed state, electronic co-
herence is created and persists during the timescale of the
correlation function (about 200 fs). Panels (a) and (b) of
Fig.10 give two examples for the initial superposed states
|χ1〉 =

(
|1〉+

√
9 |2〉

)
/
√

10, and |χ2〉 = (|1〉+ |2〉)/
√

2, re-
spectively. In addition to the initial electronic coherence, the
new behavior is the breaking of symmetry in the vibrational
relaxation and evolution towards equilibrium of the coupling
bath. This is illustrated for P(xc, t) in state |1〉. This unex-
pected vibrational effect is already observed in the evolution
of the undamped two-dimensional wave packet as can be seen
in panel (d) of Fig.10 where we compare the average posi-
tion of CM computed by the undamped two-dimensional wave
packet and by HEOM. The curves are labeled UNDAMPED1
and DAMPED1 for |χ1〉, and UNDAMPED2, DAMPED2 for
|χ2〉. The dissymmetry comes from the interferences of the
left or right parts of the upper wave packet when it makes a

transition due to the antisymmetrical electronic coupling. The
initial wave packet in the lower state has everywhere the same
sign while the decaying parts get the opposite sign due to the
coupling. The resulting wave packet in the lower state be-
comes asymmetrical. This effect is illustrated in panel (c) of
Fig.10 where we give the square modulus of the undamped
wave packet in the lower state at a short time t = 12 fs.

C. Variation of Γc

Fig.11 compares iso-contours of the projection P(Qt , t)
(Eq.(24)) in the lower electronic state |1〉 of the localiza-
tion density probability for the undamped two-dimensional
wave packet dynamics with the statistical distribution P(xc, t)
(Eq.25) for increasing width of Jc(ω), i.e., increasing the fric-
tion coefficient of the residual bath in the TLS-TC model. The
energy gap is ∆ is 1000 cm−1 and the two renormalization en-
ergies are λt= 188 cm−1 and λc = 150 cm−1. The adiabatic
lower potential energy curve has a single minimum along the
CM. When the width Γc of the spectral density Jc(ω) is modi-
fied, the weight pc is adapted to impose the same λc and there-
fore the same linear coupling Dc. The damping begins after
30fs and one sees the blurring of the characteristic nodal line
of the distribution and the evolution towards the final distribu-
tion is faster with increasing Γc.

IV. CONCLUSIONS

The main result of this work is to illustrate the ability of
the powerful tool provided by HEOM to get an interesting in-
formation about the statistical distribution of the position of
the collective mode associated with different baths from the
auxiliary matrices. We have extended for two uncorrelated
baths the methodology suggested by Shi et al.76,77 by deci-
phering the partial level related to each bath for each aux-
iliary matrix. We have derived the projected and the two-
dimensional distributions of the tuning and coupling modes
of a conical intersection from the minimal TLS electronic par-
titioning. This strategy already proposed in the literature74,75

could provide a better computational scaling than the more fa-
miliar two-state two-coordinate representation72. The present
work shows how to complement this approach by visualizing
the evolution of the environmental distributions in each elec-
tronic state that correspond to the square modulus of the dis-
sipative wave packets. When the electronic dynamics induces
a strong restructuring of the environment, one may visualize
the departure from the initial Gaussian equilibrium distribu-
tion (within the initial factorization assumption). By using the
parameters of the associated TLS-TC model, we have also il-
lustrated how to derive the adiabatic distributions from those
computed in the diabatic representation in the TLS system. In
the present work, we have considered only a very symmetrical
model and an initial reference point located in a region where
the electronic coupling vanishes so that diabatic and adiabatic
states coincide at this point. As a consequence, the minimal
electronic system will not give any information on the pro-



12
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FIG. 8. Statistical distributions in the lower excited state Pdia
1 (xt ,xc) (Eq.(29)) and Padia

