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Abstract  

The DynACof model was designed to model coffee agroforestry systems and study the trade-offs to e.g. 

optimize the system facing climate changes. The model simulates net primary productivity (NPP), growth, yield, 

mortality, energy and water balance of coffee agroforestry systems according to shade tree species and 

management. Several plot-scale ecosystem services are simulated by the model, such as production, canopy 

cooling effect, or potential C sequestration. DynACof uses metamodels derived from a detailed 3D process-

based model (MAESPA) to account for complex spatial effects, while running fast. It also includes a coffee 

flower bud and fruit cohort module to better distribute fruit carbon demand over the year, a key feature to obtain 

a realistic competition between sinks.  

The model was parameterized and evaluated using a highly comprehensive database on a coffee agroforestry 

experimental site in Costa Rica. The fluxes simulated by the model were close to the measurements over a 5-

year period (nRMSE= 26.27 for gross primary productivity; 28.22 for actual evapo-transpiration, 53.91 for 

sensible heat flux and 15.26 for net radiation), and DynACof satisfactorily simulated the yield, NPP, mortality 

and carbon stock for each coffee organ type over a 35-year rotation. 

 

Keywords: Crop model; Coffea arabica; MAESPA; GPP; Erythrina poeppigiana; plant-to-plot scale 
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1. Software and data availability 

The DynACof model was developed as an R package (R Core Team, 2019), and as a Julia package (Bezanson 

et al., 2017). Full documentation is available on its dedicated website (https://vezy.github.io/DynACof), the 

code is open-source (GNU GPLv3 license) and available on Github repositories (R: 

https://github.com/VEZY/DynACof, Julia: https://github.com/VEZY/DynACof.jl) and archived on Zenodo 

(https://doi.org/10.5281/zenodo.1256816). The input data used for this study is available as example data from 

this repository, and the data for model evaluation is available from the FLUXNET website (http://www.europe-

fluxdata.eu/home/site-details?id=CR-AqC). 

2. Introduction 

The key role of crop models is to help understand and predict the links between crop development and climate, 

soil, management, facilitation and competition between species. Crop models can provide insights into the main 

emerging agricultural challenges such as food security, sustainability, how to enhance ecosystem services, and 

how to cope with the possible negative effects of climate changes (Spiertz, 2012). There is an increasing need 

to address these issues at global scale to identify the different solutions available (Makowski et al., 2014), 

especially when the products are exchanged on the global market, like wheat, maize, soybean, cocoa or coffee. 

Perennial plantations are difficult to study, because their relatively long growing cycle extends the period 

necessary for data acquisition, and because the heterogeneity of the canopy sometimes significantly increases 

the intra-plot light and micro-meteorological anisotropy, such as for temperature, vapor pressure or aerodynamic 

conditions (Luedeling et al., 2014; Luedeling et al., 2016). Agroforestry systems (AFS) are probably the most 

complex perennial agroecosystems (Malézieux et al., 2009), because they have the most heterogeneous vertical 

and/or horizontal canopies, and these affect all ecosystem fluxes (Charbonnier et al., 2013; Vezy et al., 2018). 

Yet, AFS have the potential to enhance ecosystem services (Jose, 2009; Lin, 2010; Taugourdeau et al., 2014) 

such as carbon sequestration (Jose and Bardhan, 2012; Oelbermann et al., 2004), and to mitigate climate 

pressure on crops (Lin, 2007). 

In Costa Rica, Coffee arabica is mostly grown under AFS management because it is assumed to improve coffee 

bean quality and to expand the cropping area to sub-optimal low altitude and warmer areas (Muschler, 2001), 

but such assumptions depend mostly on altitude, local climate and postharvest processing (Worku et al., 2018). 

Modeling the energy, water and carbon balance of these agroecosystems could provide insights into their 

functioning and allow stakeholders to test the in-silico trends of new management practices (e.g. density, 

pruning, thinning date or intensity) or species arrangement on given outputs such as yield or other ecosystem 

services. However, several factors make these systems challenging to model. First, there are many options for 

shade management with highly heterogeneous canopies, ranging from free growing, low density shade trees 

like Cordia alliodora to high density, heavily managed low trees or plants such as banana or pollarded Erythrina 

poeppigiana trees (van Oijen et al., 2010a). Second, the coffee reproductive phenology is a complex process 

that lasts for about two years (Camargo and Camargo, 2001), with competition between reproductive and 

https://vezy.github.io/DynACof
https://github.com/VEZY/DynACof
https://github.com/VEZY/DynACof
https://doi.org/10.5281/zenodo.1256816
http://www.europe-fluxdata.eu/home/site-details?id=CR-AqC
http://www.europe-fluxdata.eu/home/site-details?id=CR-AqC
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vegetative compartments (Charbonnier et al., 2017) and bienniality at the plant scale (Schnabel et al., 2018). 

Blossoming is mostly synchronized in sub-tropical regions but can also be highly asynchronous in equatorial 

regions, which impacts the distribution of fruit carbon demand and in turn, carbon allocation to other organs 

(Rodríguez et al., 2011). Third, coffee plants are often pruned every five to six years to sustain high levels of 

production on young resprouts. It is also assumed that the reserve compartment plays a major role in bean 

production, with biennial sprout dynamics (Cannell, 1985). Fourth, there are very few comprehensive datasets 

that can be used to calibrate and test multi-objective models for ecosystem services, energy, carbon, and water 

balance, aboveground and belowground biomass, NPP, fruit yield and more.  

Model development implies identifying, prioritizing and balancing the most important processes and the scale 

at which the model should simulate them. In coffee systems, we assume that (i) absorbed light, (ii) light use 

efficiency (LUE), (iii) within canopy temperature, (iv) water, and (v) nutrient uptake are among the most 

important primary processes because they regulate carbon assimilation, respiration, evapotranspiration, 

vegetative growth, flowering, and fruit development. The next most important processes may be (vi) shade tree 

and coffee leaf phenology that regulate light absorption, canopy temperature and transpiration, (vii) carbon 

partitioning to compute net primary productivity (NPP), mortality (litterfall) and organ biomass, and (viii) a 

detailed phenology of the reproductive organs comprising all stages, from the appearance of cohorts of buds, 

flowers, and fruits, until harvest or the overripe stage.  

Several models have already been developed to simulate coffee, grown in full sun or agroforestry systems:  

 Rodríguez et al. (2011) proposed a model to simulate coffee in monoculture only, from branch to whole-

plant scales. The model was calibrated from planting to five years old. The strength of this model lies 

in the fine phenology and physiological processes of the modeled coffee plant using branch-level 

cohorts of flowers and fruits over the entire two-year reproductive cycle. Indeed, cohorts are required 

to realistically distribute the demand for carbon of the fruits over the course of the season, and not all 

at once. This model was successfully calibrated for Colombian and Brazilian sites, two regions with 

contrasting climate and flower phenology (subtropical and equatorial). However, this model was not 

designed for large plots, long rotations or agroforestry: coffee light absorption is computed using the 

Beer-Lambert law using a constant coefficient of extinction, absorbed light is converted into 

photosynthesis using constant light use efficiency, and coffee pruning, shade trees, canopy temperature, 

water and energy balance are not implemented in the model.  

 Another model was developed by Van Oijen et al. (2010b). This is a 1D plant average plot-scale model 

for coffee grown in agroforestry systems, simplifying the intra-plot microclimate into either below 

shade or in full sun. One clear advantage of this model is its ability to compute several ecosystem 

services and to incorporate various types of shade tree management and species, and the thorough 

Bayesian parameterization approach that was used. The model is simple, fast and can be run under 

changing climates. It was recently applied in East Africa under climate change scenarios by Rahn et al. 

(2018). The main limitations of the model are (i) its light transmission module does not consider light 

distribution as a continuum under shade trees, as described in Charbonnier et al. (2013), (ii) its 
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formalism of LUE which is not influenced by the intra-plot light variability even though Charbonnier 

et al. (2017) found it to be greatly impacted, (iii) it lacks of a reserve compartment and of a cohort 

module and again (iv) the absence of energy balance and temperature of the canopy to drive the plant 

respiration reproductive development.  

 Two other models have also been applied to coffee in an agroforestry system using 3D light interception 

modules: in Dauzat et al. (2001), where only a sample of a few coffee plants were simulated, and using 

the MAESPA model to simulate the whole system. Since MAESPA was recently demonstrated to 

accurately predict light distribution, canopy temperature and water and energy balance in such systems 

(Charbonnier et al., 2013; Charbonnier et al., 2017; Vezy et al., 2018), the model can readily compute 

all variables that are potentially influenced by the complex canopy structure. However, its relatively 

high computation time still limits its application for full rotations of coffee under AFS, and the model 

does not simulate growth and yield.  

We argue that a proper combination of the inherent strengths of the above-described models could provide 

significant improvements and extend application domains. It would involve combining cohorts and reserves at 

the plant scale, variable canopy temperature and intra-plot microclimate and LUE, while allowing a reasonable 

level of abstraction to insure rapid simulations (multiple plots, crop rotations, management, etc.). In this study, 

we built surrogate models (i.e. metamodels) of MAESPA for the spatial-dependent variables, and integrated 

them into a simpler growth and yield model to avoid expensive computation and development time. These 

metamodels are simple instantaneous equations that efficiently compute a given output of a complex model. In 

other words, it is a reduction of a complex model intended to emulate the behavior of complex interactions 

between variables (e.g. spatial heterogeneity) into one empirical equation, becoming an input for the next crop 

model. Metamodels are generally used to better understand the processes at stake in a model and to assess model 

sensitivity and uncertainty (Christina et al., 2016; Faivre et al., 2013), for the purpose of optimization (Razavi 

et al., 2012), or to make faster and reasonably accurate predictions for a given variable that is usually computed 

by a time-consuming model, but with fewer simulation errors compared to simpler models (Marie et al., 2014). 

Metamodels are often used as an efficient and simple tool to combine models at different time and/or space 

scales without running the finer-scale model iteratively.  

Consequently, we designed DynACof to incorporate a plant-scale reproductive phenology formalism inspired 

by Rodríguez et al. (2011) but dependent on canopy temperature, with different sub-modules to adapt coffee 

and shade tree management, density and tree species, as in Van Oijen et al. (2010b), and metamodels calibrated 

from MAESPA simulations for spatially-dependent variables, such as diffuse and direct light extinction 

coefficients, light use efficiency, leaf water potential, transpiration, and sensible fluxes (Vezy et al., 2018). 

Regarding model parameterization, calibration, and evaluation for coffee modelling, several strategies are 

proposed in the literature, most of which depend on the availability of field data. Rodríguez et al. (2011) assumed 

that the main factor that influences yield variability is latitude, because of its impact on phenology, so they 

tested their model on an equatorial site and on a sub-tropical site, with two distinct set of parameters for each 

situation. The former model was evaluated against field data on biomass (leaves, branches, berries, stem and 
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roots) and total plant nitrogen content gathered at three distinct sites. Van Oijen et al. (2010b), and later Rahn 

et al. (2018), who further developed the CAF2007 model, proposed a calibration based on an extensive screening 

of the literature and a sensitivity analysis, but no model evaluation against field data at this stage. Alternatively, 

we propose a multiple-objective strategy of evaluation in this study, relying on a large range of state and flux 

variables measured at the same time by the end of the crop rotation, including eddy-covariance fluxes, coffee 

and shade tree biomass measured at organ scale, necromass, yield, NPP, water balance and energy balance, and 

finally farm registers to describe management during a complete rotation (Charbonnier et al., 2013; Charbonnier 

et al., 2017; Defrenet et al., 2016; Gómez-Delgado et al., 2011; Taugourdeau et al., 2014; Vezy et al., 2018).  

Consequently, the aims of the present study are to:  

(i) develop metamodels for spatially-dependent variables based on MAESPA, which has already been 

calibrated and validated on coffee agroforestry systems; 

(ii) develop a new plot-scale 1D, 5-layer (shade tree, coffee, and 3 soil layers), average plant, 

ecophysiological process-based model for coffee crops grown under agroforestry or in full sun, 

while combining the advantages and strengths of three previously published models. Nutrients are 

considered non-limiting in this first version, which is realistic for many field conditions. 

(iii) parameterize and evaluate the model using a multi-objective approach applied to an extensive 

dataset from a long-term observatory including the energy and water balance, GPP, yield, NPP and 

carbon mass per organ. 

3. Materials and methods 

3.1. Site description 

The research site is located on the Aquiares Coffee Farm (6.6 km2) between 9° 56’ 8” and 9° 56’ 35” N and 83° 

44’ 39” and 83° 43’ 35” W, itself located in the central-Caribbean area of Costa Rica. The climate is tropical 

humid with no marked dry season, 3 014 mm mean annual precipitation and 19.5 °C mean annual temperature 

during the 1979 to 2009 period. The elevation of the research site ranges between 1 020 and 1 280 m a.s.l. and 

the mean slope is 11.31°. The vegetation consists of coffee plants (Coffea arabica L., var Caturra) planted 

below Erythrina poeppigiana, a leguminous shade tree.  Both were planted in 1979. Shade trees were originally 

planted at a density of approximately 250 trees ha-1 and pollarded twice a year to optimize the light transmitted 

to the coffee layer. They were thinned to about 7.4 trees ha-1 in 2000 and left growing freely until the end of the 

study. The shade trees do not follow any particular planting pattern. The Aquiares farm is intensively managed 

with several applications of fertilizer per year (214 ± 44 kg N ha-1 yr-1) and a regular selective pruning of the 

coffee shoots, a practice often used by farmers to avoid a drop in production due to exhaustion. The farm 

complies with the Rainforest Alliance™ for its pest and weed management (weeds are scarce). Between 1995 

and 2016, the Aquiares farm reported average yields of green coffee around 1333 ± 336 kg green coffee ha-1 yr-

1. 



7 

 

3.2. Comprehensive database of measurements 

“Coffee-Flux” is a collaborative research observatory (https://www.umr-ecosols.fr/recherche/projets/53-coffee-

flux) monitored continuously since 2009 and located on the Aquiares coffee farm. This research site has been 

intensively studied and described in detail, notably for hydrology and eddy-covariance by Gómez-Delgado et 

al. (2011); LAI by Taugourdeau et al. (2014); light budget by Charbonnier et al. (2013); belowground biomass 

and NPP by Defrenet et al. (2016), ecosystem biomass, NPP and LUE by Charbonnier et al. (2017); and energy 

balance, water balance and surface temperature by Vezy et al. (2018).  

The measurements used in this study to evaluate the model included: half-hourly 𝑁𝐸𝐸  (Net Ecosystem 

Exchange), 𝐻  (sensible heat flux), 𝐿𝐸  (latent heat flux), and 𝑅𝑛  (net radiation) measured using an eddy-

covariance tower. The online ReddyProc tool (Wutzler et al., 2018) was used to assess gross primary 

productivity (GPP), following the Lasslop et al. (2010) model option, based on daily hyperbolic curves to 

estimate photosynthesis. This model option was chosen because the Coffee-Flux site is mountainous, prone to 

night-time advection. The flux measurements were integrated at a daily time scale for comparison with 

DynACof outputs. The LAI of the shade tree (𝐿𝐴𝐼𝑇𝑟𝑒𝑒) was also measured using a LAI2000 (LI-COR, NE, 

USA), and the coffee LAI (𝐿𝐴𝐼𝑐𝑜𝑓𝑓𝑒𝑒) using a normalized difference vegetation index (NDVI) sensor positioned 

25 m above the ground, at an angle of 15° to the vertical with 45° view angle, and converted to LAI according 

to Charbonnier et al. (2013). The light transmittance by shade trees was also measured using the LAI2000. The 

carbon mass (gC m-2) of the shade tree stem and branches, and the coffee resprout wood, fine roots, stump and 

coarse roots were all measured during two consecutive years (2011/2012 and 2012/2013) using dimension 

measurements and site specific allometric relationships. The NPP of each compartment of the shade tree and 

coffee plant was also computed from the biomass increment and from litter production. Further details about 

the methods used for measurement are available in Charbonnier et al. (2013) and Charbonnier et al. (2017). 

