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The DynACof model was designed to model coffee agroforestry systems and study the trade-offs to e.g. optimize the system facing climate changes. The model simulates net primary productivity (NPP), growth, yield, mortality, energy and water balance of coffee agroforestry systems according to shade tree species and management. Several plot-scale ecosystem services are simulated by the model, such as production, canopy cooling effect, or potential C sequestration. DynACof uses metamodels derived from a detailed 3D processbased model (MAESPA) to account for complex spatial effects, while running fast. It also includes a coffee flower bud and fruit cohort module to better distribute fruit carbon demand over the year, a key feature to obtain a realistic competition between sinks.

The model was parameterized and evaluated using a highly comprehensive database on a coffee agroforestry experimental site in Costa Rica. The fluxes simulated by the model were close to the measurements over a 5year period (nRMSE= 26.27 for gross primary productivity; 28.22 for actual evapo-transpiration, 53.91 for sensible heat flux and 15.26 for net radiation), and DynACof satisfactorily simulated the yield, NPP, mortality and carbon stock for each coffee organ type over a 35-year rotation.

Software and data availability

The DynACof model was developed as an R package (R Core Team, 2019), and as a Julia package [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF]. Full documentation is available on its dedicated website (https://vezy.github.io/DynACof), the code is open-source (GNU GPLv3 license) and available on Github repositories (R: https://github.com/VEZY/DynACof, Julia: https://github.com/VEZY/DynACof.jl) and archived on Zenodo (https://doi.org/10.5281/zenodo.1256816). The input data used for this study is available as example data from this repository, and the data for model evaluation is available from the FLUXNET website (http://www.europefluxdata.eu/home/site-details?id=CR-AqC).

Introduction

The key role of crop models is to help understand and predict the links between crop development and climate, soil, management, facilitation and competition between species. Crop models can provide insights into the main emerging agricultural challenges such as food security, sustainability, how to enhance ecosystem services, and how to cope with the possible negative effects of climate changes [START_REF] Spiertz | Avenues to meet food security. The role of agronomy on solving complexity in food production and resource use[END_REF]. There is an increasing need to address these issues at global scale to identify the different solutions available [START_REF] Makowski | Global agronomy, a new field of research. A review[END_REF], especially when the products are exchanged on the global market, like wheat, maize, soybean, cocoa or coffee.

Perennial plantations are difficult to study, because their relatively long growing cycle extends the period necessary for data acquisition, and because the heterogeneity of the canopy sometimes significantly increases the intra-plot light and micro-meteorological anisotropy, such as for temperature, vapor pressure or aerodynamic conditions [START_REF] Luedeling | Agroforestry systems in a changing climatechallenges in projecting future performance[END_REF][START_REF] Luedeling | Field-scale modeling of tree-crop interactions: Challenges and development needs[END_REF]. Agroforestry systems (AFS) are probably the most complex perennial agroecosystems [START_REF] Malézieux | Mixing plant species in cropping systems: concepts, tools and models. A review[END_REF], because they have the most heterogeneous vertical and/or horizontal canopies, and these affect all ecosystem fluxes (Charbonnier et al., 2013;[START_REF] Vezy | Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model[END_REF].

Yet, AFS have the potential to enhance ecosystem services [START_REF] Jose | Agroforestry for ecosystem services and environmental benefits: an overview[END_REF][START_REF] Lin | The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems[END_REF][START_REF] Taugourdeau | Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry[END_REF] such as carbon sequestration [START_REF] Jose | Agroforestry for biomass production and carbon sequestration: an overview[END_REF][START_REF] Oelbermann | Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada[END_REF], and to mitigate climate pressure on crops [START_REF] Lin | Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture[END_REF].

In Costa Rica, Coffee arabica is mostly grown under AFS management because it is assumed to improve coffee bean quality and to expand the cropping area to sub-optimal low altitude and warmer areas [START_REF] Muschler | Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica[END_REF], but such assumptions depend mostly on altitude, local climate and postharvest processing [START_REF] Worku | Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method[END_REF].

Modeling the energy, water and carbon balance of these agroecosystems could provide insights into their functioning and allow stakeholders to test the in-silico trends of new management practices (e.g. density, pruning, thinning date or intensity) or species arrangement on given outputs such as yield or other ecosystem services. However, several factors make these systems challenging to model. First, there are many options for shade management with highly heterogeneous canopies, ranging from free growing, low density shade trees like Cordia alliodora to high density, heavily managed low trees or plants such as banana or pollarded Erythrina poeppigiana trees (van Oijen et al., 2010a). Second, the coffee reproductive phenology is a complex process that lasts for about two years [START_REF] Camargo | Definition and outline for the phenological phases of arabic coffee under brazilian tropical conditions[END_REF], with competition between reproductive and vegetative compartments [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF] and bienniality at the plant scale [START_REF] Schnabel | Shade trees: a determinant to the relative success of organic versus conventional coffee production[END_REF].

Blossoming is mostly synchronized in sub-tropical regions but can also be highly asynchronous in equatorial regions, which impacts the distribution of fruit carbon demand and in turn, carbon allocation to other organs [START_REF] Rodríguez | A coffee agroecosystem model: I. Growth and development of the coffee plant[END_REF]. Third, coffee plants are often pruned every five to six years to sustain high levels of production on young resprouts. It is also assumed that the reserve compartment plays a major role in bean production, with biennial sprout dynamics [START_REF] Cannell | Physiology of the Coffee Crop[END_REF]. Fourth, there are very few comprehensive datasets that can be used to calibrate and test multi-objective models for ecosystem services, energy, carbon, and water balance, aboveground and belowground biomass, NPP, fruit yield and more.