1 (xt ,xc) (Eq.(32)) computed by HEOM in the TLS
model and using the parameters of the TLS-TC model to obtain the adiabatic map. The gaps are ∆ = 1000 cm−1 and ∆ = 0 (see Fig.4). The
distributions are given for two times, t = 25 fs and t =240 fs. The color code gives P(xt ,xc)× 103. λt= 188 cm−1 and λc= 300 cm−1. T =
298K.
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FIG. 9. (Color online) Variation of dynamical quantities with the
electronic energy gap between the diabatic minima ∆. Upper pan-
els : Population in the initial upper electronic state; panel (a)TLS
damped HEOM dynamics, panel (b) undamped TLS-TC wave packet
dynamics (b). Panel (c) : first moment of the collective TM in the up-
per electronic state extracted from the auxiliary matrices. Panel (d)
Volume of the accessible states in the Bloch sphere. The parameters
of the spectral densities Jt(ω) and Jc(ω) are Ωt = 1000 cm−1, λt=
188 cm−1 and Ωc= 500 cm−1, λc = 150 cm−1, T = 298K.

jected electronic coherence if the initial state is a single state.
However, maps of the real and imaginary parts of the coher-
ence corresponding to the cross product of the wave packet
components in the two electronic states may be nicely derived
from the auxiliary matrices.

Working in the TLS model with HEOM is the opposite
strategy to the projection of electronic dynamics from a full
dimension wave packet and it is particularly rewarding to see
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FIG. 10. (Color online) Statistical distribution P(xc, t) projected
on the coupling mode in the lower excited state |1〉 for two ini-
tial superposed states. Panels (a) and (b): Preparation in states
|χ1〉=

(
|1〉+

√
9 |2〉

)
/
√

10 and |χ2〉= (|1〉+ |2〉)/
√

2, respectively
(The color code gives P(xc)× 10); panel (c) distribution of the un-
damped wave packet in the lower excited state at time t = 12 fs for
state |χ2〉 (the color code gives |Ψ|2×103; panel (d): Average posi-
tion of the effective mode Qc(t) computed with the undamped two-
dimensional wave packet and of the collective coordinate xc(t) ob-
tained from the damped HEOM. λt= 188 cm−1 and λc = 150 cm−1,
∆ = 1000 cm−1, T = 298K.

the efficiency of this HEOM technique. However, high levels
of hierarchy are required when the distribution becomes bi- or
multi-modal since the distribution is expanded on a Hermite
polynomial basis set and convergence may require higher lev-
els than the simple population computation. We have used a
home made code parallelized with OpenMP. However other
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FIG. 11. (Color online) Comparison of the undamped two-
dimensional wave packet projected dynamics P(Qc, t) (panel (a)) and
the projected statistical distribution for the CM P(xc, t) in the lower
electronic state for increasing width Γc and the same linear coupling
Dc (panels (c) and (d)). The color code gives P×10. Panel (b) gives
the decay of the population for the undamped wave packet and for
the HEOM dynamics with increasing width. T = 298K, ∆ = 1000
cm−1, λt = 188 cm−1 and pc is adjusted to give the same λc = 150
cm−1 when Γ is modified.

implementations on new architectures such as GPU could be
useful127.

The inclusion of the TM and CM in their respective bath
are expected to generate two highly structured spectral den-
sities and therefore long correlation times and strongly non-
Markovian dynamics as confirmed by the non monotonic de-
cay of the volume of accessible states in the Bloch sphere in
our example. As already discussed in a previous work112,
the volume evolution is closely linked to the autocorrelation
function of the nonadiabatic wave packet of the correspond-
ing TLS-TC model. The back flow of the electronic energy
is induced by the return of the collective mode towards its
initial position. Another measure of non-Markovianity dur-
ing exciton-phonon dynamics has also been extracted from the
auxiliary matrices128.

It is worthwhile noting that even if we have treated the
specific example of a conical intersection, the method by it-
self has a large panel of applications to analyze the electron-
vibration dynamics of complex systems such as exciton-
phonon dynamics. HEOM offers the advantage of easily ac-
counting for high temperature and this paves the way towards
interesting applications for instance by considering baths at
different temperatures68,129,130. Moreover, the possibility to
include radiative couplings and exploit laser induced conical
intersection as recently suggested131,132 in order to control the
electronic dynamics is also a possible future application. Op-
timal control with laser fields has recently been implemented
with HEOM133 and the new tool could provide an interesting
information about the controlled environmental dynamics.