3.3. MAESPA model and metamodel conception 

3.3.1.  Description of MAESPA  

MAESPA is a 3D explicit process-based model (Duursma and Medlyn, 2012; Medlyn, 2004; Wang and Jarvis, 

1990) used to simulate forest energy, water, and carbon fluxes at the scale of the individual tree. The light 

interception module, canopy temperature, water and energy balance of the model have already been calibrated, 

used and validated on the same agroforestry system (Charbonnier et al., 2013; Vezy et al., 2018). MAESPA is 

particularly well suited to simulate agroforestry system fluxes because it describes the forest at voxel scale, 

which is a homogeneous representation of a sub-part of the tree crown. It can manage several tree species with 

their own position on the plot, their overall structure (crown height, width, etc.), and their physical and 

physiological parameters. Thus, MAESPA computes a fine estimation of the light interception, energy, water, 

and carbon fluxes of each plant in the forest and of the soil, while taking the spatial heterogeneity of the canopy 

into account. However, MAESPA lacks a carbon allocation module or growth process, and requires 

computationally-intensive simulations, e.g. a week of computation on the shared Montpellier Bioinformatic 

https://www.umr-ecosols.fr/recherche/projets/53-coffee-flux
https://www.umr-ecosols.fr/recherche/projets/53-coffee-flux


8 

 

Biodiversity (MBB) computing cluster platform to complete a distributed simulation of a 0.2 ha AFS plot, 

including 4176 Coffea arabica sprouts and 14 Erythrina poeppigiana shade trees over one year at 30-minute 

time-scale. Consequently, MAESPA was used here mainly to compute metamodels to simulate spatial-

dependent variables. 

3.3.2.  Metamodels 

The main process affected by canopy complexity is probably the photosynthetically active radiation absorbed 

(𝐴𝑃𝐴𝑅) by the canopy (Charbonnier et al., 2013). Heterogeneous canopies like those of shade trees in AFS tend 

to violate the assumption of a constant value for diffuse (𝐾𝐷𝑖𝑓) and direct (𝐾𝐷𝑖𝑟) light extinction coefficients 

because of non-uniform spatial distribution of leaf area, and because the leaf area density and foliage 

aggregation can change over time (Sampson and Smith, 1993; Sinoquet et al., 2007). Furthermore, a comparison 

between coffee plants grown in monoculture and under an agroforestry system showed that canopy complexity 

also affected canopy temperature, water and energy partitioning, light interception, transpiration and stomatal 

conductance (Vezy et al., 2018). 

Metamodels were computed from MAESPA simulation outputs for diffuse (𝐾𝐷𝑖𝑓) and direct (𝐾𝐷𝑖𝑟) shade tree 

light extinction coefficients, coffee and shade tree light use efficiency ( 𝐿𝑈𝐸, 𝑔𝐶  𝑀𝐽
−1 ), transpiration 

( 𝑇𝑟,𝑚𝑚 𝑑−1 ), plant sensible heat flux (𝐻,𝑀𝐽 𝑚−2𝑑−1 ) and soil net radiation (𝑅𝑛𝑆𝑜𝑖𝑙 , 𝑀𝐽 𝑚
−2𝑑−1 ). 

Metamodels are used to reproduce as far as possible the link between a set of input variables and the desired 

output variable, as if it had been computed by the MAESPA model.  

MAESPA simulations were also used to find the values of some parameters such as the coffee layer light 

extinction coefficients that had low variability throughout the simulation and hence were assumed constant in 

DynACof. The partitioning parameter (𝑆𝑜𝑖𝑙_𝐿𝐸_𝑃, see appendix A.2) used to compute soil sensible and latent 

heat flux from the soil net radiation in DynACof was also parameterized using MAESPA outputs.  

Metamodels were fitted using multilinear regressions selected according to a trade-off between the number of 

explanatory variables, their genericity and range of application and their accuracy obtained using different 

statistics (EF: modelling efficiency, R2: r squared, RMSE: root mean squared error). MAESPA was used to 

simulate one year of the coffee agroforestry system from the Coffee-Flux site in the Aquiares farm in order to 

calibrate the metamodels. The parameterization and description of these MAESPA simulations are reported in 

Vezy et al. (2018). The outputs considered are converted from half hourly values at shade tree and coffee 

resprout scale to daily plot scale values for each plant layer during the same year (Figure 1). The metamodels 

were trained on 80% of MAESPA simulation outputs aggregated at daily time-scale and evaluated over the 20% 

remaining validation data to compute out-of-sample statistics. Both training and testing partitions were sampled 

based on the dependent variable subgroup percentiles using the “createDataPartition” function in the caret R 

package (Kuhn, 2019). 
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Figure 1. Flowchart of the three-step metamodeling approach. 1/ The resolution for stand simulations in MAESPA was the 

individual tree and the half-hourly time step. 2/ The metamodels were fitted using inputs (meteorology and parameters) at daily 

and stand scale used as predictors to model the MAESPA outputs integrated at daily and stand-scale (training set, 80% of the 

data). The metamodels were evaluated on the validation set (20% of the data). 3/ The metamodel equations were injected into 

DynACof. 

The input variables of MAESPA used as predictors for metamodels were either related to climate or to plot-

average plant structure. Climate variables included daily air temperature, vapor pressure deficit, PAR, diffuse 

and direct light fractions, wind speed, and air pressure. The atmospheric CO2 concentration can also be used for 

the 𝐿𝑈𝐸 metamodel but were not useful for the present study. Input variables concerning shade tree structure 

for the metamodels were leaf area (𝑚𝑙𝑒𝑎𝑣𝑒𝑠
2  𝑡𝑟𝑒𝑒−1), crown height (𝑚), trunk height (𝑚), crown radius (𝑚), 

trunk diameter (𝑚) and all derivatives such as the leaf area index (LAI, 𝑚𝑙𝑒𝑎𝑣𝑒𝑠
2  𝑚𝑠𝑜𝑖𝑙

−2 ), leaf area density (LAD, 

𝑚𝑙𝑒𝑎𝑣𝑒𝑠
2  𝑚𝑐𝑟𝑜𝑤𝑛

−3 ), tree density (𝑡𝑟𝑒𝑒𝑠 ℎ𝑎−1) or crown projection (𝑚𝑐𝑟𝑜𝑤𝑛
2  𝑚𝑠𝑜𝑖𝑙

2 ), all being plot averages. The 

LAI was measured continuously in the plot, while the other structural data were measured only once during the 

2011 campaign. The variability and the interactions between the predictors were checked to insure the range of 

values was similar in the MAESPA simulation dataset and in the application dataset used for DynACof. 

The metamodels are not mandatory in DynACof, and can be replaced by any equation or fixed value. Hence, 

DynACof was also run using standard equations instead of the metamodels to assess their relative contribution 

to the modeling performance for the plot-scale net radiation (Rn), latent (LE) and sensible (H) heat flux, and 

gross primary productivity (GPP). For this purpose, the FAO recommended plot scale equation from Allen et 

al. (1998) was chosen as a reference for comparison with the current computation for Rn in DynACof, LE was 

computed using the Penman-Monteith equation (Allen et al., 1998), H was computed as the difference between 
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Rn and LE, and GPP was computed using a constant light use efficiency (𝐿𝑈𝐸) and constant light extinction 

coefficients (𝐾𝐷𝑖𝑓 and 𝐾𝐷𝑖𝑟) for both the coffee and the shade tree layers. The average values computed from 

MAESPA simulations were used to compute the constant 𝐿𝑈𝐸  and 𝐾𝑠  coefficients on this modeling 

experiment.  

3.4. Description of the DynACof model  

3.4.1.  Introductory description 

DynACof (which stands for Dynamic Agroforestry Coffee crop model), is a daily plot scale crop model 

(Murthy, 2004) with two layers of vegetation (shade trees and coffee plants) and three soil layers, aimed at 

simulating the growth and yield of coffee plantations under various shade tree species and management options, 

considering the spatial heterogeneity of the shade tree canopy. The coffee layer can be simulated either in 

monoculture or in agroforestry systems. Each layer is simulated sequentially at a daily time step. Variables with 

high intra-plot variability, i.e. light absorption, LUE, transpiration, plant sensible heat flux and soil net radiation 

are all computed using metamodels from MAESPA. The model accounts for potential competition for light 

acquisition and water availability between plant and soil layers. Nutrients are considered non-limiting in this 

first version, which is realistic for many field conditions in Costa Rica. Water competition is simulated virtually 

from the day-to-day fluctuations in water content in each shared soil layer that can be reduced by drainage and 

evapotranspiration, or increased by precipitation through throughfall. This simple formalism should be 

sufficient given the absence of water limitations in the application concerned (Vezy et al., 2018), but it can also 

reproduce the competition between plants under more constrained conditions.  

3.4.2. Light interception and photosynthesis 

The diffuse (𝐴𝑃𝐴𝑅𝐷𝑖𝑓𝑖 , 𝑀𝐽 𝑚
−2 𝑑−1) and direct (𝐴𝑃𝐴𝑅𝐷𝑖𝑟𝑖 , 𝑀𝐽 𝑚

−2 𝑑−1) daily absorbed photosynthetic 

active radiation of each plant layer are computed using the Beer-Lambert’s law of light extinction:  

𝐴𝑃𝐴𝑅𝐷𝑖𝑓𝑖 =  𝑃𝐴𝑅𝐷𝑖𝑓𝑖 ∙ (1 − 𝑒
−𝐾𝐷𝑖𝑓∙𝐿𝐴𝐼𝑖) (1) 

𝐴𝑃𝐴𝑅𝐷𝑖𝑟𝑖 =  𝑃𝐴𝑅𝐷𝑖𝑟𝑖 ∙ (1 − 𝑒
−𝐾𝐷𝑖𝑟∙𝐿𝐴𝐼𝑖) (2) 

with 𝑃𝐴𝑅𝐷𝑖𝑓𝑖  and 𝑃𝐴𝑅𝐷𝑖𝑟𝑖  the diffuse or direct daily photosynthetically active radiation (𝑀𝐽 𝑚−2 𝑑−1 ) 

reaching the layer on day 𝑖, 𝐾𝐷𝑖𝑓 and 𝐾𝐷𝑖𝑟 the light extinction coefficient of the layer for the diffuse and direct 

light respectively and 𝐿𝐴𝐼 the leaf area index (𝑚𝑙𝑒𝑎𝑓
2  𝑚𝑠𝑜𝑖𝑙

−2 ) of the layer. Both stand scale light extinction 

coefficients of the shade tree layer are computed using metamodels from MAESPA, while the extinction 

coefficients of coffee were approximated to be constant after MAESPA simulations (only a slight variability 

could not be explained using stand scale factors). 𝑃𝐴𝑅𝐷𝑖𝑓 and 𝑃𝐴𝑅𝐷𝑖𝑟 are computed as the incoming 𝑃𝐴𝑅 

minus the 𝑃𝐴𝑅 absorbed by the upper layer if any, neglecting the 𝑃𝐴𝑅 reflected back by the canopy. 

The gross primary productivity (𝐺𝑃𝑃, 𝑔𝐶  𝑚
−2 𝑑−1) of each layer is then computed from the sum of diffuse and 

direct 𝐴𝑃𝐴𝑅  multiplied by the light use efficiency (𝐿𝑈𝐸 , 𝑔𝐶  𝑀𝐽
−1 ), which is derived from a MAESPA 

metamodel: 
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𝐺𝑃𝑃𝑖 = (𝐴𝑃𝐴𝑅𝐷𝑖𝑓𝑖 + 𝐴𝑃𝐴𝑅𝐷𝑖𝑟𝑖) ∙ 𝐿𝑈𝐸𝑖 (3) 

3.4.3.  Carbon supply 

A whole plant daily gross carbohydrate budget (GCB) is computed from the daily 𝐺𝑃𝑃, available reserves, and 

plant maintenance respiration as follows: 

𝐺𝐶𝐵𝑖 =  𝐺𝑃𝑃𝑖 +  𝑘𝑟𝑒𝑠 ∙ 𝐶𝑀𝑅𝐸,𝑖−1 − 𝑅𝑚𝑖   (4) 

The carbon available from reserves for day 𝑖 is computed as a fraction (𝑘𝑟𝑒𝑠) of the carbon mass of the reserves 

from the previous day (𝐶𝑀𝑅𝐸,𝑖−1, 𝑔𝐶  𝑚
−2). 𝑅𝑚 is the maintenance respiration (𝑔𝐶  𝑚

−2𝑑−1, see Eq.(6)). 

The plant daily carbon supply is then computed as:  

𝑆𝑢𝑝𝑝𝑙𝑦𝑖 = {
𝐺𝐶𝐵𝑖   𝑖𝑓 𝐺𝐶𝐵𝑖 > 0
0       𝑖𝑓 𝐺𝐶𝐵𝑖 ≤ 0

}  (5) 

If 𝐺𝐶𝐵𝑖 is negative, it means that the carbon available from 𝐺𝑃𝑃 and reserves was not sufficient to support the 

maintenance respiration, so 𝑆𝑢𝑝𝑝𝑙𝑦𝑖 is equal to 0, and the missing carbon is considered as mortality imputed 

equally to all organs (see Eq. (23)). 

3.4.4.  Maintenance Respiration 

The maintenance respiration requirement (𝑅𝑚) is computed as the sum of maintenance respiration of all plant 

organs (Litton et al., 2007). The maintenance respiration of each organ (𝑅𝑚𝑗) is computed using its carbon mass 

(𝐶𝑀, 𝑔𝐶  𝑚
−2) from the previous day, following a Q10 formalism, as reported in Dufrêne et al. (2005):  

𝑅𝑚𝑗,𝑖 = 𝑝𝑎𝑗 ∙ 𝐶𝑀𝑗,𝑖−1 ∙ 𝑁𝐶𝑗 ∙ 𝑀𝑅𝑁 ∙ 𝑄10𝑗

𝑇𝑗−𝑇𝑀𝑅
10  (6) 

where 𝑗 is the organ, 𝑖 the day, 𝑝𝑎𝑗 (0-1) the living fraction of the organ, 𝐶𝑀𝑗,𝑖−1 (𝑔𝐶  𝑚
−2) the carbon mass of 

the organ from the previous day, 𝑁𝐶𝑗 (𝑔𝑁 𝑔𝐶
−1) the organ nitrogen content, 𝑀𝑅𝑁 (𝑔𝐶  𝑔𝑁

−1 𝑑−1) the respiration 

rate per nitrogen unit, 𝑄10𝑗  (dimensionless) the response of organ respiration to temperature, 𝑇𝑗  (°𝐶 ) the 

temperature of the organ and 𝑇𝑀𝑅 (°𝐶) the base temperature for maintenance respiration. The leaf temperature 

of the plant layer (𝑇𝑐) that is computed in Eq. (44) is used as a proxy for 𝑇𝑗, except for the roots where the soil 

temperature (𝑇𝑠𝑜𝑖𝑙) is used instead.  

3.4.5.  Carbon allocation to organs 

The allocation of carbohydrates to the organs is limited by either the 𝑆𝑢𝑝𝑝𝑙𝑦𝑖  or by the organ demand for 

carbon. The 𝑆𝑢𝑝𝑝𝑙𝑦𝑖 is distributed to the different organs following a hierarchical allocation scheme (Lacointe, 

2000). For coffee, Charbonnier et al. (2017) reported that allocation to the woody compartments remained quite 

steady whatever the fruit load, so DynACof supplies this compartment with priority. In contrast, carbon 

allocation to fruits appeared to prevail over allocation to leaves (Charbonnier et al., 2017; Gutierrez et al., 1998), 

so DynACof supplies carbon assimilates to fruits just after woody compartments, and the remaining carbon is 

allocated to leaves and fine roots, and eventually reserves. The demand from the woody compartments is 
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considered to always be proportional to the 𝑆𝑢𝑝𝑝𝑙𝑦𝑖 , the demand from fine roots and leaves is considered 

constant, whereas the fruits demand is computed (see section 3.4.11). If the demand for assimilates by the fruits 

is sufficiently high, the carbon allocated to fruits potentially represents all the remaining global carbon 𝑆𝑢𝑝𝑝𝑙𝑦𝑖 

after allocation to the woody compartments, leaving nothing for the leaves and the fine roots.  