Model development implies identifying, prioritizing and balancing the most important processes and the scale at which the model should simulate them. In coffee systems, we assume that (i) absorbed light, (ii) light use efficiency (LUE), (iii) within canopy temperature, (iv) water, and (v) nutrient uptake are among the most important primary processes because they regulate carbon assimilation, respiration, evapotranspiration, vegetative growth, flowering, and fruit development. The next most important processes may be (vi) shade tree and coffee leaf phenology that regulate light absorption, canopy temperature and transpiration, (vii) carbon partitioning to compute net primary productivity (NPP), mortality (litterfall) and organ biomass, and (viii) a detailed phenology of the reproductive organs comprising all stages, from the appearance of cohorts of buds, flowers, and fruits, until harvest or the overripe stage.

Several models have already been developed to simulate coffee, grown in full sun or agroforestry systems:

 [START_REF] Rodríguez | A coffee agroecosystem model: I. Growth and development of the coffee plant[END_REF] proposed a model to simulate coffee in monoculture only, from branch to wholeplant scales. The model was calibrated from planting to five years old. The strength of this model lies in the fine phenology and physiological processes of the modeled coffee plant using branch-level cohorts of flowers and fruits over the entire two-year reproductive cycle. Indeed, cohorts are required to realistically distribute the demand for carbon of the fruits over the course of the season, and not all at once. This model was successfully calibrated for Colombian and Brazilian sites, two regions with contrasting climate and flower phenology (subtropical and equatorial). However, this model was not designed for large plots, long rotations or agroforestry: coffee light absorption is computed using the Beer-Lambert law using a constant coefficient of extinction, absorbed light is converted into photosynthesis using constant light use efficiency, and coffee pruning, shade trees, canopy temperature, water and energy balance are not implemented in the model. Van Oijen et al. (2010b). This is a 1D plant average plot-scale model for coffee grown in agroforestry systems, simplifying the intra-plot microclimate into either below shade or in full sun. One clear advantage of this model is its ability to compute several ecosystem services and to incorporate various types of shade tree management and species, and the thorough Bayesian parameterization approach that was used. The model is simple, fast and can be run under changing climates. It was recently applied in East Africa under climate change scenarios by [START_REF] Rahn | Exploring adaptation strategies of coffee production to climate change using a process-based model[END_REF]. The main limitations of the model are (i) its light transmission module does not consider light distribution as a continuum under shade trees, as described in Charbonnier et al. (2013), (ii) its formalism of LUE which is not influenced by the intra-plot light variability even though [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF] found it to be greatly impacted, (iii) it lacks of a reserve compartment and of a cohort module and again (iv) the absence of energy balance and temperature of the canopy to drive the plant respiration reproductive development.

 Another model was developed by

 Two other models have also been applied to coffee in an agroforestry system using 3D light interception modules: in [START_REF] Dauzat | Simulation of leaf transpiration and sap flow in virtual plants: model description and application to a coffee plantation in Costa Rica[END_REF], where only a sample of a few coffee plants were simulated, and using the MAESPA model to simulate the whole system. Since MAESPA was recently demonstrated to accurately predict light distribution, canopy temperature and water and energy balance in such systems (Charbonnier et al., 2013;[START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF][START_REF] Vezy | Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model[END_REF], the model can readily compute all variables that are potentially influenced by the complex canopy structure. However, its relatively high computation time still limits its application for full rotations of coffee under AFS, and the model does not simulate growth and yield.

We argue that a proper combination of the inherent strengths of the above-described models could provide significant improvements and extend application domains. It would involve combining cohorts and reserves at the plant scale, variable canopy temperature and intra-plot microclimate and LUE, while allowing a reasonable level of abstraction to insure rapid simulations (multiple plots, crop rotations, management, etc.). In this study, we built surrogate models (i.e. metamodels) of MAESPA for the spatial-dependent variables, and integrated them into a simpler growth and yield model to avoid expensive computation and development time. These metamodels are simple instantaneous equations that efficiently compute a given output of a complex model. In other words, it is a reduction of a complex model intended to emulate the behavior of complex interactions between variables (e.g. spatial heterogeneity) into one empirical equation, becoming an input for the next crop model. Metamodels are generally used to better understand the processes at stake in a model and to assess model sensitivity and uncertainty [START_REF] Christina | Sensitivity and uncertainty analysis of the carbon and water fluxes at the tree scale in Eucalyptus plantations using a metamodeling approach[END_REF][START_REF] Faivre | Exploration par construction de métamodèles. Analyse de sensibilité et exploration de modèles[END_REF], for the purpose of optimization [START_REF] Razavi | Review of surrogate modeling in water resources[END_REF], or to make faster and reasonably accurate predictions for a given variable that is usually computed by a time-consuming model, but with fewer simulation errors compared to simpler models [START_REF] Marie | Extending the use of ecological models without sacrificing details: a generic and parsimonious meta-modelling approach[END_REF]. Metamodels are often used as an efficient and simple tool to combine models at different time and/or space scales without running the finer-scale model iteratively.

