R. D. Taylor, M. Maccoss, and A. D. Lawson, Rings in Drugs, J. Med. Chem, vol.57, pp.5845-5859, 2014.

T. V. Sravanthi and S. L. Manju, Indoles -A Promising Scaffold for Drug Development, Eur. J. Pharm. Sci, vol.91, pp.1-10, 2016.

N. K. Kaushik, N. Kaushik, P. Attri, N. Kumar, C. H. Kim et al., Biomedical Importance of Indoles. Molecules, vol.18, pp.6620-6662, 2013.

A. O. King and N. Yasuda, Palladium-Catalyzed Cross-Coupling Reactions in the Synthesis of Pharmaceuticals, Organometallics in Process Chemistry

R. Larsen and . Ed, Topics in Organometallic Chemistry, vol.6, pp.205-245, 2004.

C. Jia, D. Piao, J. Oyamada, W. Lu, T. Kitamura et al., Efficient Activation of Aromatic C-H Bonds for Addition to C-C Multiple Bonds, Science, vol.287, 1992.

O. Daugulis and V. G. Zaitsev, Anilide Ortho-Arylation by Using C-H Activation Methodology, Angew. Chem. Int. Ed, vol.44, pp.4046-4048, 2005.

D. G. Yu, T. Gensch, F. De-azambuja, S. Vásquez-céspedes, and F. Glorius, Co(III)-Catalyzed C-H Activation/Formal SN-Type Reactions: Selective and Efficient Cyanation, Halogenation, and Allylation, J. Am. Chem. Soc, vol.136, pp.17722-17725, 2014.

S. De-sarkar, W. Liu, S. I. Kozhushkov, and L. Ackermann, Weakly Coordinating Directing Groups for Ruthenium(II)-Catalyzed C-H Activation, Adv. Synth. Catal, vol.356, pp.1461-1479, 2014.

J. Schranck, A. Tlili, and M. Beller, Functionalization of Remote C-H Bonds: Expanding the Frontier, Angew. Chem. Int. Ed, vol.53, pp.9426-9428, 2014.

Y. Segawa, T. Maekawa, and K. Itami, Synthesis of Extended ?-Systems through C-H Activation, Angew. Chem. Int. Ed, vol.54, pp.66-81, 2015.

A. A. Kurokhtina, E. V. Larina, E. V. Yarosh, N. A. Lagoda, and A. F. Schmidt, Mechanistic Study of Direct Arylation of Indole Using Differential Selectivity Measurements: Shedding Light on the Active Species and Revealing the Key Role of Electrophilic Substitution in the Catalytic Cycle, Organometallics, vol.37, pp.2054-2063, 2018.

S. I. Gorelsky, D. Lapointe, and K. Fagnou, Analysis of the Concerted Metalation-Deprotonation Mechanism in Palladium-Catalyzed Direct Arylation across a Broad Range of Aromatic Substrates, J. Am. Chem. Soc, vol.130, pp.10848-10849, 2008.

J. Guihaumé, E. Clot, O. Eisenstein, and R. N. Perutz, Importance of Palladium-Carbon Bond Energies in Direct Arylation of Polyfluorinated Benzenes, Dalt. Trans, p.10510, 2010.

M. García-melchor, S. I. Gorelsky, and T. K. Woo, Mechanistic Analysis of Iridium(III) Catalyzed Direct C-H Arylations: A DFT Study, Chem. Eur. J, vol.17, pp.13847-13853, 2011.

S. I. Gorelsky, D. Lapointe, and K. Fagnou, Analysis of the Palladium-Catalyzed (Aromatic)C-H Bond Metalation-Deprotonation Mechanism Spanning the Entire Spectrum of Arenes, J. Org. Chem, vol.77, pp.658-668, 2012.

S. Santoro, F. Himo, . Mechanism, C. Selectivity-of-rhodium-catalyzed, M. Bond-;-steinmetz et al., Mechanistic Studies on the Pd-Catalyzed Direct C-H Arylation of 2-Substituted Thiophene Derivatives with Arylpalladium Bipyridyl Complexes, Arylation of Indoles. Int. J. Quantum Chem, vol.118, issue.17, pp.1256-1260, 2012.

C. Colletto, S. Islam, and F. Juliá-hernández, Larrosa, I. Room-Temperature Direct ?-Arylation of Thiophenes and Benzo[b]Thiophenes and Kinetic Evidence for a Heck-Type Pathway, J. Am. Chem. Soc, vol.138, pp.1677-1683, 2016.