In practice, the carbon 𝑆𝑢𝑝𝑝𝑙𝑦𝑖 is first partitioned between shoot wood (𝐶𝐴𝑠ℎ𝑜𝑜𝑡,𝑖) and stump and coarse roots 

wood (𝐶𝐴𝑆𝐶𝑅,𝑖) using constant coefficients 𝜆𝑠ℎ𝑜𝑜𝑡 and 𝜆𝑆𝐶𝑅: 

𝐶𝐴𝑠ℎ𝑜𝑜𝑡,𝑖 = 𝜆𝑠ℎ𝑜𝑜𝑡 ∙ 𝑆𝑢𝑝𝑝𝑙𝑦𝑖  (7) 

𝐶𝐴𝑆𝐶𝑅,𝑖 = 𝜆𝑆𝐶𝑅 ∙ 𝑆𝑢𝑝𝑝𝑙𝑦𝑖 (8) 

 𝜆𝑠ℎ𝑜𝑜𝑡 + 𝜆𝑆𝐶𝑅 < 1  

Carbon allocation to the coffee fruits is computed as the minimum between the total fruit demand (see Eq. (38)) 

and the remaining carbon supply. 

𝐶𝐴𝑓𝑟𝑢𝑖𝑡,𝑖 =  min (𝐷𝐸𝑓𝑟𝑢𝑖𝑡,𝑖 ;  𝑆𝑢𝑝𝑝𝑙𝑦𝑖 − 𝐶𝐴𝑠ℎ𝑜𝑜𝑡,𝑖 − 𝐶𝐴𝑆𝐶𝑅,𝑖) (9) 

The remaining carbon supply, if any, is then shared between leaves and fine roots following a coefficient of 

allocation (𝜆𝑟𝑗) for the remaining carbon:   

𝑆𝑢𝑝𝑝𝑙𝑦𝑙𝑒𝑎𝑓,𝑖 = 𝜆𝑟𝑙𝑒𝑎𝑓 ∙ (𝑆𝑢𝑝𝑝𝑙𝑦𝑖 − 𝐶𝐴𝑠ℎ𝑜𝑜𝑡,𝑖 − 𝐶𝐴𝑆𝐶𝑅,𝑖 − 𝐶𝐴𝑓𝑟𝑢𝑖𝑡,𝑖) (10) 

𝑆𝑢𝑝𝑝𝑙𝑦𝐹𝑅𝑜𝑜𝑡,𝑖 = 𝜆𝑟𝐹𝑅𝑜𝑜𝑡 ∙ (𝑆𝑢𝑝𝑝𝑙𝑦𝑖 − 𝐶𝐴𝑠ℎ𝑜𝑜𝑡,𝑖 − 𝐶𝐴𝑆𝐶𝑅,𝑖 − 𝐶𝐴𝑓𝑟𝑢𝑖𝑡,𝑖) (11) 

with 𝜆𝑟𝑙𝑒𝑎𝑓 + 𝜆𝑟𝐹𝑅𝑜𝑜𝑡 = 1 (12) 

And the allocation to both organs is the minimum between their respective supply and demand: 

𝐶𝐴𝑙𝑒𝑎𝑓,𝑖 = min (𝐷𝐸𝑙𝑒𝑎𝑓,𝑖, 𝑆𝑢𝑝𝑝𝑙𝑦𝑙𝑒𝑎𝑓,𝑖) (13) 

𝐶𝐴𝐹𝑅𝑜𝑜𝑡,𝑖 = min (𝐷𝐸𝐹𝑅𝑜𝑜𝑡 , 𝑆𝑢𝑝𝑝𝑙𝑦𝐹𝑅𝑜𝑜𝑡,𝑖) (14) 

Demand by the fine roots is a constant parameter, but demand by the leaves depends on the plant 𝐿𝐴𝐼 compared 

to the maximum observed 𝐿𝐴𝐼: 

𝐷𝐸𝑙𝑒𝑎𝑓,𝑖 = 𝐷𝐸𝐿𝑀 ∙
𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔𝑖
10,000

  (15) 

where 𝐷𝐸𝐿𝑀 is the maximum leaf carbon demand (𝑔𝐶  𝑝𝑙𝑎𝑛𝑡
−1 𝑑−1) per coffee plant and 𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔𝑖 is the 

coffee planting density on day i (𝑝𝑙𝑎𝑛𝑡 ℎ𝑎−1). 

Finally, if both leaf and fine root carbon demands are satisfied, the remaining carbon is stored in the reserves 

for future use: 

𝐶𝐴𝑅𝐸,𝑖 = 𝑂𝑓𝑓𝑒𝑟𝑖 − 𝐶𝐴𝑠ℎ𝑜𝑜𝑡,𝑖 − 𝐶𝐴𝑆𝐶𝑅,𝑖 − 𝐶𝐴𝑓𝑟𝑢𝑖𝑡,𝑖 − 𝐶𝐴𝑙𝑒𝑎𝑓,𝑖 − 𝐶𝐴𝐹𝑅𝑜𝑜𝑡,𝑖 (16) 

3.4.6.  Growth respiration 

Growth respiration is the energy cost in carbohydrates to make new biomass from 𝐶𝐴 on day 𝑖. It is computed 

using a construction cost coefficient (𝜀𝑗, 𝑔𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑  𝑔𝐶𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑
−1 ) applied to the carbon allocated to the organ 𝑗: 

𝑅𝑔𝑗,𝑖 = 𝐶𝐴𝑗,𝑖 ∙ 𝜀𝑗 (17) 
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3.4.7.  Net primary productivity 

Maintenance respiration is already accounted for before any carbon allocation (see 3.4.3), therefore, the net 

primary productivity of each organ 𝑗 for day 𝑖 (𝑁𝑃𝑃𝑗,𝑖, 𝑔𝐶  𝑚
−2 𝑑−1) is computed using the difference between 

the carbon allocated to the organ and the growth respiration: 

𝑁𝑃𝑃𝑗,𝑖 = 𝐶𝐴𝑗,𝑖 − 𝑅𝑔𝑗,𝑖 (18) 

𝑗 = {𝑠ℎ𝑜𝑜𝑡|𝑆𝐶𝑅|𝑓𝑟𝑢𝑖𝑡|𝑙𝑒𝑎𝑓|𝐹𝑅𝑜𝑜𝑡} (19) 

The net primary productivity of the plant is the sum on 𝑗 of the 𝑁𝑃𝑃𝑗,𝑖 of the layer considered, and the total net 

primary productivity of the stand is the sum of all 𝑁𝑃𝑃𝑗,𝑖 in all the layers. 

3.4.8.  Mortality 

Mortality is the sum of the natural mortality (turnover rate, 𝑀𝑛𝑎𝑡), of pruning (𝑀𝑝𝑟𝑢𝑛), diseases and of the 

lack of carbon (𝑀𝐶) when the carbohydrate budget (𝐺𝐶𝐵𝑖) is negative.  

The natural mortality of an organ 𝑗 (𝑀𝑛𝑎𝑡𝑗,𝑖, 𝑔𝐶  𝑚
−2𝑑−1) is proportional to its carbon mass from the previous 

day (𝐶𝑀𝑗,𝑖−1, 𝑔𝐶𝑚
−2), and is computed using a lifespan parameter (𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛𝑗, 𝑑): 

𝑀𝑛𝑎𝑡𝑗,𝑖 =
𝐶𝑀𝑗,𝑖−1

𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛𝑗
 (20) 

The annual pruning of coffee plants affects the shoot wood and the leaves, and it is assumed that leaf loss is 

accompanied by fine root loss. Pruning also affects the branches of the shade trees. For the leaves and shoots, 

pruning is adjusted using a pruning intensity coefficient (𝑃𝐼) as follows. It is considered that two separate 𝑃𝐼s 

are needed for the leaves and the shoots because the distribution of wood and leaf biomass may be heterogeneous 

between resprouts of different ages in the coffee plant as reported in Charbonnier et al. (2017).  

𝑀𝑝𝑟𝑢𝑛𝑗,𝑖 = 𝑃𝐼𝑗 ∙ 𝐶𝑀𝑗,𝑖−1 (21) 

Mortality due to pruning of the fine roots is related to the mortality of pruned leaves using a constant parameter 

(𝑚𝐹𝑅𝑜𝑜𝑡):  

𝑀𝑝𝑟𝑢𝑛𝐹𝑅𝑜𝑜𝑡,𝑖 = 𝑀𝑝𝑟𝑢𝑛𝑙𝑒𝑎𝑓,𝑖 ∙ 𝑚𝐹𝑅𝑜𝑜𝑡 (22) 

Leaf disease mortality is only implemented for coffee, using a module to compute the American Leaf Spot 

(ALS) according to Avelino et al. (2007). 

Mortality due to lack of carbohydrates to meet the maintenance respiration requirements (𝑀𝐶𝑖) is computed as:  

𝑀𝐶𝑗,𝑖 = {
−
𝐺𝐶𝐵𝑖 ∙ 𝐶𝑀𝑗,𝑖−1

𝐶𝑀𝑡𝑜𝑡,𝑖−1
   𝑖𝑓 𝐺𝐶𝐵𝑖 < 0

0                      𝑖𝑓 𝐺𝐶𝐵𝑖 ≥ 0

} (23) 

where 𝐶𝑀𝑗,𝑖−1 is the carbon mass of the organ 𝑗 from the day before 𝑖 (see Eq. (24)) and 𝐶𝑀𝑡𝑜𝑡,𝑖−1 is the total 

carbon mass of the leaves, shoots, fine roots stump and coarse roots of the previous day. 

Finally, the total mortality of each organ 𝑀𝑗,𝑖 is computed as the sum of all mortalities: natural, pruning, leaf 

disease (for coffee only) and lack of carbohydrates.  
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3.4.9. Carbon and dry mass of organs 

The carbon mass of an organ is incremented daily by adding its 𝑁𝑃𝑃𝑗,𝑖 and removing its mortality: 

𝐶𝑀𝑗,𝑖 = 𝐶𝑀𝑗,𝑖−1 +𝑁𝑃𝑃𝑗,𝑖 −𝑀𝑗,𝑖 (24) 

The organ dry mass is computed using the carbon mass and the carbon content of each organ (𝐶𝐶𝑗, 𝑔𝐶  𝑔𝐷𝑀
−1 ). 

3.4.10. Branch nodes 

The plagiotropic branches of a coffee plant present several nodes of decreasing age from the orthotropic branch 

to the tip:  

- several unproductive old nodes, close to the orthotropic branch; 

- productive nodes from the previous year that potentially bear flower buds, and then fruits; 

- newly formed nodes that bear leaves. 

The coffee reproductive phenology is based on a 2-year cycle (Camargo and Camargo, 2001). For a given year 

N, the new flush of nodes bearing new leaves will bear flower buds by the end of year N, while the leaves from 

year N-1 (born by the fruiting nodes N-1) are shed. Given that each new node bears two leaves, one expects 

some proportionality between node number and leaf area for the year N (Gutierrez et al., 1998). Such 

proportionality is used here to upscale the equations of Rodríguez et al. (2011) from the branch to the whole 

plant. The model computes the total number of newly formed nodes (𝐺𝑁𝑖) on the coffee plant for year N, i.e. 

the number of green wood nodes that will potentially bear flower buds by the end of the first year of the 

reproductive cycle:  

𝐺𝑁𝑖 = 𝐿𝐴𝐼𝑖 ∙ 𝑅𝑁𝐿 ∙ 𝐶𝑁 (25) 

where 𝑅𝑁𝐿 is the number of nodes per 𝐿𝐴𝐼 unit at 20 °C, assuming that this parameter is dependent on the 

growth temperature. 𝐶𝑁 is an empirical temperature-dependant correction coefficient that is a function of the 

mean temperature during the vegetative growth period (𝑇𝑔𝑝, °𝐶). This relationship is derived from Drinnan and 

Menzel (1995): 

𝐶𝑁 =  0.4194773 + 0.2631364 ∙ 𝑇𝑔𝑝 − 0.0226364 ∙ 𝑇𝑔𝑝
2 + 0.0005455 ∙ 𝑇𝑔𝑝

3  (26) 

Note that this coefficient is from one of the only datasets in the literature that links coffee reproductive and 

vegetative growth to the ambient temperature. 

3.4.11. Fruit development 

The reproduction module is mostly inspired by Rodríguez et al. (2011), but upscaled to the whole plant (e.g. in 

Eq. (25)). Two main development processes are computed in the model: the flower bud cohorts of year N, and 

the fruit cohorts of the following year. The bud itself has two stages of development, while the fruit has five. 

Buds can be initiated only during the bud initialization period (BIP) from day 𝐷𝐵𝐼𝑃1 to 𝐷𝐵𝐼𝑃2. The buds appear 

on branch nodes in daily cohorts every day within that time window. The 𝐷𝐵𝐼𝑃1 date is computed from the 

cumulative sum of degree days (𝑆𝑑𝑑𝑇𝑓𝑓𝑏) after the date of end of vegetative development (𝐷𝑉𝐺2).  

The degree days are computed as follows: 
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𝑑𝑑𝑖 = {
𝑇𝑐𝑎𝑛𝑖 − 𝑇𝑚𝑖𝑛   𝑖𝑓 𝑇𝑐𝑎𝑛𝑖 > 𝑇𝑚𝑖𝑛
0                          𝑖𝑓 𝑇𝑐𝑎𝑛𝑖 ≤ 𝑇𝑚𝑖𝑛  

} (27) 

where 𝑑𝑑𝑖  are the degree days (°C) of day 𝑖 , 𝑇𝑐𝑎𝑛𝑖  the mean daily coffee canopy temperature, 𝑇𝑚𝑖𝑛  the 

minimum (i.e. base temperature) and 𝑇𝑚𝑎𝑥  the maximum temperature for physiological activity. One 

originality here is that the degree days are computed using the canopy temperature of each layer rather than 

measured air temperature because the microclimate close to the plant may differ depending on the local 

conditions (e.g. the cooling effect of shade trees). 

𝐷𝐵𝐼𝑃1is computed as: 

{
 

 𝑆𝑑𝑑𝑇𝑓𝑓𝑏 = ∑ 𝑑𝑑𝑖

𝐷

𝑖=𝐷𝑉𝐺2

    𝑖𝑓 𝑆𝑑𝑑𝑇𝑓𝑓𝑏 < 𝐹𝑇𝑓𝑓𝑏

𝐷𝐵𝐼𝑃1 = 𝐷                       𝑖𝑓 𝑆𝑑𝑑𝑇𝑓𝑓𝑏 = 𝐹𝑇𝑓𝑓𝑏  

 (28) 

where 𝐹𝑇𝑓𝑓𝑏 is the threshold value in degree days that triggers the start of the bud development window. It is 

considered that bud cohorts stop initializing when the first bud cohort initiated on the plant enters the fruit stage. 

In other words, buds can be initiated every day as cohorts until the first fruit appears on the coffee plant. This 

day is denoted 𝐷𝐵𝐼𝑃2. 

The number of buds initiated daily on a given cohort (𝐵𝑢𝑑𝑆1) from 𝐷𝐵𝐼𝑃1 to 𝐷𝐵𝐼𝑃2  depends on several factors: 

the incoming radiation (𝑅𝐴𝐷,𝑀𝐽 𝑚−2 𝑑−1), the canopy degree day computed following Eq. (27) and the 

number of green nodes to support the buds (𝐺𝑁𝑖). This computation follows Eq. (12) from Rodríguez et al. 

(2011), here adapted to the whole plant:  

𝐵𝑢𝑑𝑆1𝑖  = (𝑎𝑏𝑢𝑑 − 𝑏𝑏𝑢𝑑 ∙ 𝑅𝐴𝐷𝑖) ∙ 𝐺𝑁𝑖 ∙ 𝑑𝑑𝑖 (29) 

where 𝑎𝑏𝑢𝑑 and 𝑏𝑏𝑢𝑑 are parameters. 

Each bud initiated on day 𝑖 is considered to belong to the bud cohort of day 𝑖. There are as many cohorts as days 

between 𝐷𝐵𝐼𝑃1 and 𝐷𝐵𝐼𝑃2.  

Once initiated, bud cohorts develop for 𝐹𝑏𝑢𝑑𝑆1degree days until they become dormant on day 𝐷𝑏𝑢𝑑𝑆1:  

{
 𝑆𝑑𝑑𝑏𝑆1 = ∑ 𝑑𝑑𝑖

𝐷

𝑖=𝑖𝑛𝑖𝑡

 𝑖𝑓  𝑆𝑑𝑑𝑏𝑆1 < 𝐹𝑏𝑢𝑑𝑆1

 𝐷𝑏𝑢𝑑𝑆1 = 𝐷                 𝑖𝑓 𝑆𝑑𝑑𝑏𝑆1 = 𝐹𝑏𝑢𝑑𝑆1

       (30) 

where 𝑖𝑛𝑖𝑡 is the day of initialization of the cohort. 