Consequently, we designed DynACof to incorporate a plant-scale reproductive phenology formalism inspired by [START_REF] Rodríguez | A coffee agroecosystem model: I. Growth and development of the coffee plant[END_REF] but dependent on canopy temperature, with different sub-modules to adapt coffee and shade tree management, density and tree species, as in Van Oijen et al. (2010b), and metamodels calibrated from MAESPA simulations for spatially-dependent variables, such as diffuse and direct light extinction coefficients, light use efficiency, leaf water potential, transpiration, and sensible fluxes [START_REF] Vezy | Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model[END_REF].

Regarding model parameterization, calibration, and evaluation for coffee modelling, several strategies are proposed in the literature, most of which depend on the availability of field data. [START_REF] Rodríguez | A coffee agroecosystem model: I. Growth and development of the coffee plant[END_REF] assumed that the main factor that influences yield variability is latitude, because of its impact on phenology, so they tested their model on an equatorial site and on a sub-tropical site, with two distinct set of parameters for each situation. The former model was evaluated against field data on biomass (leaves, branches, berries, stem and roots) and total plant nitrogen content gathered at three distinct sites. Van Oijen et al. (2010b), andlater Rahn et al. (2018), who further developed the CAF2007 model, proposed a calibration based on an extensive screening of the literature and a sensitivity analysis, but no model evaluation against field data at this stage. Alternatively, we propose a multiple-objective strategy of evaluation in this study, relying on a large range of state and flux variables measured at the same time by the end of the crop rotation, including eddy-covariance fluxes, coffee and shade tree biomass measured at organ scale, necromass, yield, NPP, water balance and energy balance, and finally farm registers to describe management during a complete rotation (Charbonnier et al., 2013;[START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF][START_REF] Defrenet | Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age[END_REF][START_REF] Gómez-Delgado | Modelling the hydrological behaviour of a coffee agroforestry basin in Costa Rica[END_REF][START_REF] Taugourdeau | Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry[END_REF][START_REF] Vezy | Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model[END_REF].

Consequently, the aims of the present study are to:

(i)
develop metamodels for spatially-dependent variables based on MAESPA, which has already been calibrated and validated on coffee agroforestry systems;

(ii) develop a new plot-scale 1D, 5-layer (shade tree, coffee, and 3 soil layers), average plant, ecophysiological process-based model for coffee crops grown under agroforestry or in full sun, while combining the advantages and strengths of three previously published models. Nutrients are considered non-limiting in this first version, which is realistic for many field conditions.

(iii) parameterize and evaluate the model using a multi-objective approach applied to an extensive dataset from a long-term observatory including the energy and water balance, GPP, yield, NPP and carbon mass per organ.

Materials and methods

Site description

The research site is located on the Aquiares Coffee Farm (6.6 km 2 ) between 9° 56 ' 8" and 9° 56' 35" N and 83° 44' 39" and 83° 43' 35" W, itself with several applications of fertilizer per year (214 ± 44 kg N ha -1 yr -1 ) and a regular selective pruning of the coffee shoots, a practice often used by farmers to avoid a drop in production due to exhaustion. The farm complies with the Rainforest Alliance ™ for its pest and weed management (weeds are scarce). Between 1995 and 2016, the Aquiares farm reported average yields of green coffee around 1333 ± 336 kg green coffee ha -1 yr - 1 .

Comprehensive database of measurements

"Coffee-Flux" is a collaborative research observatory (https://www.umr-ecosols.fr/recherche/projets/53-coffeeflux) monitored continuously since 2009 and located on the Aquiares coffee farm. This research site has been intensively studied and described in detail, notably for hydrology and eddy-covariance by [START_REF] Gómez-Delgado | Modelling the hydrological behaviour of a coffee agroforestry basin in Costa Rica[END_REF]; LAI by [START_REF] Taugourdeau | Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry[END_REF]; light budget by Charbonnier et al. (2013); belowground biomass and NPP by [START_REF] Defrenet | Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age[END_REF], ecosystem biomass, NPP and LUE by [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF]; and energy balance, water balance and surface temperature by [START_REF] Vezy | Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model[END_REF].

The measurements used in this study to evaluate the model included: half-hourly 𝑁𝐸𝐸 (Net Ecosystem Exchange), 𝐻 (sensible heat flux), 𝐿𝐸 (latent heat flux), and 𝑅𝑛 (net radiation) measured using an eddycovariance tower. The online ReddyProc tool [START_REF] Wutzler | Basic and extensible post-processing of eddy covariance flux data with REddyProc[END_REF] was used to assess gross primary productivity (GPP), following the [START_REF] Lasslop | Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation[END_REF] model option, based on daily hyperbolic curves to estimate photosynthesis. This model option was chosen because the Coffee-Flux site is mountainous, prone to night-time advection. The flux measurements were integrated at a daily time scale for comparison with DynACof outputs. The LAI of the shade tree (𝐿𝐴𝐼 𝑇𝑟𝑒𝑒 ) was also measured using a LAI2000 (LI-COR, NE, USA), and the coffee LAI (𝐿𝐴𝐼 𝑐𝑜𝑓𝑓𝑒𝑒 ) using a normalized difference vegetation index (NDVI) sensor positioned 25 m above the ground, at an angle of 15° to the vertical with 45° view angle, and converted to LAI according to Charbonnier et al. (2013). The light transmittance by shade trees was also measured using the LAI2000. The carbon mass (gC m -2 ) of the shade tree stem and branches, and the coffee resprout wood, fine roots, stump and coarse roots were all measured during two consecutive years (2011/2012 and 2012/2013) using dimension measurements and site specific allometric relationships. The NPP of each compartment of the shade tree and coffee plant was also computed from the biomass increment and from litter production. Further details about the methods used for measurement are available in Charbonnier et al. (2013) and [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF].