S. Y. Tang, Q. X. Guo, and Y. Fu, Mechanistic Origin of Ligand-Controlled Regioselectivity in Pd-Catalyzed C-H Activation/Arylation of Thiophenes, Chem. Eur. J, vol.17, pp.13866-13876, 2011.

K. Yamamoto, S. Kimura, and T. Murahashi, ?-? Continuum in Indole-Palladium(II) Complexes, vol.55, pp.5322-5326, 2016.

B. Liégault, I. Petrov, S. I. Gorelsky, K. Fagnou, T. Gensch et al., Modulating Reactivity and Diverting Selectivity in Palladium-Catalyzed Heteroaromatic Direct Arylation through the Use of a Chloride Activating/Blocking Group, J. Mild Metal-Catalyzed C-H Activation: Examples and Concepts. Chem. Soc. Rev, vol.75, issue.22, pp.2900-2936, 2010.

C. Sambiagio, D. Schönbauer, R. Blieck, T. Dao-huy, G. Pototschnig et al., A Comprehensive Overview of Directing Groups Applied in Metal-Catalysed C-H Functionalisation Chemistry, Chem. Soc. Rev, vol.47, issue.24, pp.199-222, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02158242

B. S. Lane, M. A. Brown, and D. Sames, Direct Palladium-Catalyzed C-2 and C-3 Arylation of Indoles: A Mechanistic Rationale for Regioselectivity, J. Am. Chem. Soc, vol.127, pp.8050-8057, 2005.

Z. Zhang, Z. Hu, Z. Yu, P. Lei, H. Chi et al., Direct Palladium-Catalyzed C-3 Arylation of Indoles, Tetrahedron Lett, vol.48, pp.2415-2419, 2007.

F. Bellina, F. Benelli, and R. Rossi, Direct Palladium-Catalyzed C-3 Arylation of Free (NH)-Indoles with Aryl Bromides under Ligandless Conditions, J. Org. Chem, vol.73, pp.5529-5535, 2008.

G. Cusati and L. Djakovitch, First Heterogeneously Palladium-Catalysed Fully Selective C3-Arylation of Free NH-Indoles, Tetrahedron Lett, vol.49, pp.2499-2502, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00281238

B. Join, T. Yamamoto, K. Itami, S. Perato, B. Large et al., Pyridylmethylamine-Palladium Catalytic Systems: A Selective Alternative in the C?H Arylation of Indole, Angew. Chem. Int. Ed, vol.48, issue.30, pp.389-392, 2009.

M. Yamaguchi, K. Suzuki, Y. Sato, and K. Manabe, Palladium-Catalyzed Direct C3-Selective Arylation of n-Unsubstituted Indoles with Aryl Chlorides and Triflates, Org. Lett, vol.19, pp.5388-5391, 2017.

G. N. Vaidya, S. Fiske, H. Verma, S. K. Lokhande, and D. Kumar, A Micellar Catalysis Strategy Applied to the Pd-Catalyzed C-H Arylation of Indoles in Water, Green Chem, vol.21, pp.1448-1454, 2019.

J. Chen and J. Wu, Transition-Metal-Free C3 Arylation of Indoles with Aryl Halides, Angew. Chem. Int. Ed, vol.56, pp.3951-3955, 2017.

L. Ackermann, M. Dellacqua, S. Fenner, R. Vicente, and R. Sandmann, Metal-Free Direct Arylations of Indoles and Pyrroles with Diaryliodonium Salts, Org. Lett, vol.13, pp.2358-2360, 2011.

W. H. Dekker, H. A. Selling, and J. C. Overeem, Structure-Activity Relations of Some Antifungal Indoles, J. Agric. Food Chem, vol.23, pp.785-791, 1975.

T. S. Wu, M. J. Liou, C. J. Lee, T. T. Jong, A. T. Mcphail et al., ) Pedras, M. S. C.; Hossain, M. Design, Synthesis, and Evaluation of Potential Inhibitors of Brassinin Glucosyltransferase, a Phytoalexin Detoxifying Enzyme from Sclerotinia Sclerotiorum, Bioorg. Med. Chem, vol.30, issue.37, pp.5981-5996, 1989.

T. C. Leboho, J. P. Michael, W. A. Van-otterlo, S. F. Van-vuuren, and C. B. De-koning, The Synthesis of 2-and 3-Aryl Indoles and 1,3,4,5-Tetrahydropyrano[4,3-b]Indoles and Their Antibacterial and Antifungal Activity, Bioorg. Med. Chem. Lett, vol.19, pp.4948-4951, 2009.