To potentially break dormancy, the bud cohort has to experience a minimum amount of cumulated rainfall 

(𝐹𝑟𝑎𝑖𝑛) after 𝐷𝑏𝑢𝑑𝑆1:  

{
 

 𝑆𝑟𝑎𝑖𝑛 = ∑ 𝑟𝑎𝑖𝑛𝑖

𝐷

 𝑖=𝐷𝑏𝑢𝑑𝑆1

   𝑖𝑓 𝑆𝑟𝑎𝑖𝑛 < 𝐹𝑟𝑎𝑖𝑛

𝐷𝑟𝑎𝑖𝑛 = 𝐷                          𝑖𝑓 𝑆𝑟𝑎𝑖𝑛 = 𝐹𝑟𝑎𝑖𝑛

       (31) 

However, the bud cohort can cumulate a maximum of 𝐹𝑏𝑢𝑑𝑆2 degree days during its lifetime. If it does not break 

its dormancy before the day when this threshold is reached (𝐷𝑏𝑢𝑑𝑆2), it is considered desiccated. 𝐷𝑏𝑢𝑑𝑆2  is 

computed as: 
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{
 

   𝑆𝑑𝑑𝑏𝑆2 = ∑ 𝑑𝑑𝑖

𝐷

𝑖=𝐷𝑏𝑢𝑑𝑆1

      𝑖𝑓  𝑆𝑑𝑑𝑏𝑆2 < 𝐹𝑏𝑢𝑑𝑆2

 𝐷𝑏𝑢𝑑𝑆2 = 𝐷                         𝑖𝑓 𝑆𝑑𝑑𝑏𝑆2 = 𝐹𝑏𝑢𝑑𝑆2   

 (32) 

The time window when buds from a cohort can potentially break their dormancy (𝑊𝑓𝑟𝑢𝑖𝑡𝑆1) is then found by 

solving Eq. (31) and Eq. (32): 

𝑊𝑓𝑟𝑢𝑖𝑡𝑆1 = [𝐷𝑟𝑎𝑖𝑛; 𝐷𝑏𝑢𝑑𝑆2]    𝑖𝑓 𝑆𝑟𝑎𝑖𝑛 = 𝐹𝑟𝑎𝑖𝑛 𝑎𝑛𝑑 𝐷𝑟𝑎𝑖𝑛 <  𝐷𝑏𝑢𝑑𝑆2 (33) 

The time window is shared by all the buds in the same cohort, but all the buds will not necessarily break their 

dormancy on the same day. The number of buds in a given cohort that break their dormancy on a given day 

within 𝑊𝑓𝑟𝑢𝑖𝑡𝑆1 depends on the combination of two factors: the mean diurnal air temperature within the coffee 

canopy during bud growth (𝐶𝐵, °𝐶) and the leaf water potential (𝛹𝑙𝑒𝑎𝑓 ,𝑀𝑃𝑎) of the coffee plant. These 

conditions reflect the need for a drier period followed by an intense rainfall event for optimal dormancy break 

(Rodríguez et al., 2011). The number of buds breaking dormancy (𝐵𝑢𝑑𝑏𝑟𝑒𝑎𝑘) on a given day is computed as: 

𝐵𝑢𝑑𝑏𝑟𝑒𝑎𝑘𝑖 = 𝐵𝑢𝑑𝑆2𝑖 ∙ 𝑃𝑏𝑟𝑒𝑎𝑘𝑖 ∙ 𝐶𝐵 (34) 

where 𝐵𝑢𝑑𝑆2𝑖  is the number of stage 2 buds in the cohort that have not yet broken dormancy, 𝐶𝐵  is a 

temperature-dependant correction coefficient, and 𝑃𝑏𝑟𝑒𝑎𝑘𝑖 is the rate at which they break dormancy, which is 

related to the leaf water potential (𝛹𝑙𝑒𝑎𝑓 ,𝑀𝑃𝑎) using two parameters (𝑎𝑝 and 𝑏𝑝) as follows: 

𝑃𝑏𝑟𝑒𝑎𝑘𝑖 =
1

1 + 𝑒𝑎𝑝+𝑏𝑝∙𝛹𝑙𝑒𝑎𝑓,𝑖
 (35) 

𝐶𝐵 is implemented to include the effect of the average canopy temperature on the number of buds initiated 

during growth of the coffee plant. It is computed from a monotone Hermite spline (Fritsch and Carlson, 1980) 

fitted on the rather unique Drinnan and Menzel (1995) dataset relating temperature and blossoming. More details 

are available on the help page of the eponym function of the R package of DynACof 

(https://vezy.github.io/DynACof/reference/CB.html).  

When buds do break dormancy, they enter the fruit stage by forming a flower (stage 1 fruit). Then, the fruits 

develop and finally become mature (stage 4) then overripe (stage 5), when they fall onto the ground. Each bud 

breaking dormancy on day 𝑖 forms a new cohort of fruits, meaning that fruits forming a fruit cohort can originate 

from several different bud cohorts. The stage 1 fruits of the cohort then enter the carbon allocation scheme to 

undergo the successive stages of maturation. Under optimal conditions, the carbon mass of the fruit increases 

following a logistic growth over the growing period until it becomes overripe. This logistic growth during 

physiological development can be modeled as: 

𝐿 = (1 + 𝑒
𝐹𝑑𝑑𝑖𝑛𝑓 

−𝑆𝑑𝑑𝑓𝑟𝑢𝑖𝑡

𝑠 )

−1

  (36) 

where 𝐹𝑑𝑑𝑖𝑛𝑓  is the inflexion value of the logistic growth (in degree days), 𝑠 is the steepness of the logistic 

growth, and 𝑆𝑑𝑑𝑓𝑟𝑢𝑖𝑡  is the number of degree days accumulated by the fruit since its flowering date.  

The carbon demand of a cohort 𝑐 on day 𝑖 is computed as the sum of the carbon mass incremented by all fruits 

in the cohort under optimal conditions. It is computed using the derivative of the Eq. (36) as follows: 

https://vezy.github.io/DynACof/reference/CB.html
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𝐷𝐸𝑐 = {
𝐹𝑟𝑢𝑖𝑡𝑆1 ∙ 𝐷𝐸𝑜𝑝𝑡 ∙ 𝐿

′     𝑖𝑓 𝑆𝑑𝑑𝑓𝑟𝑢𝑖𝑡 < 𝐹𝑜𝑣𝑒𝑟
0                                       𝑖𝑓 𝑆𝑑𝑑𝑓𝑟𝑢𝑖𝑡 ≥ 𝐹𝑜𝑣𝑒𝑟

} (37) 

where 𝐹𝑟𝑢𝑖𝑡𝑆1 is the number of fruits in the cohort, 𝐷𝐸𝑜𝑝𝑡 is the total carbon demand of a coffee fruit thoughout 

its development under optimal conditions including growth respiration, and 𝐹𝑜𝑣𝑒𝑟  (degree days) the 

physiological age for fruits to become overripe and no longer require carbohydrates because they fall to the 

ground. Thereby, the total plant scale fruit carbon demand is computed as the sum of the demand of all the 

cohorts growing on the coffee plant: 

𝐷𝐸𝑓𝑟𝑢𝑖𝑡,𝑖 = ∑ 𝐷𝐸𝑛
𝑐=1 𝑐,𝑖

   (38) 

The fruit demand for carbon can be considered as a genetic growth potential, with optimal fruit growth when 

there are no limitations to the supply. It is a sink strength that depends on the number of fruits and the degree 

days and is independent of the carbon supply. Consequently, the allocation of carbon to fruits is constrained 

either by fruit demand or by the carbon supply as in Eq. (9). The fruit mass is then computed as in Eq. (24). The 

fruits that become overripe (i.e. are not harvested) are removed from the coffee plant and considered as a 

mortality. 

Coffee bean quality is also computed using the fruit sucrose content of each fruit cohort (𝑐) based on the number 

of days after flowering, following the model of Pezzopane et al. (2012): 

𝑆𝑀𝑖 =∑
𝐶𝑀𝑐,𝑖
𝐶𝐶𝑓𝑟𝑢𝑖𝑡

∙ (𝑆𝑦0 +
𝑆𝑎 ∙ 100

1 + (
𝑖
𝑆𝑥0

)
𝑆𝑏
)

𝑛

𝑐=1
 (39) 

𝑆𝑀𝑂𝑝𝑡𝑖 =∑
𝐶𝑀𝑐,𝑖
𝐶𝐶𝑓𝑟𝑢𝑖𝑡

∙ (𝑆𝑦0 + 𝑆𝑎 ∙ 100)
𝑛

𝑐=1
 (40) 

𝑀𝑎𝑡𝑖 =
𝑆𝑀𝑖

𝑆𝑀𝑂𝑝𝑡𝑖
 (41) 

where 𝑆𝑀𝑖  is the sucrose mass of all the cohorts 𝑐 on day 𝑖, and 𝑆𝑀𝑂𝑝𝑡𝑖 is the optimal sucrose mass of the 

coffee bean, i.e. the sucrose mass of the bean if it was fully mature. 𝐶𝑀𝑐,𝑖 is the carbon mass of the cth cohort 

on day i, 𝐶𝐶𝑓𝑟𝑢𝑖𝑡  is the carbon content of the fruit, 𝑆𝑦0 is the sucrose content at the beginning of the fruit 

development, 𝑆𝑥0 is the day at which the maturation is at the inflexion point, and 𝑆𝑎 and 𝑆𝑏 are two maturation 

parameters. Harvest maturity is then simply the global fruit maturity on the day of harvest.  

Harvesting takes place once each growing season, it is triggered on the date when total cumulated fruit mortality 

has been higher than fruit growth for more than ten days. This simple method ensures that harvesting occurs 

when the fruit stock is at its maximum to optimize yield. 

3.4.12. Shade tree allometry  

In addition to the common allocation scheme, each shade tree species has its own set of allometric relationships. 

Any kind of allometry can be implemented and can then be used as input for the metamodels, or as an 

informative model output. In this study, allometric relationships were used to compute the tree crown radius 
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and height from the tree branch dry mass and the tree density. The crown radius and height were then used to 

compute the LAD (leaf area density, 𝑚𝑙𝑒𝑎𝑣𝑒𝑠
2  𝑚𝑐𝑟𝑜𝑤𝑛

−3 ) which is an input for the metamodels for the light 

extinction coefficients. Shade tree height is mandatory to compute the aerodynamic conductance and was 

computed in this study using an allometric relationships with the tree stem dry mass. The tree diameter at breast 

height was also computed from stem dry mass. 

3.4.13. Temperature 

The temperature of the foliage and the air inside the canopy is computed using the formalism proposed by Van 

de Griend and Van Boxel (1989) using the diffusivities for momentum transport and potential energy flow inside 

and in-between the inertial sublayer, the roughness sublayer, the air space of each canopy layers, the foliage and 

the soil. The temperature of the air inside the canopy is computed as:  

𝑇𝑎𝑖𝑟𝐶𝑎𝑛𝑖,𝑙 =  𝑇𝑎𝑖𝑟𝑖 +
𝐻𝑖,𝑙

𝜌𝑖 ∙ 𝐶𝑝 ∙ 𝑔𝑏𝑢𝑙𝑘𝑖
 (42) 

with 𝑖 the day, 𝑙 the canopy layer, 𝑇𝑎𝑖𝑟 the air temperature measured above the canopy, 𝐻 the sensible heat flux 

(𝑀𝐽 𝑚−2𝑑−1), 𝜌 the air density (𝑘𝑔 𝑚−3), 𝐶𝑝 the specific heat of air for constant pressure (𝑀𝐽 𝐾−1𝑘𝑔−1) and 

𝑔𝑏𝑢𝑙𝑘 the aerodynamic conductance for heat above the canopy (𝑚 𝑠−1). If the coffee plants are grown in 

monoculture, Eq. (42) is applied directly to the coffee layer. If they are grown under shade trees, Eq. (42) is 

used for the shade tree, and the air temperature inside the coffee canopy is computed as follows:   

𝑇𝑎𝑖𝑟𝐶𝑎𝑛𝑖,𝑐𝑜𝑓 = 𝑇𝑎𝑖𝑟𝐶𝑎𝑛𝑖,𝑡𝑟𝑒𝑒 +
𝐻𝑖,𝑐𝑜𝑓

𝜌𝑖 ∙ 𝐶𝑝 ∙ 𝑔𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦𝑖
 (43) 

with 𝑇𝑎𝑖𝑟𝐶𝑎𝑛𝑖,𝑡𝑟𝑒𝑒  the temperature of the air inside the shade tree canopy computed using Eq. (42), and 

𝑔𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦 the aerodynamic conductance at the interface between both canopy layers (𝑚 𝑠−1). 

The leaf temperature (𝑇𝑐𝑎𝑛) of each layer is then computed as:  

𝑇𝑐𝑎𝑛𝑖,𝑙 = 𝑇𝑎𝑖𝑟𝐶𝑎𝑛𝑖,𝑙 +
𝐻𝑖,𝑙

𝜌𝑖 ∙ 𝐶𝑝 ∙ 𝑔𝑏ℎ𝑖
 (44) 

with 𝑇𝑎𝑖𝑟𝐶𝑎𝑛 the air temperature inside the given canopy layer, and 𝑔𝑏ℎ the leaf boundary layer conductance 

for heat (𝑚 𝑠−1). 

The temperature at the soil surface is similarly computed as: 

𝑇𝑠𝑜𝑖𝑙𝑖 = 𝑇𝑎𝑖𝑟𝐶𝑎𝑛𝑖,𝑐𝑜𝑓 +
𝐻𝑖,𝑠𝑜𝑖𝑙

𝜌𝑖 ∙ 𝐶𝑝 ∙ 𝑔𝑠𝑜𝑖𝑙𝑐𝑎𝑛
 (45) 

with 𝑔𝑠𝑜𝑖𝑙𝑐𝑎𝑛 the canopy to soil aerodynamic conductance (𝑚 𝑠−1). 

3.4.14. Soil, water, and energy 

The soil water balance module was inspired by the BILJOU model (Granier et al., 1999), which has already 

been parameterized for this coffee agroforestry system (Gómez-Delgado et al., 2011) and is given in Appendix 

A. It has three layers, 0 to 1.25 m, 1.25 to 1.75 m and 1.75 to 3.75 m, respectively, to cover the whole root 

profile of the coffee plants (Defrenet et al., 2016).  
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The net radiation of the soil was computed using a MAESPA metamodel, and the partitioning between latent 

and sensible fluxes was parameterized using the average partitioning from the outputs of the MAESPA 

simulations (Vezy et al., 2018). The shade tree and coffee transpiration (𝑇𝑟) and sensible heat (𝐻) were 

simulated using MAESPA metamodels. The net radiation of the shade tree and the coffee layers was computed 

as the sum of the latent (𝐿𝐸) and the sensible (𝐻) heat fluxes of each layer. The stand net radiation (𝑅𝑛) was 

then computed by summing the net radiation of the shade tree, the coffee and the soil.  

3.4.15. Inputs and outputs 

All parameters needed for a DynACof simulation are stored in specific input files for the shade tree, the coffee, 

the soil, the site and the meteorology. A set of example data is included into the package so any user can start a 

simulation without any data. This set of example file is also archived as a git repository on github.com 

(https://github.com/VEZY/DynACof_inputs) for convenience. The main input values used for this study are 

listed on the paragraph 3.5. The input variables for the meteorology file should provide at least the maximum 

and minimum air temperature of the day (°C), the RAD or PAR (MJ m-2 d-1), and the relative humidity (%) or 

vapor pressure deficit (hPa). The full list of mandatory and optional inputs the user can provide are available 

from the documentation (https://vezy.github.io/DynACof/reference/Meteorology.html). 

The model has 245 output variables, mainly for energy balance, water balance, carbon assimilation and 

allocation, respiration, plant growth, yield and mortality for each organ type. The full list is available from the 

documentation (https://vezy.github.io/DynACof/reference/DynACof.html). 