SUPPLEMENTARY MATERIAL

The supplemental material presents some complementary
examples of electronic dynamics by varying the linear cou-
plings Dt/c of the TLS-TC model extracted from the TLS
model (Eq.(19)) or the peak positions of the spectral densi-
ties fixed by the parameters ωt/c (Eq.(13)).
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Appendix A: HEOM for two uncorrelated baths

Solving the hierarchical equations of motion for a conical
intersection requires a set of equations for two baths. In this
derivation, we mainly assume that they are uncorrelated. Such
expressions have been derived in several works, for particular
spectral densities74,75. Here, we essentially aim at recalling
the derivation of the coupled equations and the assumptions
that we used.

1. Auxiliary matrices in the two-uncorrelated-bath case

The reduced density matrix ρS,I(t) for the system in in-
teraction representation ρS,I(t) = eiH0tρS(t)e−iH0t with H0 =
HS +HB, , is given by the partial trace over the bath B of the
time evolution of the total density matrix,

ρS,I(t) = TrB

T (+)e

t∫
0

dτL(τ)
ρ

eq
B ρS,I(0)

 (A1)

where T (+) is a time-ordering operator and a factorization is
assumed at the initial time t = 0. L(t) is the Liouvillian in
interaction representation, which reads

L(t)�=− i
h̄2 [St(t).Bt(t)+Sc(t).Bc(t), �] = Lt(t) �+Lc(t) � .

(A2)
The partial trace over B is a successive trace over bath Bt and
bath Bv: TrB[�] = TrBt [TrBc [�]] and ρ

eq
B = ρ

eq
Bt

ρ
eq
Bc

.
In the case of harmonic oscillators with linear coupling, it

has been shown that the second-order cumulant expansion of
Eq. (A1) is exact93,94,101,134,

ρS,I(t) = T (+)e

t∫
0

dτ

τ∫
0

dt ′TrB[L(τ)L(t ′)ρ
eq
B ]

ρS,I(0). (A3)

Owing to this feature,
τ∫
0

dt ′TrB[L(τ)L(t ′)ρ
eq
B ] in Eq.(A3)

is a second-order memory kernel similar to the one found in
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second-order perturbation theory. It will be denoted K (τ) =
τ∫
0

dt ′K(2)(τ, t ′). First, one can easily derive from Eq.(A2) an

expression for the two-bath case,

K(2)(τ, t ′)�= TrB[L(t)L(τ) �ρ
eq
B ]

= TrBt [Lt(τ)Lt(t ′) �ρ
eq
Bt
]+TrBc [Lc(τ)Lc(t ′) �ρ

eq
Bc
]

+ TrB[Lt(τ)Lc(t ′) �ρ
eq
B ]+TrB[Lc(τ)Lt(t ′) �ρ

eq
B ]. (A4)

When the two baths are not correlated, cross-terms in
Eq.(A4) are considered as negligible and discarded for the rest
of the present derivation. For Eq.(A4), one can apply strate-
gies similar to the one used for second-order perturbation the-
ory. By using usual open quantum-system methods135, one
can eliminate the bath and cast its whole influence in two-time
correlation functions Ct/c (t− τ) = TrBt/c [Bt/c(t)Bt/c(τ)ρ

eq
Bt/c

]

for the tuning and coupling mode respectively:

∫
τ

0
dt ′K(2)(τ, t ′)�

=− ∑
j=t/c

[S j(τ),

τ∫
0

dt ′C j(τ− t ′)S j(t ′) �−{h.c.}]. (A5)

In this respect, using correlation function parametriza-
tions Ct/c(τ − t ′) given in Eq.(16) and its complex conjugate
C∗t/c(τ−t ′) (Eq.(17)) and following strategies proposed for in-
stance in92 and94,101,134, equation (A5) is separable into a sum
of operators Kk={ j,l j},