MAESPA model and metamodel conception

Description of MAESPA

MAESPA is a 3D explicit process-based model [START_REF] Duursma | MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO2] × drought interactions[END_REF][START_REF] Medlyn | A maestro retrospective[END_REF][START_REF] Wang | Description and validation of an array model -MAESTRO[END_REF]) used to simulate forest energy, water, and carbon fluxes at the scale of the individual tree. The light interception module, canopy temperature, water and energy balance of the model have already been calibrated, used and validated on the same agroforestry system (Charbonnier et al., 2013;[START_REF] Vezy | Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model[END_REF]. MAESPA is particularly well suited to simulate agroforestry system fluxes because it describes the forest at voxel scale, which is a homogeneous representation of a sub-part of the tree crown. It can manage several tree species with their own position on the plot, their overall structure (crown height, width, etc.), and their physical and physiological parameters. Thus, MAESPA computes a fine estimation of the light interception, energy, water, and carbon fluxes of each plant in the forest and of the soil, while taking the spatial heterogeneity of the canopy into account. However, MAESPA lacks a carbon allocation module or growth process, and requires computationally-intensive simulations, e.g. a week of computation on the shared Montpellier Bioinformatic Biodiversity (MBB) computing cluster platform to complete a distributed simulation of a 0.2 ha AFS plot, including 4176 Coffea arabica sprouts and 14 Erythrina poeppigiana shade trees over one year at 30-minute time-scale. Consequently, MAESPA was used here mainly to compute metamodels to simulate spatialdependent variables.

Metamodels

The main process affected by canopy complexity is probably the photosynthetically active radiation absorbed (𝐴𝑃𝐴𝑅) by the canopy (Charbonnier et al., 2013). Heterogeneous canopies like those of shade trees in AFS tend to violate the assumption of a constant value for diffuse (𝐾𝐷𝑖𝑓) and direct (𝐾𝐷𝑖𝑟) light extinction coefficients because of non-uniform spatial distribution of leaf area, and because the leaf area density and foliage aggregation can change over time [START_REF] Sampson | Influence of canopy architecture on light penetration in lodgepole pine (Pinus contorta var. latifolia) forests[END_REF][START_REF] Sinoquet | Simple equations to estimate light interception by isolated trees from canopy structure features: assessment with three-dimensional digitized apple trees[END_REF]. Furthermore, a comparison between coffee plants grown in monoculture and under an agroforestry system showed that canopy complexity also affected canopy temperature, water and energy partitioning, light interception, transpiration and stomatal conductance [START_REF] Vezy | Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model[END_REF].

Metamodels were computed from MAESPA simulation outputs for diffuse (𝐾𝐷𝑖𝑓) and direct (𝐾𝐷𝑖𝑟) shade tree light extinction coefficients, coffee and shade tree light use efficiency ( 𝐿𝑈𝐸, 𝑔 𝐶 𝑀𝐽 -1 ), transpiration ( 𝑇𝑟, 𝑚𝑚 𝑑 -1 ), plant sensible heat flux ( 𝐻, 𝑀𝐽 𝑚 -2 𝑑 -1 ) and soil net radiation ( 𝑅𝑛 𝑆𝑜𝑖𝑙 , 𝑀𝐽 𝑚 -2 𝑑 -1 ).

Metamodels are used to reproduce as far as possible the link between a set of input variables and the desired output variable, as if it had been computed by the MAESPA model.

MAESPA simulations were also used to find the values of some parameters such as the coffee layer light extinction coefficients that had low variability throughout the simulation and hence were assumed constant in DynACof. The partitioning parameter (𝑆𝑜𝑖𝑙_𝐿𝐸_𝑃, see appendix A.2) used to compute soil sensible and latent heat flux from the soil net radiation in DynACof was also parameterized using MAESPA outputs.