3.5. Model parameterization using a multi-objective approach 

The MAESPA model was parameterized according to Vezy et al. (2018) and was run on a 0.2 ha sub-plot of 

4176 coffee resprouts (3 resprouts per coffee plant in average) and 14 shade trees at a half-hourly time-step 

throughout the year 2011. The shade trees are not planted along a regular planting pattern and they present large 

crowns, increasing the heterogeneity of the light distribution in the plot. The simulated sub-plot was reduced to 

the minimum area possible to decrease computation time, while encompassing coffee plants that are always in 

full sun or only partly under shade in the morning or during the afternoon. 

Metamodels were then built from daily plot scale aggregations of MAESPA outputs and integrated in DynACof 

(Figure 1). The metamodels were built using linear regressions with MAESPA input variables as predictors. 

The MAESPA dataset created from the simulations of the year 2011 was taken as a representative sample of 

most of the conditions of the growing cycle, with yearly climate variations, a highly variable shade tree LAI 

due to almost total leaf fall, and highly variable coffee plant structure, with resprouts ranging from 0 to 5 years 

old.  

DynACof was run from January 1979 to the end of December 2016 at a daily time step. The climate inputs to 

the model came from the Coffee-Flux project between 2009 and 2016, and were computed between 1979 and 

2008 using the method and data described in Hidalgo et al. (2017). The values and sources of the parameters 

used in DynACof are listed in Table 1 for climate and coffee, in Table 2 for the shade tree species, and in Table 

https://github.com/VEZY/DynACof_inputs
https://vezy.github.io/DynACof/reference/Meteorology.html
https://vezy.github.io/DynACof/reference/DynACof.html


20 

 

3 for the soil. Given the large number of parameters and the scarce data on coffee and shade trees, some 

parameters were not measured in this study and were not found in the literature either, for example, the coffee 

carbon allocation coefficients (λ). Because allocation coefficients have multiple repercussions on other 

variables, notably on respiration through organ mass and on light interception through LAI, a multi-objective 

parameterization was needed. As computation time was a limiting factor, a manual multi-objective parameter 

tuning was preferred to algorithmic optimization. The values of the parameters were found by starting from 

expert a priori, and tuned manually to minimize the simulation error for NPP and biomass for each compartment 

using the first year of measurements reported in Charbonnier et al. (2017) at a stand age of 33 year after planting, 

always keeping the values within a plausible range. In any case, the outputs of the model were evaluated on the 

second year of measurements, which was not used for model parameterization.  
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Table 1. Main parameters used in DynACof (full list available at https://github.com/VEZY/DynACof). NB: SCR= Stump and 

Coarse Roots, FRoot= Fine roots, Shoot= Resprout wood (i.e. orthotropic axis and branches).  

Parameter Unit Value Description Source 

Site     

 Latitude degree 9.93833 Latitude This study1 

 Longitude degree -83.728 Longitude This study1 

 Timezone  6 Time zone This study1 

 Elevation m 1040 Elevation This study1 

 Height_Coffee m 1.2 Coffee height, for zht and z0 This study1 

 ZHT m 25 Climate data meas. height This study1 

 Stocking_Coffee Plant ha-1 5580 Coffee initial planting density This study1 

Coffee light interception  

 KDif 0-1 0.3906 Diffuse light extinction coeff. This study1 (MAESPA) 

 KDir 0-1 0.3410 Direct light extinction coeff. This study1 (MAESPA) 

Vegetative development  

 AgeCofMax Year 40 Max. length of plantation cycle This study1 

 AgePruning Year 5 Age at first pruning  This study1 

 D_pruning DOY 74 Day of year for pruning This study1 

 SLA 𝑚𝑙𝑒𝑎𝑓
2  𝑘𝑔𝐷𝑀

−1  10.97 Specific leaf area Charbonnier et al. (2017)1 

 RNL Node LAI-1 91.2 Ref. # nodes per LAI unit at 20°C Drinnan and Menzel (1995)2 

 DELM 𝑔𝐶  𝑐𝑜𝑓
−1𝑑−1 2.0 Max. leaf carbon demand This study1 

 DVG1 DOY 105 Beginning of vegetative growth This study1 

 DVG2 DOY 244 End of vegetative growth This study1 

 kres 0-1 0.08 Max. reserves used per day Cambou (2012) 

 𝜆_Shoot 0-1 0.12 Allocation to resprout wood Charbonnier et al. (2017)3 

 𝜆_SCR 0-1 0.08 Alloc. to perennial wood  Charbonnier et al. (2017)3 

 𝜆𝑟_Leaf 0-1 0.85 Remaining carbon alloc. to leaves Charbonnier et al. (2017)3 

 𝜆𝑟_FRoot 0-1 0.15 Rem. carbon alloc. to fine roots Charbonnier et al. (2017)3 

 lifespan_Leaf day 265 Leaf lifespan Charbonnier et al. (2017) 

 lifespan_Shoot day 7300 Resprout lifespan van Oijen et al. (2010a) 

 lifespan_SCR day 7300 Perennial wood lifespan van Oijen et al. (2010a) 

 lifespan_FRoot day 365 Fine root lifespan Defrenet et al. (2016) 

 m_FRoot 0-1 0.05 Fine root to leaf pruning effect This study3 

 CC_Fruit 𝑔𝐶  𝑔𝐷𝑀
−1  0.4857 Fruit dry mass carbon content Cambou (2012) 

 CC_Leaf 𝑔𝐶  𝑔𝐷𝑀
−1  0.463 Leaf dry mass carbon content Cambou (2012) 

 CC_Shoot 𝑔𝐶  𝑔𝐷𝑀
−1  0.463 Resprout wood dry mass C content Cambou (2012) 

 CC_SCR 𝑔𝐶  𝑔𝐷𝑀
−1  0.475 Perennial wood dry mass C content Cambou (2012) 

 CC_Shoot 𝑔𝐶  𝑔𝐷𝑀
−1  0.463 Resprout wood dry mass C content Cambou (2012) 

 𝜀Fruit 𝑔𝐶  𝑔𝐶
−1 1.6  Fruit growth respiration cost Poorter (1994)2 

 𝜀Leaf 𝑔𝐶  𝑔𝐶
−1 1.279 Leaf growth respiration cost Dufrêne et al. (2005)3 

 𝜀FineRoot 𝑔𝐶  𝑔𝐶
−1 1.279 Fine root growth respiration cost Dufrêne et al. (2005)3 

 𝜀Shoot 𝑔𝐶  𝑔𝐶
−1 1.2 Shoot wood growth resp. cost Dufrêne et al. (2005)3 

 𝜀SCR 𝑔𝐶  𝑔𝐶
−1 1.31 Perennial wood growth resp. cost Dufrêne et al. (2005)3 

 NC_Fruit 𝑚𝑔𝑁  𝑔𝐶
−1 11 Fruit nitrogen content van Oijen et al. (2010a) 

 NC_Leaf 𝑚𝑔𝑁  𝑔𝐶
−1 29.6 Leaf nitrogen content Ghini et al. (2015) 

 NC_Shoot 𝑚𝑔𝑁  𝑔𝐶
−1 4.1 Resprout wood nitrogen content Ghini et al. (2015) 

 NC_SCR 𝑚𝑔𝑁  𝑔𝐶
−1 5 Perennial wood nitrogen content Cambou (2012) 

 NC_FRoot 𝑚𝑔𝑁  𝑔𝐶
−1 18 Fine root nitrogen content van Praag et al. (1988) 

 Q10_Fruit 1 2.4 Temperature effect on Rm Charbonnier (2013) 

 Q10_Leaf 1 2.4 Charbonnier (2013) 

 Q10_Shoot 1 2.4 Charbonnier (2013) 

 Q10_SCR 1 1.65 van Oijen et al. (2010a) 

 Q10_FRoot 1 1.65 van Oijen et al. (2010a) 

 MRN 𝑔𝐶  𝑔𝑁
−1 𝑑−1 0.06336 Base maintenance respiration Ryan (1991)2 

 pa_Fruit 0-1 1 Percentage of living cells in fruits This study3 

 pa _Leaf 0-1 1 P. of living cells in leaves This study3 

 pa_FRoot 0-1 1 P. of living cells in fine roots This study3 

 pa_Shoot 0-1 0.37 P. of living cells in resprout wood Dufrêne et al. (2005) 

 pa_SCR 0-1 0.21 P. of living cells in perennial wood Dufrêne et al. (2005) 

https://github.com/VEZY/DynACof
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Table 1 (continued). Main parameters used in DynACof. 

Parameter Unit Value Description Source 

Reproductive development 

 a_bud 𝐵𝑢𝑑𝑠 𝑑−1 0.00287 Number of buds initiated per day Rodríguez et al. (2011) 

 b_bud 1 -4.1. e-6  Param. for bud initialization Rodríguez et al. (2011) 

 F_Tffb Degree day 4000 Time of first floral buds  Rodríguez et al. (2011) 

 a_p 1 5.78 Probability of bud dormancy break 

calculated from leaf water potential 

Drinnan and Menzel (1995); 

Rodríguez et al. (2011)  b_p 1 1.90 

 F_rain mm 40 Cumulative rain to break bud dormancy Zacharias et al. (2008) 

 age_Maturity Year 3 First age of flowering after planting van Oijen et al. (2010a) 

 VF_Flowering Degree day 5500 Very first flowering of coffee plant Rodriguez et al., 2001 

 F_buds1 Degree day 840 Bud stage 1 Meylan (2012); van Oijen et al. 

(2010a)  F_buds2 Degree day 2562 Bud stage 2 

 F_over Degree day 3304 From pinhead to overripe (stage 5) Rodríguez et al. (2011) 

 s 1 0.05 Empirical coefficient for fruit growth Rodríguez et al. (2011) 

 FtS 0-1 0.63 Fruit to seed dry mass ratio Wintgens (2004) 

Sucrose accumulation 

 S_a [sucrose] 5.3207 Parameters used to model sucrose 

accumulation in coffee fruit 

Pezzopane et al. (2012) 

 S_b 1 -28.556 Pezzopane et al. (2012) 

 S_x0 Degree day 190.972 This study3 

 S_y0 [sucrose]  3.4980 Pezzopane et al. (2012) 

 DE_opt 𝑔𝐷𝑀 0.164 Optimum berry C demand Wintgens (2004) 
(1) Parameters effectively measured or computed for this study. 
(2) Parameters computed from another source (e.g. MRN from Ryan (1991) transformed to a daily time scale) 
(3) Parameters tuned starting from source value to make the model outputs match the first year of measurements from Charbonnier et al. 

(2017). Expert a priori is used as start value when no value was found in the literature.  
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Table 2. Parameters used in DynACof for the shade tree layer (E.poeppigiana). NB: Leaf life span was computed using the 

phenology routine. CR= Coarse Roots, FRoot= Fine roots. 

Parameter  Unit Value Description Source 

Vegetative development 

 SLA 𝑚𝐿𝑒𝑎𝑓
2  𝑘𝑔𝐷𝑀 17.4 Specific leaf area van Oijen et al. (2010a) 

 DELM_Tree 𝑔𝐶  𝑡𝑟𝑒𝑒
−1𝑑−1 778.5 Max. leaf carbon demand Charbonnier et al. (2017)2 

 𝜆_Stem 0-1 0.20 Alloc. to stem This study3 

 𝜆_Branch 0-1 0.25 Alloc. to branches This study3 

 𝜆_CR 0-1 0.10 Alloc. to coarse roots This study3 

 𝜆_Leaf 0-1 0.26 Alloc. to leaves This study3 

 𝜆_𝐹Root 0-1 0.05 Alloc. to fine roots This study3 

 lifespan_Branch day 7300 Branch life span van Oijen et al. (2010a) 

 lifespan_FRoot day 90 Fine root life span van Oijen et al. (2010a) 

 lifespan_CR day 7300 Coarse root life span van Oijen et al. (2010a) 

 CC 𝑔𝐶  𝑔𝐷𝑀
−1  0.47 Tree dry mass carbon content van Oijen et al. (2010a) 

 𝜀_Branch 𝑔𝐶  𝑔𝐶
−1 1.2 Branch growth respiration cost This study3 

 𝜀_Stem 𝑔𝐶  𝑔𝐶
−1 1.2 Stem growth respiration cost This study3 

 𝜀_CR 𝑔𝐶  𝑔𝐶
−1 1.33 Coarse root growth resp. cost Litton et al. (2007) 

 𝜀_Leaf 𝑔𝐶  𝑔𝐶
−1 1.392 Leaf growth respiration cost Villar and Merino (2001) 

 𝜀_FRoot 𝑔𝐶  𝑔𝐶
−1 1.392 Fine root growth resp. cost = 𝜀Leaf 

 NC_Branch 𝑚𝑔𝑁  𝑔𝐶
−1 5.0 Branch nitrogen content This study3 

 NC_Stem 𝑚𝑔𝑁  𝑔𝐶
−1 5.0 Stem nitrogen content This study3 

 NC_CR 𝑚𝑔𝑁  𝑔𝐶
−1 8.4 Coarse root nitrogen content van Oijen et al. (2010a) 

 NC_Leaf 𝑚𝑔𝑁  𝑔𝐶
−1 35.9 Leaf nitrogen content van Oijen et al. (2010a) 

 NC_FRoot 𝑚𝑔𝑁  𝑔𝐶
−1 8.4 Fine root nitrogen content van Oijen et al. (2010a) 

 Q10_CR 1 2.1 Temperature effect on Rm This study3 

 Q10_Leaf 1 1.896 Temperature effect on Rm This study3 

 Q10_Branch 1 2.1 Temperature effect on Rm This study3 

 Q10_Stem 1 1.7 Temperature effect on Rm van Oijen et al. (2010a) 

 Q10_FRoot 1 1.4 Temperature effect on Rm van Oijen et al. (2010a) 

 pa_Branch 0-1 0.4:0.05 Percentage of living cells in branch This study3 

 pa_Stem 0-1 0.3:0.05 P. of living cells in stem This study3 

 pa_CR 0-1 0.21 P. of living cells in coarse roots Dufrêne et al. (2005) 

 pa_Leaf, FRoot 0-1 1 P. of liv. cells in leaves and fine roots This study3 

Allometries 

 LAD_max/min 𝑚𝐿𝑒𝑎𝑓
2  𝑚−3 0.76/0.21 Max/Min leaf area density Charbonnier et al. (2013) 

 AgePruning year 1:21 Ages at which trees are pruned This study1 

 Stocking 𝑡𝑟𝑒𝑒 ℎ𝑎−1 250/7.38 Tree density (before/after thinning) Taugourdeau et al. (2014) 
(1) Parameters effectively measured or computed for this study. 
(2) Parameters computed from another source 
(3) Parameters set using an expert value (e.g. values from other species) or tuned starting from a source value to make the model 

outputs match the first year of measurements from Charbonnier et al. (2017). 

 
Table 3. BILJOU sub-module parameters 

Parameter  Unit Value Description Source 

 TotalDepth m 3.75 Total simulated soil depth This study 

 Wm1; Wm2; Wm3 mm 210;58;64 Minimum water content, layers 1, 2, 3 Gómez-Delgado et al. (2011) 

 Wf1; Wf2; Wf3 mm 290; 66; 69 Field capacity, layer 1;2;3 Gómez-Delgado et al. (2011) 

 IntercSlope 𝑚𝑚 𝐿𝐴𝐼−1 0.2 Rainfall interception by leaves Gómez-Delgado et al. (2011) 

 WSurfResMax mm 120 Max. water on the surface reservoir Gómez-Delgado et al. (2011) 

 fc 𝑚𝑚 𝑑𝑎𝑦−1 13.4 Min. infiltration capacity Gómez-Delgado et al. (2011) 

 alpha 1 101.561 Coef. for max. infilt. capacity Gómez-Delgado et al. (2011) 

 kB day-1 0.038 Discharge coeff. for surface runoff Gómez-Delgado et al. (2011) 

 Soil_LE_p % 0.70 Soil energy partitioning coefficient  This study (MAESPA) 
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4. Results 

4.1. Metamodels  

The metamodels for shade tree 𝐾𝐷𝑖𝑓 and 𝐾𝐷𝑖𝑟 are presented in Table 4, and were computed using the shade 

tree 𝐿𝐴𝐷 (𝐿𝐴𝐷𝑇𝑟𝑒𝑒 , 𝑚
2 𝑚−3) as the sole predictor. The metamodel for 𝐿𝑈𝐸 (𝑔𝐶  𝑀𝐽

−1) was made using climate 

inputs because it was found to depend more on the environment than on the plant structure. The other 

metamodels for plant transpiration (𝑇𝑟,𝑚𝑚), sensible heat fluxes (𝐻,𝑀𝐽 𝑚−2) and soil net radiation are also 

presented in Table 4. 