∫
τ

0
dt ′K(2)(τ, t ′)�= K (τ)�=

2

∑
j=1

ncor, j

∑
l j=1

Kk={ j,l j}(τ)� (A6)

where Kk={ j,l j}(τ) is assigned to each exponential element l j

of the correlation function of bath j = {t,c}. In addition, we
decompose it as

Kk={ j,l j}(τ) = Φ j(τ)Wk(τ) (A7)

where we have defined

Φ j(τ)�=−[S j(τ), �] (A8)

and

Wk(τ) =

τ∫
0

dt ′eiγk(τ−t ′)Θk
(
t ′
)

(A9)

with

Θk(t ′)�= α j,l j S j
(
t ′
)
�−α̃ j,l j �S j

(
t ′
)
. (A10)

By Fourier-Laplace transforming Eq.(A1)48,136, one can re-
cast Eq. (A3) as

ρS,I [ω] =

+∞∫
0

dte−iωt
ρS,I(t) =

+∞∫
0

dte
−iωt+

t∫
0

dτK (τ)
ρS,I(0).

(A11)
Finally, we define auxiliary matrices101,136 as

ρ
(ν)
n1,··· ,nK [ω] =

+∞∫
0

dt
K

∏
k=1

W nk
k (t)e

−iωt+
t∫

0
dτK (τ)

ρS,I(0). (A12)

It is interesting to note that ρS,I = ρ
(0)
0,··· ,0 is the system den-

sity matrix we are looking for. To better clarify the notations,
let us emphasize that

• k = {l j, j} is a global index related to an exponential
element l j of the j’s bath correlation function and the
j = {t,c} bath itself.

• nk is an integer that is a power of Wk .

• K = ncor,1 + ncor,2 is the total number of exponential
functions in the correlation function parameterization
(Eq.16),

• n = {n1,1, · · · ,nncor,1 ,n1,2, · · · ,nncor,2} is an index vector
bound to a hierarchy matrix.

• (ν) is the hierarchy level of the matrix defined such that

ν =
K
∑

i=1
ni.

2. Derivation of the hierarchical equations of motions

For any k = {l j, j}, one has the following relation,
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− iωρ
(ν)
n1,··· ,nK [ω]+

K

∑
k=1

Φ j(t)ρ
(ν+1)
n1,··· ,nk+1,··· ,nK

[ω] =

+∞∫
0

dt
K

∏
k=1

W nk
k (t)

(
−iω +

K

∑
k=1

Φ j(t)Wk (t)

)
e
−iωt+

t∫
0

dτK (τ)
ρS,I(0). (A13)

By performing an integration by parts, one obtains

− iωρ
(ν)
n1,··· ,nK [ω]+

K

∑
k=1

Φ j(t)ρ
(ν+1)
n1,··· ,nk+1,··· ,nK

[ω] =

−δν0ρS,I(0)−
K

∑
k=1

nkΘk (t)ρ
(ν−1)
n1,··· ,nk−1,··· ,nK

[ω]

− i
K

∑
k=1

nkγkρ
(ν)
n1,··· ,nK [ω] . (A14)

δ is the Kronecker symbol (δν0 = 1 if ν = 0, 0 otherwise).
For auxiliary matrices, we assume that for all ν and vector

{n1, · · · ,nK}, ρ
(ν)
n1,··· ,nK (0) = 0.

With an inverse Fourier-Laplace transform ( for a differen-
tiable function f ,

∫ +∞

0 dte−iωt d
dt f (t) = iω f [ω]− f (0)), this

leads to the set of hierarchical equations of motion:



ρ̇S,I(t) =
K
∑

k=1
Φ j(t)ρ

(1)
01,··· ,0k+1,··· ,0K

(t)

ρ̇
(ν)
n1,··· ,nK (t) =

K
∑

k=1
Φ j(t)ρ

(ν+1)
n1,··· ,nk+1,··· ,nK

(t)

+
K
∑

k=1
nkΘk (t)ρ

(ν−1)
n1,··· ,nk−1,··· ,nK

(t)

+i
K
∑

k=1
nkγkρ

(ν)
n1,··· ,nK (t).

(A15)
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