Metamodels were fitted using multilinear regressions selected according to a trade-off between the number of explanatory variables, their genericity and range of application and their accuracy obtained using different statistics (EF: modelling efficiency, R 2 : r squared, RMSE: root mean squared error). MAESPA was used to simulate one year of the coffee agroforestry system from the Coffee-Flux site in the Aquiares farm in order to calibrate the metamodels. The parameterization and description of these MAESPA simulations are reported in [START_REF] Vezy | Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model[END_REF]. The outputs considered are converted from half hourly values at shade tree and coffee resprout scale to daily plot scale values for each plant layer during the same year (Figure 1). The metamodels were trained on 80% of MAESPA simulation outputs aggregated at daily time-scale and evaluated over the 20% remaining validation data to compute out-of-sample statistics. Both training and testing partitions were sampled based on the dependent variable subgroup percentiles using the "createDataPartition" function in the caret R package [START_REF] Kuhn | caret: Classification and Regression Training[END_REF]. The input variables of MAESPA used as predictors for metamodels were either related to climate or to plotaverage plant structure. Climate variables included daily air temperature, vapor pressure deficit, PAR, diffuse and direct light fractions, wind speed, and air pressure. The atmospheric CO2 concentration can also be used for the 𝐿𝑈𝐸 metamodel but were not useful for the present study. Input variables concerning shade tree structure for the metamodels were leaf area (𝑚 𝑙𝑒𝑎𝑣𝑒𝑠 2 𝑡𝑟𝑒𝑒 -1 ), crown height (𝑚), trunk height (𝑚), crown radius (𝑚), trunk diameter (𝑚) and all derivatives such as the leaf area index (LAI, 𝑚 𝑙𝑒𝑎𝑣𝑒𝑠 2 𝑚 𝑠𝑜𝑖𝑙 -2 ), leaf area density (LAD,

𝑚 𝑙𝑒𝑎𝑣𝑒𝑠 2 𝑚 𝑐𝑟𝑜𝑤𝑛 -3
), tree density (𝑡𝑟𝑒𝑒𝑠 ℎ𝑎 -1 ) or crown projection (𝑚 𝑐𝑟𝑜𝑤𝑛 2 𝑚 𝑠𝑜𝑖𝑙 2 ), all being plot averages. The LAI was measured continuously in the plot, while the other structural data were measured only once during the 2011 campaign. The variability and the interactions between the predictors were checked to insure the range of values was similar in the MAESPA simulation dataset and in the application dataset used for DynACof.

The metamodels are not mandatory in DynACof, and can be replaced by any equation or fixed value. Hence, DynACof was also run using standard equations instead of the metamodels to assess their relative contribution to the modeling performance for the plot-scale net radiation (Rn), latent (LE) and sensible (H) heat flux, and gross primary productivity (GPP). For this purpose, the FAO recommended plot scale equation from [START_REF] Allen | Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[END_REF] was chosen as a reference for comparison with the current computation for Rn in DynACof, LE was computed using the Penman-Monteith equation [START_REF] Allen | Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[END_REF], H was computed as the difference between Rn and LE, and GPP was computed using a constant light use efficiency (𝐿𝑈𝐸) and constant light extinction coefficients (𝐾𝐷𝑖𝑓 and 𝐾𝐷𝑖𝑟) for both the coffee and the shade tree layers. The average values computed from MAESPA simulations were used to compute the constant 𝐿𝑈𝐸 and 𝐾𝑠 coefficients on this modeling experiment.

Description of the DynACof model

Introductory description

DynACof (which stands for Dynamic Agroforestry Coffee crop model), is a daily plot scale crop model [START_REF] Murthy | Crop growth modeling and its applications in agricultural meteorology[END_REF] with two layers of vegetation (shade trees and coffee plants) and three soil layers, aimed at simulating the growth and yield of coffee plantations under various shade tree species and management options, considering the spatial heterogeneity of the shade tree canopy. The coffee layer can be simulated either in monoculture or in agroforestry systems. Each layer is simulated sequentially at a daily time step. Variables with high intra-plot variability, i.e. light absorption, LUE, transpiration, plant sensible heat flux and soil net radiation are all computed using metamodels from MAESPA. The model accounts for potential competition for light acquisition and water availability between plant and soil layers. Nutrients are considered non-limiting in this first version, which is realistic for many field conditions in Costa Rica. Water competition is simulated virtually from the day-to-day fluctuations in water content in each shared soil layer that can be reduced by drainage and evapotranspiration, or increased by precipitation through throughfall. This simple formalism should be sufficient given the absence of water limitations in the application concerned [START_REF] Vezy | Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model[END_REF], but it can also reproduce the competition between plants under more constrained conditions.

Light interception and photosynthesis

The diffuse (𝐴𝑃𝐴𝑅𝐷𝑖𝑓 𝑖 , 𝑀𝐽 𝑚 -2 𝑑 -1 ) and direct (𝐴𝑃𝐴𝑅𝐷𝑖𝑟 𝑖 , 𝑀𝐽 𝑚 -2 𝑑 -1 ) daily absorbed photosynthetic active radiation of each plant layer are computed using the Beer-Lambert's law of light extinction:

𝐴𝑃𝐴𝑅𝐷𝑖𝑓 𝑖 = 𝑃𝐴𝑅𝐷𝑖𝑓 𝑖 • (1 -𝑒 -𝐾𝐷𝑖𝑓•𝐿𝐴𝐼 𝑖 ) (1) 
𝐴𝑃𝐴𝑅𝐷𝑖𝑟 𝑖 = 𝑃𝐴𝑅𝐷𝑖𝑟 𝑖 • (1 -𝑒 -𝐾𝐷𝑖𝑟•𝐿𝐴𝐼 𝑖 ) (2) 
with 𝑃𝐴𝑅𝐷𝑖𝑓 𝑖 and 𝑃𝐴𝑅𝐷𝑖𝑟 𝑖 the diffuse or direct daily photosynthetically active radiation ( 𝑀𝐽 𝑚 -2 𝑑 -1 ) reaching the layer on day 𝑖, 𝐾𝐷𝑖𝑓 and 𝐾𝐷𝑖𝑟 the light extinction coefficient of the layer for the diffuse and direct light respectively and 𝐿𝐴𝐼 the leaf area index (𝑚 𝑙𝑒𝑎𝑓 2 𝑚 𝑠𝑜𝑖𝑙 -2 ) of the layer. Both stand scale light extinction coefficients of the shade tree layer are computed using metamodels from MAESPA, while the extinction coefficients of coffee were approximated to be constant after MAESPA simulations (only a slight variability could not be explained using stand scale factors). 𝑃𝐴𝑅𝐷𝑖𝑓 and 𝑃𝐴𝑅𝐷𝑖𝑟 are computed as the incoming 𝑃𝐴𝑅 minus the 𝑃𝐴𝑅 absorbed by the upper layer if any, neglecting the 𝑃𝐴𝑅 reflected back by the canopy.