Table 4. MAESPA metamodel equations. 𝑳𝑨𝑫𝑻𝒓𝒆𝒆 (𝒎
−𝟐 𝒎−𝟑) is the leaf area density of the shade tree, 𝑷𝑨𝑹𝒍 (𝑴𝑱 𝒎

−𝟐 𝒅𝒂𝒚−𝟏) 

the photosynthetically active radiation reaching the layer considered (e.g. PAR transmitted by the shade tree layer for the 

𝑳𝑼𝑬𝑪𝒐𝒇 and transmitted by the coffee layer for 𝑹𝒏𝑺𝒐𝒊𝒍),  𝑻𝒂𝒊𝒓 (°𝑪) and 𝑽𝑷𝑫𝒂𝒊𝒓 (𝒉𝑷𝒂) are the air temperature and vapor pressure 

deficit measured above the canopy, 𝑨𝑷𝑨𝑹𝒍 (𝑴𝑱 𝒎
−𝟐 𝒅𝒂𝒚−𝟏) is the PAR absorbed a the given layer, and 𝑾𝒊𝒏𝒅 (𝒎 𝒔−𝟏) is the 

wind speed. R2: adjusted r-squared, nRMSE: normalized Root Mean Squared Error, EF: modelling efficiency. Bias, nRMSE 

and EF statistics were computed on out-of-sample data, R2 on the sample used to train the model. 

Metamodel R2 Bias nRMSE EF 

𝐾𝐷𝑖𝑓𝑇𝑟𝑒𝑒 =  0.6146417 −  0.5321444 ∙ 𝐿𝐴𝐷𝑇𝑟𝑒𝑒 + 𝜀�̂� 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.02296613) 0.95 1.2∙10-3 6.52 0.95 

𝐾𝐷𝑖𝑟𝑇𝑟𝑒𝑒 = 0.4754740 − 0.4015379 ∙ 𝐿𝐴𝐷𝑇𝑟𝑒𝑒 + 𝜀�̂� 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.05439675)  0.65 5.2∙10-3 20.89 0.60 

𝐿𝑈𝐸𝐶𝑜𝑓 = 2.77258689 + 0.01034341 ⋅ 𝑇𝑎𝑖𝑟 − 0.71823829 ∙ √𝑃𝐴𝑅𝐶𝑜𝑓 + 0.01537693 ⋅ 𝑉𝑃𝐷𝑎𝑖𝑟

+ 𝜀�̂� 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.0921815) 

0.94 2.1∙10-3 7.81 0.94 

𝐿𝑈𝐸𝑇𝑟𝑒𝑒 = 2.91332985 + 0.07195458 ⋅ 𝑇𝑎𝑖𝑟 − 0.03124228 ⋅ 𝑉𝑃𝐷𝑎𝑖𝑟 − 0.24092238 ⋅ 𝑃𝐴𝑅𝑡𝑟𝑒𝑒

+ 𝜀�̂� 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.2664409) 
0.87 -4.9∙10-3 9.84 0.89 

𝑇𝑟𝐶𝑜𝑓 = −0.82327839 + 0.03089959 ⋅ 𝑇𝑎𝑖𝑟 + 0.15777166 ⋅ 𝐴𝑃𝐴𝑅𝐶𝑜𝑓 + 0.07297392 ⋅ 𝑉𝑃𝐷𝑎𝑖𝑟

+ 𝜀�̂� 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.1481428)  
0.88 5.1∙10-3 19.98 0.87 

𝑇𝑟𝑇𝑟𝑒𝑒 = −0.55231394 + 0.01798136 ⋅ 𝑇𝑎𝑖𝑟 + 0.02229318 ⋅ 𝑉𝑃𝐷𝑎𝑖𝑟 + 0.16053935 ⋅ 𝐿𝐴𝐼𝑇𝑟𝑒𝑒

+ 0.48838455 ⋅ 𝐴𝑃𝐴𝑅𝑇𝑟𝑒𝑒 + 𝜀�̂� 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.08087603) 
0.83 7.5∙10-3 24.11 0.81 

𝐻𝐶𝑜𝑓 = −0.7678758 + 0.5461716 ⋅ 𝑃𝐴𝑅𝐶𝑜𝑓 − 0.3207445 ⋅ 𝑉𝑃𝐷𝑎𝑖𝑟 + 2.6837429 ⋅ 𝑇𝑟𝐶𝑜𝑓

+ 𝜀�̂� 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.4506168) 
0.96 6.6∙10-2 10.14 0.97 

𝐻𝑇𝑟𝑒𝑒 = 0.19869391 + 0.70967904 ⋅ 𝐴𝑃𝐴𝑅𝑇𝑟𝑒𝑒 − 0.78428282 ⋅ 𝐿𝐴𝐼𝑇𝑟𝑒𝑒 − 0.68444250 ⋅ 𝑇𝑟𝑇𝑟𝑒𝑒

− 0.03157318 ⋅ 𝑉𝑃𝐷𝑎𝑖𝑟 + 0.06780685 ⋅ 𝑊𝑖𝑛𝑑 + 𝜀�̂� 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.08) 
0.77 4.3∙10-3 58.85 0.79 

𝑅𝑛𝑆𝑜𝑖𝑙 =  −1.050189 +  1.766872 ∙ 𝑃𝐴𝑅𝑆𝑜𝑖𝑙 + 𝜀�̂� 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.2257816) 0.98 4.2∙10-2 8.80 0.98 

Their performance was also assessed using four different statistics which showed that, despite being simple 

models, the metamodel predictions were in agreement with the validation sub-sample of the outputs of 

MAESPA in the simulated year 2011 (Table 4). Indeed, all metamodels gave high R2 on the data on which they 

were trained, and high modelling efficiency, rather low nRMSE and low bias when applied to new data, except 

for 𝐾𝐷𝑖𝑟, which failed to capture the high day-to-day variability but still followed the overall trend. Although 

𝐻𝑇𝑟𝑒𝑒 did present satisfactory statistics overall, its nRMSE was high mainly due to the low (and sometimes 

negative) sensible fluxes of the shade tree which yielded a low average value.  
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4.2. GPP and energy fluxes 

The modeled GPP, water and energy balance from DynACof were compared to the whole period of 

measurements using data gathered during the long-term Coffee-Flux eddy-covariance monitoring.  

Overall, the model outputs for these variables computed in 2011 through metamodels were close to those 

computed directly from MAESPA (nRMSE: GPP = 15.4, Rn= 7.2, ETR= 23.9). Indeed, plant transpiration, 

plant sensible heat fluxes and soil net radiation were computed using MAESPA metamodels, and the parameter 

for soil energy partitioning into sensible and latent heat (i.e. soil evaporation) was also determined using the 

average value from the MAESPA simulations. 

The simulated net radiation was close to measured values, with relatively high modeling efficiency (0.88) 

(Figure 2, Rn) and a low bias of 0.24 MJ m-2 d-1 that was reflected in the cumulated energy in Figure 3.a. The 

high point density along the identity function indicated that modeled evapotranspiration (Figure 2, AET) was 

relatively close to the measurement in average, even though the simulations presented a relatively high error for 

a few measurements (in dark blue in the figure). Yet, the cumulated AET from DynACof (Figure 3.b) showed 

good consistency compared to cumulated measurements, indicating that simulated values converge towards 

the measured value asymptotically.  
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Figure 2. Comparison between measured (x-axis) and modeled (y-axis, DynACof) net radiation (Rn, 2009-01-01 to 2016-11-28),  

actual evapotranspiration (AET, 2009-03-01 to 2013-12-31), sensible heat flux (H, 2009-03-01 to 2013-12-31) and gross primary 

productivity (GPP, 2009-01-01 to 2013-12-31) from the Coffee-Flux project in the Aquiares coffee agroforestry plantation at the 

scale of the whole plot (shade tree + coffee + soil layers) and at daily time scale. The color scale represents point density. nRMSE= 

normalized Root mean square error, EF= modeling efficiency and bias= modeling bias. One dot represents one day. 

The simulated sensible heat fluxes were in agreement with measured fluxes, except for a quasi-systematic bias 

of 1.48 MJ m-2 d-1 (Figure 2, H). The simulated GPP was close to the observed GPP in general (Figure 2, GPP), 

with a low positive bias of 0.38 gC m-2 d-1 and an nRMSE of 26.27. However, modelling efficiency remained 

low (0.14), mainly due to the high dispersion of the residuals, especially for high GPP values. Yet, when 

considering cumulated values of GPP over the whole period, the simulated GPP remained within the range of 

the measurement error (Figure 3.c). We also stress here that GPP remains a data-model product, derived from 

net ecosystem carbon flux measurements, but subject to several partitioning and modeling assumptions. 

Overall, DynACof predictions of GPP and energy fluxes were in agreement with their respective measurements 

over the whole period (Figure 2 and Figure 3), confirming that the model performs reasonably well beyond the 

data on which the metamodels were calibrated (i.e. data from 2011). 
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Figure 3. DynACof simulation of cumulated partitioning for a\ energy, b\ evapotranspiration and c\ gross primary productivity 

over the 2009-2016 period at daily time-scale. MAESPA simulation of Rn (net radiation) and AET (actual evapotranspiration) 

in the year 2011 and measurements of the three variables are also presented for model assessment. Missing cumulative GPP 

values (i.e. gaps between measurement polygons) were gap filled using DynACof modelled GPP to present a longer measurement 

period. The inserts in figures a\ and b\ show the cumulative energy partitioning and evapotranspiration for the year 2011 for 

easier comparison with MAESPA simulations from Vezy et al. (2018).   

DynACof outputs were also compared to standard equations (Allen et al., 1998; Landsberg et al., 2001) that are 

widely used for crops or plantations with more homogeneous canopies (i.e. constant LUE and Ks parameters 

for GPP, Rn computed using an average albedo, LE computed using the Penman-Monteith equation). As 

expected, the error was higher when the net radiation, the sensible and latent heat flux and the GPP were 

simulated using this approach compared to a simulation using metamodels from MAESPA (Table 5 and Figure 

C.1). Hence, the choice of metamodels in DynACof was justified. 
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Table 5. DynACof modelling performance with (yes) and without (no) metamodels from MAESPA.  

Statistics nRMSE EF Bias 

Metamodel yes no yes no yes no 

Rn (MJ m-2 d-1) 

 

 

15.26 31.84 0.88 0.50 0.24 2.87 

LE (MJ m-2 d-1) 

 

 

 

28.22 42.46 0.28 -0.68 0.29 1.44 

H (MJ m-2 d-1) 

 

 

 

53.92 130.07 0.22 -3.56 1.48 4.03 

GPP (gC m-2 d-1) 

 

 

 

26.28 41.36 0.14 -1.14 0.38 0.99 

4.2.1. Growth and yield 

 Overall, the multi-objective calibration of DynACof yielded realistic results for most compartments that were 

documented by field measurements. 

 

Figure 4. Main outputs of the Erythrina poeppigiana shade tree simulated by DynACof over the whole rotation. Coffee plants 

were planted in 1979 together with Erythrina. Trees were pruned twice a year until thinning in 2000, and then allowed to grow 

freely. The thinning event is represented by the vertical dashed line. a\ LAI dynamics compared to measurements by LAI2000 

(Taugourdeau et al., 2014) +/-SD ; b\ Light transmitted by the shade tree compared to Charbonnier et al. (2013) plot average; c\ 

Stem and d\ branch carbon mass compared to measured values reported in Charbonnier et al. (2017). 
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Despite the high initial planting density, the LAI of the shade trees remained relatively low during the first 

period when the shade trees were pruned, i.e. from planting to thinning, when it dropped to a particularly low 

value of 0.02 m2 m-2 on average in the first year, then resumed during the second period. The LAI of the shade 

trees subsequently increased to reach a maximum of ca. 0.66 m2 m-2 in the last year of the simulation (Figure 

4). The leaves of E. poeppigiana shed naturally between January and February in Aquiares and then recover 

rapidly until May (Taugourdeau et al., 2014). The observed phenology was matched by the model, with a 

simulated range and dynamic of LAI values close to the observations made in the same plot averaged over the 

whole measurement period (Taugourdeau et al., 2014). Despite a low density of 7.3 trees ha-1 after thinning in 

2000, the simulated shade trees intercepted up to 18.4% of the light at maximum LAI in 2016, which was 

consistent with the values measured in the same plot (Charbonnier et al., 2013). The simulated dry mass of tree 

stem and branches represented on average 47.2% and 4.4% of the total plot shade tree carbon mass while pruned, 

and 27.2% and 27.4% of the total carbon mass, respectively, at the end of the cycle when left to grow freely. 

The annual stem mass growth was close to linear under pruning management and became close to exponential 

when trees were not pruned after thinning, with the stem NPP increasing almost five times in the five last years 

of the simulation compared to the five years preceding thinning (Table 6). Branch mass grew much more slowly 

due to higher mortality when pruned but grew as fast as the stem when the tree was left to grow freely. As seen 

in Figure 4, both stem and branch mass simulations were in the range of the observations reported by 

Charbonnier et al. (2017) in the same plot. 
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Figure 5. Simulated coffee plant carbon biomass per organ (dotted lines) over a full plantation cycle (1979-2016), compared to 

measured biomass (green dots: one observation, green lines: continuous measurement and polygon: mean observation +/- SE). 

a/ Simulated leaf C mass compared to measured NDVI calibrated using LAI2000, and converted into dry mass using leaf SLA 

and dry mass to carbon mass ratio (Taugourdeau et al., 2014), see Table 1;  b/ Simulated wood C mass from branches compared 

to average +/-SE measured by Charbonnier et al. (2017); c/ Simulated C mass in stump and coarse roots compared to measured 

stump C mass +/- SE in Charbonnier et al. (2017) + measured perennial root C mass from Defrenet et al. (2016); d/ Simulated 

fruit dry mass compared to values measured by Charbonnier et al. (2017) for 2011 and 2012 at harvest; e/ Simulated fine roots 

C mass compared to a 2011 measurement by Defrenet et al. (2016); and f/ Simulated reserves compared to reserves measured 

by Cambou (2012), assumed to represent the minimum value of the year. 
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Dynamic simulations of the carbon mass of the coffee organs are plotted for a full growing cycle from 1979 to 

2016 in Figure 5. Coffee leaf carbon mass (Figure 5.a) increased rapidly until reaching its maximum value of 

211 gC m-2 at three years old (onset of fruiting). Coffee pruning started 5 YAP, and leaf carbon mass then 

fluctuated between 58 and 174 gC m-2 until the end of the simulation, corresponding to LAI values between 1.4 

and 4.1 m2 m-2. The LAI dynamics expressed a yearly minimum by April after the drier season and just after 

pruning, and a second minimum in September, during bean filling, very similar to field observations reported 

by Taugourdeau et al. (2014). Interestingly, this realistic phenology was not prescribed into the model but 

appeared after the introduction of fruit cohorts, inducing a strong but progressive competition between sinks 

(here with the leaves) throughout the fruiting season. Resprout wood (Figure 5.b) grew rapidly from 0 to 4 YAP, 

before the onset of the pruning cycle which occurred every year for all resprouts aged more than 5. Resprout 

wood growth then decreased to reach a stable value of ca. 397 gC m-2 at around 13 YAP, with only intra-annual 

fluctuations due to pruning. The perennial compartment represented by both the stump and the coarse roots 

grew progressively throughout the crop cycle because it was not subject to pruning and has a very long lifespan: 

it reached a maximum value of 1769 gC m-2, or 37.3 tDM ha-1 in the end of 2016 (Figure 5.c). The coffee fruit 

compartment (Figure 5.d) started to yield from the third YAP with a carbon mass of between 71 and 134 gC m-

2 at harvest and an average modeled green bean production of 1 382 (±205) kg ha-1 year-1. The simulated carbon 

mass of the fruits was close to values measured by Charbonnier et al. (2017) in 2012 and 2013. The fine roots 

(Figure 5.e) grew rapidly in the early growth stages, i.e. until the third YAP when the combined effects of 

pruning and natural mortality maintained their carbon mass at a relatively stable level from one year to the next 

with values of ca. 134 gC m-2. The reserves compartment fluctuated seasonally, always in opposition with the 

fruit carbon growth. The simulated carbon reserve was close to the reserve measured by Cambou (2012) in the 

same plot (Figure 5.f) because the model was parameterized using this data. 