T. I. Richardson, C. A. Clarke, K. L. Yu, Y. K. Yee, T. J. Bleisch et al., Novel 3-Aryl Indoles as Progesterone Receptor Antagonists for Uterine Fibroids, ACS Med. Chem. Lett, vol.2, pp.148-153, 2011.

P. A. Patel, N. Kvaratskhelia, Y. Mansour, J. Antwi, L. Feng et al., J. R. Indole-Based Allosteric Inhibitors of HIV, issue.1

. Integrase, Bioorg. Med. Chem. Lett, vol.26, pp.4748-4752, 2016.

C. M. Browne, B. Jiang, S. B. Ficarro, Z. M. Doctor, J. L. Johnson et al., A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification, J. Am. Chem. Soc, vol.141, pp.191-203, 2019.

I. P. Beletskaya and A. V. Cheprakov, Heck Reaction as a Sharpening Stone of Palladium Catalysis, Chem. Rev, vol.100, pp.3009-3066, 2000.

A. H. De-vries, J. M. Mulders, J. H. Mommers, H. J. Henderickx, and J. G. De-vries, Homeopathic Ligand-Free Palladium as a Catalyst in the Heck Reaction. A Comparison with a Palladacycle, Org. Lett, vol.5, pp.3285-3288, 2003.

A. Alimardanov, . Schmieder-van-de, L. Vondervoort, A. H. De-vries, and J. G. De-vries, Use of "Homeopathic" Ligand-Free Palladium as Catalyst for Aryl-Aryl Coupling Reactions, Adv. Synth. Catal, vol.346, pp.1812-1817, 2004.

M. Larhed, C. Moberg, and A. Hallberg, Microwave-Accelerated Homogeneous Catalysis in Organic Chemistry, Acc. Chem. Res, vol.35, pp.717-727, 2002.

M. B. Gawande, S. N. Shelke, R. Zboril, and R. S. Varma, Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics, Acc. Chem. Res, vol.47, pp.1338-1348, 2014.

A. Kokel, C. Schäfer, and B. Török, Application of Microwave-Assisted Heterogeneous Catalysis in Sustainable Synthesis Design, vol.19, pp.3729-3751, 2017.

J. Roger, F. Po?gan, and H. Doucet, Ligand-Free Palladium-Catalyzed Direct Arylation of Thiazoles at Low Catalyst Loadings, J. Org. Chem, vol.74, pp.1179-1186, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00362466

T. Gensch, M. J. James, T. Dalton, and F. Glorius, Increasing Catalyst Efficiency in C?H Activation Catalysis, Angew. Chem. Int. Ed, vol.57, pp.2296-2306, 2018.

U. Wannagat, The Chemistry of Silicon-Nitrogen Compounds

, Adv. Inorg. Chem. Radiochem, vol.6, pp.225-278, 1964.

S. Popenova, R. C. Mawhinney, and G. Schreckenbach, Density Functional Study of Lithium Hexamethyldisilazide (LiHMDS) Complexes: Effects of Solvation and Aggregation, Inorg. Chem, vol.46, pp.3856-3864, 2007.

R. Neufeld, R. Michel, R. Herbst-irmer, R. Schöne, and D. Stalke, Introducing a Hydrogen-Bond Donor into a Weakly Nucleophilic Brønsted Base: Alkali Metal Hexamethyldisilazides (MHMDS, M=Li, Na, K, Rb and Cs) with Ammonia, Chem. Eur. J, vol.22, pp.12340-12346, 2016.

H. M. Nicholas, C. A. Goodwin, J. G. Kragskow, S. J. Lockyer, D. P. Mills et al., Role of Organolithium Aggregates and Mixed Aggregates in Organolithium Mechanisms, Structural Characterization of Lithium and Sodium Bulky Bis(Silyl)Amide Complexes. Molecules, vol.23, pp.7130-7178, 2013.

E. M. Simmons and J. F. Hartwig, On the Interpretation of Deuterium Kinetic Isotope Effects in C-H Bond Functionalizations by Transition-Metal Complexes, Angew. Chem. Int. Ed, vol.51, pp.3066-3072, 2012.

D. Lapointe and K. Fagnou, Overview of the Mechanistic Work on the Concerted Metallation-Deprotonation Pathway, Chem. Lett, pp.39-1118, 2010.