The gross primary productivity (𝐺𝑃𝑃, 𝑔 𝐶 𝑚 -2 𝑑 -1 ) of each layer is then computed from the sum of diffuse and direct 𝐴𝑃𝐴𝑅 multiplied by the light use efficiency (𝐿𝑈𝐸 , 𝑔 𝐶 𝑀𝐽 -1 ), which is derived from a MAESPA metamodel:

𝐺𝑃𝑃 𝑖 = (𝐴𝑃𝐴𝑅𝐷𝑖𝑓 𝑖 + 𝐴𝑃𝐴𝑅𝐷𝑖𝑟 𝑖 ) • 𝐿𝑈𝐸 𝑖 (3)

Carbon supply

A whole plant daily gross carbohydrate budget (GCB) is computed from the daily 𝐺𝑃𝑃, available reserves, and plant maintenance respiration as follows:

𝐺𝐶𝐵 𝑖 = 𝐺𝑃𝑃 𝑖 + 𝑘𝑟𝑒𝑠 • 𝐶𝑀 𝑅𝐸,𝑖-1 -𝑅𝑚 𝑖 (4) 
The carbon available from reserves for day 𝑖 is computed as a fraction (𝑘𝑟𝑒𝑠) of the carbon mass of the reserves from the previous day (𝐶𝑀 𝑅𝐸,𝑖-1 , 𝑔 𝐶 𝑚 -2 ). 𝑅𝑚 is the maintenance respiration (𝑔 𝐶 𝑚 -2 𝑑 -1 , see Eq.( 6)).

The plant daily carbon supply is then computed as:

𝑆𝑢𝑝𝑝𝑙𝑦 𝑖 = { 𝐺𝐶𝐵 𝑖 𝑖𝑓 𝐺𝐶𝐵 𝑖 > 0 0 𝑖𝑓 𝐺𝐶𝐵 𝑖 ≤ 0 } (5)
If 𝐺𝐶𝐵 𝑖 is negative, it means that the carbon available from 𝐺𝑃𝑃 and reserves was not sufficient to support the maintenance respiration, so 𝑆𝑢𝑝𝑝𝑙𝑦 𝑖 is equal to 0, and the missing carbon is considered as mortality imputed equally to all organs (see Eq. ( 23)).

Maintenance Respiration

The maintenance respiration requirement (𝑅𝑚) is computed as the sum of maintenance respiration of all plant organs [START_REF] Litton | Carbon allocation in forest ecosystems[END_REF]. The maintenance respiration of each organ (𝑅𝑚 𝑗 ) is computed using its carbon mass (𝐶𝑀, 𝑔 𝐶 𝑚 -2 ) from the previous day, following a Q10 formalism, as reported in [START_REF] Dufrêne | Modelling carbon and water cycles in a beech forest: Part I: Model description and uncertainty analysis on modelled NEE[END_REF]:

𝑅𝑚 𝑗,𝑖 = 𝑝𝑎 𝑗 • 𝐶𝑀 𝑗,𝑖-1 • 𝑁𝐶 𝑗 • 𝑀𝑅𝑁 • 𝑄 10 𝑗 𝑇 𝑗 -𝑇 𝑀𝑅 10 (6)
where 𝑗 is the organ, 𝑖 the day, 𝑝𝑎 𝑗 (0-1) the living fraction of the organ, 𝐶𝑀 𝑗,𝑖-1 (𝑔 𝐶 𝑚 -2 ) the carbon mass of the organ from the previous day, 𝑁𝐶 𝑗 (𝑔 𝑁 𝑔 𝐶 -1 ) the organ nitrogen content, 𝑀𝑅𝑁 (𝑔 𝐶 𝑔 𝑁 -1 𝑑 -1 ) the respiration rate per nitrogen unit, 𝑄 10 𝑗 (dimensionless) the response of organ respiration to temperature, 𝑇 𝑗 (°𝐶 ) the temperature of the organ and 𝑇 𝑀𝑅 (°𝐶) the base temperature for maintenance respiration. The leaf temperature of the plant layer (𝑇𝑐) that is computed in Eq. ( 44) is used as a proxy for 𝑇 𝑗 , except for the roots where the soil temperature (𝑇𝑠𝑜𝑖𝑙) is used instead.