The modelled coffee carbon allocation by organs showed that plant reserves represented the compartment with 

by far the highest carbon flow, capturing on average 40.4% of the yearly plant carbon supply during the five 

last years of the simulation, with a daily maximum allocation of 63.1% and a minimum of 0% during fruit 

production (Table 6). This compartment also had a high turnover rate because reserves were re-distributed back 

to the carbon supply pool, making it an effective carbon buffer for the coffee plant from one season to another. 

Leaves and branches were the organs with the highest NPP, representing 21.5% and 11.9% of the total yearly 

NPP respectively, during the last five years of the simulation. Fine roots represented 9.4%, stump and coarse 

roots 7.3%, and fruits 9.5% of total NPP. The high productivity of the branches was related to their high carbon 

demand that was often met by the supply, as well as for the stump and coarse roots. The simulated NPP was 

reasonably consistent with measurements for coffee (Table 5). For the shade trees, no direct measurements of 

the whole rooting system was available, therefore the comparison is not proposed here. Nevertheless, when 

cumulated into biomass, the results for both species were realistic (Figure 4, Figure 5). 

Table 6. DynACof simulation of NPP per organ type and plant layer separated according to shade tree management options, 

either with high density and pruned (until 2000) or free growing with low density after thinning in 2000. Average measurements 

for two years (2011/2012 – 2012/2013) from Charbonnier et al. (2017) are also provided for comparison. 
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Organ Average NPP (𝑔𝐶  𝑚
−2 𝑦𝑒𝑎𝑟−1 ± 𝑆𝐷) for the last 5 years 

Coffea arabica Pruned Ep Free growing Ep Measured (free growing Ep) 

 Leaves 308.9 (3.0)  303.3 (12.3) 263.5 

  Perennial wood: Stump + coarse roots 104.2 (4.0) 99.1 (12.2) 161.5 

 Branches 170.7 (6.6) 162.2 (20.0) 210 

 Fine roots 134.5 (7.1) 127.2 (18.4) 148 

 Fruits 136.3 (7.1) 133.0 (11.3) 126 

 Reserve balance 580.0 (51.3) 534.1 (119.1)  

5. Discussion 

5.1. Metamodels 

Simulating complex processes in crop models using metamodels is a promising way to reduce computation 

intensity and avoid numerous equations that are often an important part of the development and application 

effort. Another advantage is that physiological data (e.g. photosynthetic parameters) are often sampled at a fine 

scale but can be used to parameterize a precise model (in this case, MAESPA) at a sub-hourly time step, and 

then be upscaled to field scale and to daily scale. In the present study, metamodels helped DynACof consider 

fine-scale processes explicitly such as spatial anisotropy instead of only using a parameter (e.g. a percentage of 

canopy cover), which significantly improved the model simulations. Replacing some metamodels by simple 

standard plot-scale models leads to a dramatic increase in simulation errors, as shown in the present study (Table 

5), evidence that our metamodeling approach was appropriate. 

The quality of the predictions of a metamodel relies first upon the ability of the original model to correctly 

simulate the processes involved in the system, and secondly on the ability of the metamodel to reproduce the 

outputs of the original model. The first point was investigated in a previous work (Vezy et al., 2018) where 

MAESPA successfully simulated the energy balance and the evapotranspiration in the same experimental plot. 

The second point was addressed by choosing metamodels according to the best possible balance between the 

model complexity, the number of explanatory variables, and out-of-sample prediction quality. Marie et al. 

(2014) found that despite being slower to compute, neural networks and multi-linear regressions with two or 

three level of interactions yielded higher R2 than multi-linear regressions with no interactions, like those used 

in our study. However, four out of ten metamodels in our study gave R2 higher than 0.90 with low nRMSE, 

which is considered highly accurate, three gave R2 higher than 0.80, which is considered accurate (Villa-

Vialaneix et al., 2012), and only one metamodel could be considered not sufficiently accurate with a R2 of 0.65. 

For example, the LAD was used alone to predict the light extinction coefficient of the shade tree layer which 

was then used to compute its light absorption from its LAI. The diffuse extinction coefficient was predicted 

with high accuracy with an EF and a R2 both equal to 0.95. The LAD is a useful proxy for within crown foliage 

aggregation, which was determined - along with the LAI - as the most important characteristic to model light 

penetration by Sampson and Smith (1993). However, other structural variables from the shade trees can be used 

as predictors to improve the metamodel accuracy. This was not the case in our study because shade trees 

structural data were measured only once for the year 2011, so only one value was given as input to MAESPA. 
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The metamodels for 𝐿𝑈𝐸 yielded R2 and nRMSE similar to those found in Christina et al. (2016): R2 of 0.87 

compared to 0.87 and 0.94 for shade tree and coffee respectively in our study, and an RMSE of 0.20 gC MJ-1 

compared to 0.24 and 0.10 (shade tree and coffee resp.) in our study. Yet, despite being generally effective at 

reproducing a complex model output, applying metamodels to new conditions requires caution, as they can 

produce unexpected results outside their training values, especially if they use non-linear equations or when 

there is covariance between predictors. This was of particular concern in the present study because metamodels 

were fitted using a one year-long simulation of MAESPA only (2011). To overcome these problems, the 2011 

data was checked to present a broad range of values for the target variables. Some conditions were still not met 

in the training sample, such as the period before the year 2000, when shade trees were pruned twice a year while 

the metamodels were trained on the system with free-growing trees. Yet, the 2011 training period included some 

days with very low E. poeppigiana LAI (i.e. 0.04 m2 m-2) because E. poeppigiana loses all its leaves once a 

year, which helped the metamodel simulate a plausible range of transmittance values under low LAI pruning 

conditions. 

Likewise, the cumulated evapotranspiration and energy balance were satisfactorily predicted compared to 

measurements, even outside their training period, although both computations depended to a great extent upon 

metamodels. The metamodel for the coffee LUE predicted an increase in values with a reduction in incoming 

radiation on the plant layer, which is in agreement with previous results reported in Charbonnier et al. (2017). 

As a result, DynACof simulations of Rn, GPP and AET were close to those produced by MAESPA reported in 

Vezy et al. (2018), and more importantly, close to the eddy-covariance measurements from the long term 

Coffee-Flux monitoring from 2009 to the end of 2016 (Figure 2 and Figure 3). The agreement between simulated 

and measured values was particularly strong when cumulative fluxes were compared, which confirmed the high 

degree of consistency throughout the measurement period, mostly due to a low bias from the metamodels. 

Hence, metamodels proved to be powerful tools to overcome the long-term trade-off between speed, accuracy, 

genericity and fast development of growth and yield models able to simulate whole crop rotations. 

5.2. Growth and yield model outputs from DynACof 

The evaluation of a crop model is often challenging due to the lack of data for parameterization and validation, 

yet our model was subjected to multi-objective evaluation using numerous observations from the same 

experimental field or from the literature. Nevertheless, it should be noted that the model was mostly 

parameterized using values in the literature, and better results would be expected using measurements or an 

optimization algorithm (Van Oijen et al., 2005). However, the model satisfactorily predicted most processes at 

plot scale with little or no discrepancy. The total autotrophic respiration represented 55% of the GPP, which is 

close to the 57% reported by Litton et al. (2007) in a review of results from a wide range of forest ecosystems. 

The simulated LAI for coffee was in agreement with the measured LAI, and the mean simulated leaf dry mass 

from 2011 (= 132.2 𝑔𝐶  𝑚
−2) was in agreement with the measured values reported in Charbonnier et al. (2017), 

Taugourdeau et al. (2014) and Siles et al. (2010), with values of 140.5, 143.7 and ranging from 102 to 176 

𝑔𝐶  𝑚
−2 respectively. The seasonal behavior of leaf biomass revealed a drop at the end of the “drier” season 
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corresponding to natural leaf shedding followed by pruning, then a rapid increase at the beginning of the rainy 

season with a secondary minimum when fruit dry mass was high. Interestingly, the simulations well mimicked 

the seasonal observations reported by Taugourdeau et al. (2014), and the simulation was close to measured 

values. The seasonality of the LAI was represented using two main drivers: pruning the leaves once a year, and 

the introduction of fruit cohorts. The first is a forced process, but the second is the result of successive 

computations that allows a smooth distribution of the demand for carbon required for grain filling during the 

period of reproductive development, depending on the developmental stage of each cohort. However, to date, 

the interannual variability in leaf area is barely perceivable in the simulations compared to the field conditions. 

We assume that some processes driving this variability still need to be incorporated in the model, for example, 

a dynamic leaf life span using cohorts of leaves, more leaf diseases or nitrogen effects. Indeed, American leaf 

spot (ALS) was already included in the model following Avelino et al. (2007), but coffee leaf rust is the 

predominant disease affecting coffee plants in this region, which is not yet included due to the absence of a 

published model linking disease severity and leaf loss.  

Total NPP is the consequence of the carbon assimilation, its allocation and the respiration of each specific organ. 

Comparing the measured and simulated total NPP is an integrative evaluation of the model, and the total coffee 

NPP simulated by DynACof was in agreement with the NPP measured by Charbonnier et al. (2017), with an 

overestimation of ca. 3.6% for both years (2011-2012 and 2012-2013).  

However, the most important but most challenging integrative process to simulate is fruit yield, because its 

allocation follows a complex scheme spread out over two years with numerous development stages (Camargo 

and Camargo, 2001), which was modeled in DynACof using a formalism inspired by Rodríguez et al. (2011). 

DynACof predicted a green bean yield of 1382 (±205) kg ha-1 year-1, which was within the range of values 

observed by Campanha et al. (2004), van der Vossen et al. (2015) and of the average yield in Central America 

(Söndahl et al., 2005). Furthermore, the Aquiares farm reported average yields of green beans of around 1333 

(±336) kg ha-1 year-1 between 1995 and 2014 for fields close to the experimental plot, confirming that DynACof 

yield predictions were consistent. However, this comparison is only indicative and should be interpreted with 

caution because the conversion from whole fruit dry mass into processed green beans was made using a simple 

parameter (FtS, see Table 1) that may change depending on several factors, and because DynACof only 

simulates potential yield in the absence of fruit diseases or predators. Furthermore, the dataset used to fit the 

effect of temperature on the buds could overestimate the negative effect because Drinnan and Menzel (1995) 

used coffee plants grown in relatively small pots (10 L), which can restrict root growth and then negatively 

affect the physiology of the coffee plant (Ronchi et al., 2006). DaMatta et al. (2019) found similar results on 

unpublished data though, confirming this negative effect is not only coming from the restricted root growth. 

Moreover, the model was also compared to in situ measurements reported in gC m-2 by Charbonnier et al. (2017), 

and predictions were found to be close to measured values, even following the same pattern of yearly variability, 

which is particularly hard to achieve considering the number of formalisms in use, and the potential cumulated 

error from one process to another.  
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The shift in the shade tree management from pollarded to free-growing appeared to have little impact on fruit 

production or maturity at harvest. This apparent stability came from the low density of the shade trees, which 

still transmitted at least 81.6% of the light during the mature state according to DynACof, compared to 86% 

reported in Charbonnier et al. (2013). Charbonnier et al. (2017) reported that the higher LUE simulated by 

MAESPA for coffee plants under higher shade could compensate for most of the reduction in incident PAR, 

maintaining NPP at a nearly constant level as long as shade remains at low values. In DynACof, GPP was 

reduced only by 2.6% for a reduction of 7.9% in APAR, thanks to an increase of 5.8% in the LUE between the 

two periods of shade tree management, i.e. from low LAI in pruned shade trees to higher LAI in free-growing 

shade trees.  

Another strength of the model is the prediction of canopy temperature under shade as a driver for plant biology, 

and water and energy balances, thanks to a full soil module inspired from the BILJOU model and to the 

MAESPA metamodels. Indeed, predictions of the cumulated AET and net radiation were very close to the nearly 

continuous measurements made from 2009 to 2015. 

Given the model gave satisfactorily results for a wide range of processes using our multiple-objective strategy 

of parameterization and evaluation, i.e. different sets of variables measured in the same site at the same time, it 

can provide other information that cannot be discovered from the data only, and help researchers identify 

emergent properties in the system. For example, coffee LAI was strongly affected by pruning once a year and 

during the period in between by natural mortality and by the high fruit demand at the time of grain filling, which 

was also observed by Charbonnier et al. (2017). Another observation made using the model outputs is that 

except for stump and coarse roots, which are the only perennial compartments, biomass increased rapidly in the 

early stages of the plantation until it reached its maximum value for the whole rotation, after which biomass 

growth started to decrease with pruning, and found a new lower equilibrium between growth and mortality. The 

model also reproduced to some extent the biennial fruit production that was reported by Cannell (1985). Finally, 

although the measured variables were acquired mostly at the end of the rotation, the model ran for the full 

rotation and the simulated variables reached the values measured by the end of the rotation, thereby revealing 

dynamics that remained hidden during the unknown part of the rotation (e.g. biomass reaching a specific 

equilibrium, according to the pruning intensity). Overall, it is clear that the model is able to compute several 

long term ecosystem services and paves the way for the analysis of possible trade-offs between them, depending 

on different management options and climate. 

Although the model now needs to be applied in different soil, climate and shade management conditions to 

evaluate its true genericity, the process-based equations implemented in most modules already imply relative 

genericity. For example, the flowering events and timing are based on the model from Rodríguez et al. (2011), 

which reproduced satisfactorily these processes on contrasted sites. However, the user should keep in mind that 

metamodels are not generic, and should be updated when applied to new conditions (e.g. different soil or 

planting design). The overall genericity of DynACof should allow its application to other climate conditions 

such as under climate changes, other locations with different soils and climates, and other shade management 

systems such as coffee grown in full sun or under Cordia alliodora, banana plants, Eucalyptus sp. or any species, 
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tree density and management such as pruning or thinning. In specific situations, it would be advisable to develop 

specific modules for coupling the nutrient cycles with the carbon and water cycles already available in the 

current version of DynACof. Therefore, the current version is assumed to simulate the potential outputs, only 

for situations without any nutrient stresses. Drought is already present in the model through leaf water potential 

and affects the reproductive phenology, but should be tested and refined for other vegetative limitations. 

5.3. Model adaptation 

DynACof can be easily adapted by users to other sites, other shade trees, other coffee varieties or managements 

by parameterizing the model accordingly. Adapting the model to other sites require mainly updating the site 

parameters (e.g. latitude, longitude, elevation), the soil properties (e.g. field capacity, pore fraction) and the 

meteorology. If the coffee cultivar is changed, the parameters linked to the coffee should be checked and updated 

if necessary (e.g. specific leaf area, allocation coefficients, base temperature). To change the management of 

the shade tree or the species, the user has to update the shade tree parameter file. The metamodels should be 

updated by the user whenever the plants structure or functioning is out of the range they were trained on. For 

example the LUE metamodel should be fitted using the atmospheric CO2 concentration and air temperature to 

integrate their effect for simulations under climate changes. They also can be replaced by any plot-scale 

equations because they are written as input code.  

The model can then be calibrated and evaluated using field data. LAI for both shade tree and coffee is a key 

variable to measure because it is the result, and has an impact on many processes. The biomass increment of 

each organ can be measured to evaluate the plant NPP. For the coffee, key variables from the reproductive 

development are useful to evaluate the simulated yield, e.g. time of initiation and number of buds and flowers, 

and of course yield itself. The soil water content can be measured to evaluate the water balance module, and the 

leaf and soil temperature for the energy balance module. 

DynACof can also be modified easily by developers because it was designed as modular as possible, with each 

module called in sequence at daily time-step. Developers can replace any module while still leveraging the 

others easily. For example the coffee module could be replaced by a module simulating any other plant, annual 

or perennial (e.g. cocoa, wheat, sugar cane, rice...). New modules can also be added, such as for nitrogen cycle. 

This module could compute the nitrogen uptake, allocation and content for all organs from each plant species, 

and the mineralization processes from decaying organic matter (which already exist in the model) and microbial 

biomass in the soil, with eventual mineral fertilization input by management (e.g. urea, synthetic fertilizers, 

irrigation) or natural processes (e.g. precipitations). 