Carbon allocation to organs

The allocation of carbohydrates to the organs is limited by either the 𝑆𝑢𝑝𝑝𝑙𝑦 𝑖 or by the organ demand for carbon. The 𝑆𝑢𝑝𝑝𝑙𝑦 𝑖 is distributed to the different organs following a hierarchical allocation scheme [START_REF] Lacointe | Carbon allocation among tree organs: A review of basic processes and representation in functionalstructural tree models[END_REF]. For coffee, [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF] reported that allocation to the woody compartments remained quite steady whatever the fruit load, so DynACof supplies this compartment with priority. In contrast, carbon allocation to fruits appeared to prevail over allocation to leaves [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF][START_REF] Gutierrez | Tritrophic analysis of the coffee (Coffea arabica) -coffee berry borer [Hypothenemus hampei (Ferrari)] -parasitoid system[END_REF], so DynACof supplies carbon assimilates to fruits just after woody compartments, and the remaining carbon is allocated to leaves and fine roots, and eventually reserves. The demand from the woody compartments is considered to always be proportional to the 𝑆𝑢𝑝𝑝𝑙𝑦 𝑖 , the demand from fine roots and leaves is considered constant, whereas the fruits demand is computed (see section 3.4.11). If the demand for assimilates by the fruits is sufficiently high, the carbon allocated to fruits potentially represents all the remaining global carbon 𝑆𝑢𝑝𝑝𝑙𝑦 𝑖 after allocation to the woody compartments, leaving nothing for the leaves and the fine roots.

In practice, the carbon 𝑆𝑢𝑝𝑝𝑙𝑦 𝑖 is first partitioned between shoot wood (𝐶𝐴 𝑠ℎ𝑜𝑜𝑡,𝑖 ) and stump and coarse roots wood (𝐶𝐴 𝑆𝐶𝑅,𝑖 ) using constant coefficients 𝜆 𝑠ℎ𝑜𝑜𝑡 and 𝜆 𝑆𝐶𝑅 :

𝐶𝐴 𝑠ℎ𝑜𝑜𝑡,𝑖 = 𝜆 𝑠ℎ𝑜𝑜𝑡 • 𝑆𝑢𝑝𝑝𝑙𝑦 𝑖 (7) 𝐶𝐴 𝑆𝐶𝑅,𝑖 = 𝜆 𝑆𝐶𝑅 • 𝑆𝑢𝑝𝑝𝑙𝑦 𝑖 (8) 𝜆 𝑠ℎ𝑜𝑜𝑡 + 𝜆 𝑆𝐶𝑅 < 1
Carbon allocation to the coffee fruits is computed as the minimum between the total fruit demand (see Eq. ( 38))

and the remaining carbon supply.

𝐶𝐴 𝑓𝑟𝑢𝑖𝑡,𝑖 = min (𝐷𝐸 𝑓𝑟𝑢𝑖𝑡,𝑖 ; 𝑆𝑢𝑝𝑝𝑙𝑦 𝑖 -𝐶𝐴 𝑠ℎ𝑜𝑜𝑡,𝑖 -𝐶𝐴 𝑆𝐶𝑅,𝑖 )

The remaining carbon supply, if any, is then shared between leaves and fine roots following a coefficient of allocation (𝜆𝑟 𝑗 ) for the remaining carbon:

𝑆𝑢𝑝𝑝𝑙𝑦 𝑙𝑒𝑎𝑓,𝑖 = 𝜆𝑟 𝑙𝑒𝑎𝑓 • (𝑆𝑢𝑝𝑝𝑙𝑦 𝑖 -𝐶𝐴 𝑠ℎ𝑜𝑜𝑡,𝑖 -𝐶𝐴 𝑆𝐶𝑅,𝑖 -𝐶𝐴 𝑓𝑟𝑢𝑖𝑡,𝑖 ) (10) 𝑆𝑢𝑝𝑝𝑙𝑦 𝐹𝑅𝑜𝑜𝑡,𝑖 = 𝜆𝑟 𝐹𝑅𝑜𝑜𝑡 • (𝑆𝑢𝑝𝑝𝑙𝑦 𝑖 -𝐶𝐴 𝑠ℎ𝑜𝑜𝑡,𝑖 -𝐶𝐴 𝑆𝐶𝑅,𝑖 -𝐶𝐴 𝑓𝑟𝑢𝑖𝑡,𝑖 ) (11) 
with

𝜆𝑟 𝑙𝑒𝑎𝑓 + 𝜆𝑟 𝐹𝑅𝑜𝑜𝑡 = 1 (12) 
And the allocation to both organs is the minimum between their respective supply and demand:

𝐶𝐴 𝑙𝑒𝑎𝑓,𝑖 = min (𝐷𝐸 𝑙𝑒𝑎𝑓,𝑖 , 𝑆𝑢𝑝𝑝𝑙𝑦 𝑙𝑒𝑎𝑓,𝑖 ) (13) 
𝐶𝐴 𝐹𝑅𝑜𝑜𝑡,𝑖 = min (𝐷𝐸 𝐹𝑅𝑜𝑜𝑡 , 𝑆𝑢𝑝𝑝𝑙𝑦 𝐹𝑅𝑜𝑜𝑡,𝑖 )

Demand by the fine roots is a constant parameter, but demand by the leaves depends on the plant 𝐿𝐴𝐼 compared to the maximum observed 𝐿𝐴𝐼:

𝐷𝐸 𝑙𝑒𝑎𝑓,𝑖 = 𝐷𝐸𝐿𝑀 • 𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔 𝑖 10,000 (15) 
where 𝐷𝐸𝐿𝑀 is the maximum leaf carbon demand (𝑔 𝐶 𝑝𝑙𝑎𝑛𝑡 -1 𝑑 -1 ) per coffee plant and 𝑆𝑡𝑜𝑐𝑘𝑖𝑛𝑔 𝑖 is the coffee planting density on day i (𝑝𝑙𝑎𝑛𝑡 ℎ𝑎 -1 ).