6. Conclusion 

DynACof (Dynamic Agroforestry Coffee Crop Model) was developed to simulate the effects of the 

environment, the soil, the species of shade tree and the management practices on coffee growth and yield. The 

shade management module can be set to any shade type and density, under full sun or agroforestry systems, 
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applying pruning or thinning at any age, if required. The model can be used for full rotations at a daily time step 

for any surface area, from plot to landscape, or even to a region if properly distributed, under current, past or 

future climate conditions as long as the metamodels, built from MAESPA model simulations, are updated to 

the target conditions. The model was parameterized and evaluated using a comprehensive and unique dataset 

for energy and water balance, biomass and NPP from an experimental site in the Aquiares farm in Costa Rica. 

A substantial advantage of DynACof being a tree-average plot model is the possibility to parameterize it using 

plot averages or totals, which are more frequently available from farms (e.g. yield, pruning intensity, coffee 

quality, etc.) because data remain scarce, especially under agroforestry management.  

Two other important features of the model are the simulation of the canopy temperature (instead of air 

temperature) to control the plant growth according to the shade level, and the use of cohorts of flowers and fruits 

to consider grouped flowering in sub-tropical conditions and distributed flowering in equatorial climates. The 

model is implemented as an R and Julia packages for easy sharing and collaboration, and can be easily modified 

by adding new modules to compute pest attacks, nutrient cycling, soil organic matter decomposition or soil 

respiration. The methodology can be further generalized for any type of shade or climate by using different 

MAESPA simulation sets to train the metamodels. DynACof was built using a set of generic modules (e.g. 

functions for aerodynamic conductance) that can be used in other models to simulate any type of agroforestry 

systems or intercropped systems. 

In conclusion, DynACof concentrates considerable ecophysiological knowledge on coffee, and is an efficient 

tool to evaluate and optimize coffee crop yield, ecosystem services and their trade-offs in response to climate 

conditions and management scenarios. It was also designed to predict the impacts of climate change on coffee 

yield and the potential of changes in management to mitigate such effects. 
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Appendix A: soil water balance model 1 

The soil water balance model is largely derived from the BILJOU model (Granier et al., 1999). It is a “bucket” 2 

model, meaning that the soil is represented by the depth dimension only, itself divided into layers of given 3 

thickness.  4 

1. Water balance 5 

The water flow is managed sequentially as in any other bucket model.  6 

1.1. Interception and leaf evaporation 7 

During a rainfall event, water can be either intercepted by the plants canopy, or directly reach the soil surface. 8 

The water intercepted by the plants is either stored on the canopy surface, or flow along the branches and trunks 9 

to finally reach the soil. The water that is stored on the canopy surface is then gradually evaporated back to the 10 

atmosphere.  11 

The first step for computing the water balance in the model is to compute a maximum potential rainfall 12 

interception using the total stand LAI and an interception parameter as follows: 13 

𝐼𝑛𝑡𝑒𝑟𝑐𝑚𝑎𝑥 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑆𝑙𝑜𝑝𝑒 ∙ 𝐿𝐴𝐼𝑝𝑙𝑜𝑡 (A.1) 

Any water intercepted by the canopy when the canopy water retention is already at full capacity (i.e. at 14 

𝐼𝑛𝑡𝑒𝑟𝑐𝑚𝑎𝑥, mm) is considered as throughfall water.  15 

The daily evaporation of the water stored in the canopy bucket is computed using the Penman-Monteith equation 16 

as found in Allen et al. (1998) with an infinite stomatal conductance and a set of aerodynamic conductances. 17 

1.2. Surface runoff 18 

Water reaching the soil surface enter the surface layer (𝑊𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑅𝑒𝑠, mm). Any water entering this layer 19 

when it is already full is considered as excess surface runoff, which is added to the superficial runoff itself 20 

computed using a parameter: 21 

𝑆𝑢𝑝𝑒𝑟𝑓𝑖𝑐𝑖𝑎𝑙𝑅𝑢𝑛𝑜𝑓𝑓 = 𝑘𝐵 ∙ 𝑊𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑅𝑒𝑠 (A.2) 

1.3. Infiltration 22 

Water from the surface layer infiltrates the first soil layer up to the first layer infiltration capacity (W1), which 23 

is computed as follows:  24 

𝐼𝑛𝑓𝑖𝑙𝐶𝑎𝑝𝑎 =

{
 
 

 
 
𝑓𝑜                                                      𝑖𝑓 𝑊1 ≤ 𝑊𝑚1                              

𝑓𝑜 −
(𝑊1−𝑊𝑚1)∙(𝑓𝑜−𝑓𝑐)

𝑊𝑓1−𝑊𝑚1 
                𝑖𝑓  𝑊1 > 𝑊𝑚1 and 𝑊1 ≤ 𝑊𝑓1

𝑓𝑐                                                      𝑖𝑓 𝑊1 > 𝑊𝑚1 and 𝑊1 > 𝑊𝑓1   
 

  (A.3) 
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With 𝑊1 the first layer water content (mm), 𝑊𝑚1 the minimum water content of the first layer, 𝑊𝑓1 the field 25 

capacity of the first layer and 𝑓𝑜 and 𝑓𝑐 the maximum and minimum infiltration capacity respectively (mm day-26 

1). 27 

Then, 𝑊1 is updated by adding the water that infiltrated from the surface bucket to its previous water content. 28 

If 𝑊1 exceeds 𝑊𝑓1 after this operation, the excess water drains into the second layer. This last operation is 29 

repeated for the two following layers, 𝑊2 and 𝑊3 with their own field capacity 𝑊𝑓2 and 𝑊𝑓3. 30 

1.4. Soil surface evaporation 31 

The soil surface evaporation (mm) is computed using the soil net radiation coming from a metamodel of 32 

MAESPA and a partitioning parameter (𝑆𝑜𝑖𝑙_𝐿𝐸_𝑃): 33 

𝐸𝑠𝑜𝑖𝑙 =
𝑅𝑛𝑠𝑜𝑖𝑙 ∙ 𝑆𝑜𝑖𝑙_𝐿𝐸_𝑃

λ
 (A.4) 

with λ the latent heat of vaporization (MJ kgH2O
-1). 34 

1.5. Root water uptake 35 

The water that is absorbed by the plants roots (𝑅𝑜𝑜𝑡𝑊𝑎𝑡𝑒𝑟𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑙) for a given layer 𝑙 is computed from the 36 

total stand transpiration (𝑇𝑡𝑜𝑡𝑎𝑙), the total root fraction in the layer (𝑅𝑜𝑜𝑡𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙) and the extractable water 37 

from the layer (𝐸𝑊𝑙) as follows: 38 

𝐸𝑊𝑙 = 𝑊𝑙 −𝑊𝑚𝑙  (A.5) 

𝑅𝑜𝑜𝑡𝑊𝑎𝑡𝑒𝑟𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑙 =  min (𝑇𝑡𝑜𝑡𝑎𝑙 ∙ 𝑅𝑜𝑜𝑡𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑙 , 𝐸𝑊𝑙) (A.6) 

Each layer’s water content is then updated by removing to it the root water uptake. 39 

1.6. Water potential 40 

The soil water potential (𝛹𝑠𝑜𝑖𝑙 ,𝑀𝑃𝑎) is computed using the equation from Campbell (1974) as follows: 41 

𝛹𝑠𝑜𝑖𝑙 = 𝛹𝐸 ∙ (
𝑊𝑡𝑜𝑡 ∙ 1000

𝜃𝑠
)

𝐵

 (A.7) 

with 𝛹𝐸 (MPa) the air entry water potential, 𝑊𝑡𝑜𝑡 the total soil water content (mm) and 𝜃𝑠 the saturated water 42 

content (m3 m-3).  43 

And the leaf water potential (𝛹𝑙𝑒𝑎𝑓,𝑀𝑃𝑎) is computed as follows:  44 

𝛹𝑙𝑒𝑎𝑓,𝑙 = 𝛹𝑠𝑜𝑖𝑙 −
𝑇𝑙 ∙ 𝑀𝐻20

𝐾𝑡𝑜𝑡
 (A.8) 

Where 𝑇𝑙 is the plant transpiration (𝑚𝑚), 𝑀𝐻20 the molar mass of water, and 𝐾𝑡𝑜𝑡 the soil to leaf hydraulic 45 

conductance (𝑚𝑜𝑙 𝑚−2 𝑠−1 𝑀𝑃𝑎−1) 46 

2. Energy balance 47 

The soil energy balance is computed using the soil net radiation from the metamodels of MAESPA and the 48 

partitioning coefficient as in Eq. (A.4) for both the latent and sensible fluxes. The soil heat storage is neglected 49 

because its variability is low at daily time-scale and because it tends to return at equilibrium after several days.  50 
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Appendix B: shade tree allometric equations 51 

Several allometric relationships are used in the shade tree growth module. Only the shade tree height is 52 

mandatory for the other parts of the model, because it is used to compute the canopy boundary layer 53 

conductance. Any other allometric equation can be added to the model via the tree parameter file, and can be 54 

used for user-custom metamodels or as informative output. 55 

1. DBH 56 

The diameter at breast height (DBH, m) of the Erythrina poeppigiana shade tree is computed following the 57 

equation from Rojas-García et al. (2015): 58 

𝐷𝐵𝐻 =
𝐷𝑀𝑆𝑡𝑒𝑚

(𝐶𝐶𝑤𝑜𝑜𝑑 ∙ 10 ∙
𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔
0.5

)
0.625 

(A.9) 

 59 

2. Height 60 

Tree height (m) is computed following the equation from Van Oijen et al. (2010b): 61 

𝐻𝑒𝑖𝑔ℎ𝑡 = 0.46 ∙ (
𝐷𝑀𝑠𝑡𝑒𝑚

1000 ∙ 𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔
)
0.5

 (A.10) 

If the shade tree is pruned, it breaks the relationship between the tree stem dry mass and its height as shown in 62 

Eq. (A.10). Instead, the tree height is computed using the trunk height as follows: 63 

𝐻𝑡𝑟𝑢𝑛𝑘 = 3 ∙ (1 − 𝑒
−0.2−𝐴𝑔𝑒) (A.11) 

𝐻𝑡𝑜𝑡 = 𝐻𝑐𝑟𝑜𝑤𝑛 +𝐻𝑡𝑟𝑢𝑛𝑘 (A.12) 

The underlying hypothesis behind Eq. (A.11) is that E. poeppigiana are pruned by stakeholders so the trunk 64 

height do not exceed 3 meters high.  65 

3. Crown dimensions 66 

The crown radius (m) is computed as follows: 67 

𝑅𝑐𝑟𝑜𝑤𝑛 = √
𝑃𝑐𝑟𝑜𝑤𝑛
𝜋

 (A.13) 

with 𝑃𝑐𝑟𝑜𝑤𝑛 the crown projection, itself computed as: 68 

𝑃𝑐𝑟𝑜𝑤𝑛 = 8 ∙ (
𝐷𝑀𝑏𝑟𝑎𝑛𝑐ℎ

1000 ∙ 𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔
)
0.45

 (A.14) 

with 𝐷𝑀𝑏𝑟𝑎𝑛𝑐ℎthe shade tree branch dry mass in 𝑔 𝑚−2. 69 

The crown height (𝐻𝑐𝑟𝑜𝑤𝑛) is taken as equal to the crown radius as shown in Table 2 from Charbonnier et al. 70 

(2013).  71 
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4. LAD 72 

The leaf area density (LAD) is computed as follows: 73 

𝐿𝐴𝐷 =
𝐿𝐴𝑡𝑟𝑒𝑒

𝑅𝑐𝑟𝑜𝑤𝑛
2 ∙

𝐻𝑐𝑟𝑜𝑤𝑛
2

∙ 𝜋 ∙
4
3

 (A.15) 

 with 𝐿𝐴𝑡𝑟𝑒𝑒 the shade tree leaf area. 74 

  75 
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Appendix C: comparing DynACof with and without metamodels 76 

To assess the importance of using metamodels from MAESPA to integrate fine scale processes to DynACof, 77 

we compared DynACof outputs for GPP, Rn, LE and H with and without metamodels. The GPP without 78 

metamodels was simulated using constant values for the light use efficiency and constant values for the light 79 

interception coefficients of the Beer-Lambert’s equation for both the coffee and the shade tree layers. The 80 

parameterization was made using the average values from the MAESPA simulations. The net radiation without 81 

metamodels was simulated using the equation from Allen et al. (1998) at plot-scale using the albedo computed 82 

by MAESPA. The latent heat flux without metamodels was computed using the Penman-Monteith equation at 83 

stand-scale (PENMON function from DynACof: https://vezy.github.io/DynACof/reference/PENMON.html). 84 

The sensible heat flux without metamodels was computed as the difference between the net radiation and the 85 

latent heat flux, both computed without metamodels. 86 

 87 
Figure C.1. Net radiation (Rn), latent (LE) and sensible (H) heat flux, and gross primary productivity (GPP) simulations using 88 
DynACof with metamodels from MAESPA (red) or stand-scale equations (blue) compared to field measurements.  89 

https://vezy.github.io/DynACof/reference/PENMON.html
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Figure C.1 shows that GPP simulation was improved when using metamodels, and that net radiation was also 90 

improved using metamodels, but mainly because the stand-scale reference equation had a systematic positive 91 

bias compared to measurements. This bias could potentially be corrected knowing it a priori. The sensible heat 92 

flux were also systematically more biased without metamodels. The latent heat flux simulated without 93 

metamodel was close to the measurements for low values (< 5 MJ m-2 d-1), but was increasingly overestimated 94 

with higher values. 95 

  96 
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Appendix D: further plots 97 

1. Light interception, GPP and Ra 98 

The contribution of the shade tree and the coffee plants to LAI, APAR, GPP and Ra are shown in Figure D.1. 99 

The highest coffee contribution to the plot-scale GPP can be explained by its higher LAI, and hence higher light 100 

interception compared to the shade tree. The shade tree thinning in 2000 has a high impact on these variables 101 

during the first three years. 102 

 103 
Figure D.1. Comparison of dynamic outputs from DynACof between shade tree and coffee for leaf area index (LAI), absorbed 104 
photosynthetically active radiation (APAR), gross primary productivity (GPP) and autotrophic respiration (Ra) starting from 105 
1979-01-01 until 2016-12-31. 106 

2. Water balance 107 

DynACof simulates a broad range of informative variables related to the water balance of the system.  108 
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 109 
Figure D.2. DynACof outputs related to the water balance at daily time-scale and plot scale for the period starting from 1979-110 
01-01 until 2016-12-31. θ is the volumetric water content for the full soil profile, and .  111 

3. Temperatures 112 

DynACof also simulates several temperatures and aerodynamic conductances in the system to better represent 113 

the microclimate experienced by the plants. DynACof uses the air temperature measured above the canopy as 114 

input, and computes the temperature of the air inside the shade tree canopy and inside the coffee canopy, and 115 

uses them to compute the leaf temperature of the shade tree and the coffee, and the soil temperature. These 116 
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computations are dependent from other computations, such as the wind extinction, the sensible heat flux of each 117 

layer (plants and soil), and a sequence of aerodynamic conductances. The temperatures simulated by the model 118 

are shown in Figure D.3.  119 

 120 

Figure D.3. Input (Tair) and simulated temperatures. The simulated temperatures are presented as the difference between the 121 
simulated temperature and the input Tair for easier assessment.  122 

4. Litter 123 

The litter is simulated by the model as a mortality of biomass. The coffee leaf and resprout wood litter at plot 124 

scale is mainly impacted by the pruning effect each year (Figure D.4). As expected, the fruit litter follow a 125 

seasonal variation, related to the fruit production. The shade tree leaf litter is mainly impacted by the pruning 126 

effect before 2000 (pruning management), and then by the natural seasonal variation. The simulated litterfall 127 

from the coffee (i.e. mortality from leaves + resprout wood + fruits) is close to the observations made by 128 

Charbonnier et al. (2017), with values of 482 gC m-2 year-1 compared to 450 gC m-2 year-1 from their 129 

measurements. The simulated tree litterfall (i.e. leaves + branches wood) is also close to the observations, with 130 
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a value of 96 gC m-2 year-1 and 110 gC m-2 year-1 respectively. High values of tree litterfall are explained by tree 131 

pruning before 2000. 132 

 133 

Figure D.4. Simulated litter fluxes for the compartments with the highest contribution for the coffee (leaf, resprout wood, fruits) 134 
and the shade tree (leaf). 135 