Finally, if both leaf and fine root carbon demands are satisfied, the remaining carbon is stored in the reserves for future use:

𝐶𝐴 𝑅𝐸,𝑖 = 𝑂𝑓𝑓𝑒𝑟 𝑖 -𝐶𝐴 𝑠ℎ𝑜𝑜𝑡,𝑖 -𝐶𝐴 𝑆𝐶𝑅,𝑖 -𝐶𝐴 𝑓𝑟𝑢𝑖𝑡,𝑖 -𝐶𝐴 𝑙𝑒𝑎𝑓,𝑖 -𝐶𝐴 𝐹𝑅𝑜𝑜𝑡,𝑖 (16) 

Growth respiration

Growth respiration is the energy cost in carbohydrates to make new biomass from 𝐶𝐴 on day 𝑖. It is computed using a construction cost coefficient (𝜀 𝑗 , 𝑔 𝐶 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑔 𝐶 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 -1

) applied to the carbon allocated to the organ 𝑗:

𝑅𝑔 𝑗,𝑖 = 𝐶𝐴 𝑗,𝑖 • 𝜀 𝑗 (17)

Net primary productivity

Maintenance respiration is already accounted for before any carbon allocation (see 3.4.3), therefore, the net primary productivity of each organ 𝑗 for day 𝑖 (𝑁𝑃𝑃 𝑗,𝑖 , 𝑔 𝐶 𝑚 -2 𝑑 -1 ) is computed using the difference between the carbon allocated to the organ and the growth respiration:

𝑁𝑃𝑃 𝑗,𝑖 = 𝐶𝐴 𝑗,𝑖 -𝑅𝑔 𝑗,𝑖 (18) 
𝑗 = {𝑠ℎ𝑜𝑜𝑡|𝑆𝐶𝑅|𝑓𝑟𝑢𝑖𝑡|𝑙𝑒𝑎𝑓|𝐹𝑅𝑜𝑜𝑡} (19) 
The net primary productivity of the plant is the sum on 𝑗 of the 𝑁𝑃𝑃 𝑗,𝑖 of the layer considered, and the total net primary productivity of the stand is the sum of all 𝑁𝑃𝑃 𝑗,𝑖 in all the layers.

Mortality

Mortality is the sum of the natural mortality (turnover rate, 𝑀𝑛𝑎𝑡), of pruning (𝑀𝑝𝑟𝑢𝑛), diseases and of the lack of carbon (𝑀𝐶) when the carbohydrate budget (𝐺𝐶𝐵 𝑖 ) is negative.

The natural mortality of an organ 𝑗 (𝑀𝑛𝑎𝑡 𝑗,𝑖 , 𝑔 𝐶 𝑚 -2 𝑑 -1 ) is proportional to its carbon mass from the previous day (𝐶𝑀 𝑗,𝑖-1 , 𝑔 𝐶 𝑚 -2 ), and is computed using a lifespan parameter (𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑗 , 𝑑):

𝑀𝑛𝑎𝑡 𝑗,𝑖 = 𝐶𝑀 𝑗,𝑖-1 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 𝑗 (20) 
The annual pruning of coffee plants affects the shoot wood and the leaves, and it is assumed that leaf loss is accompanied by fine root loss. Pruning also affects the branches of the shade trees. For the leaves and shoots, pruning is adjusted using a pruning intensity coefficient (𝑃𝐼) as follows. It is considered that two separate 𝑃𝐼s are needed for the leaves and the shoots because the distribution of wood and leaf biomass may be heterogeneous between resprouts of different ages in the coffee plant as reported in [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF].

𝑀𝑝𝑟𝑢𝑛 𝑗,𝑖 = 𝑃𝐼 𝑗 • 𝐶𝑀 𝑗,𝑖-1 (21) 
Mortality due to pruning of the fine roots is related to the mortality of pruned leaves using a constant parameter (𝑚 𝐹𝑅𝑜𝑜𝑡 ):

𝑀𝑝𝑟𝑢𝑛 𝐹𝑅𝑜𝑜𝑡,𝑖 = 𝑀𝑝𝑟𝑢𝑛 𝑙𝑒𝑎𝑓,𝑖 • 𝑚 𝐹𝑅𝑜𝑜𝑡 (22)
Leaf disease mortality is only implemented for coffee, using a module to compute the American Leaf Spot (ALS) according to [START_REF] Avelino | Topography and crop management are key factors for the development of American leaf spot epidemics on coffee in Costa Rica[END_REF].

Mortality due to lack of carbohydrates to meet the maintenance respiration requirements (𝑀𝐶 𝑖 ) is computed as:

𝑀𝐶 𝑗,𝑖 = { - 𝐺𝐶𝐵 𝑖 • 𝐶𝑀 𝑗,𝑖-1 𝐶𝑀 𝑡𝑜𝑡,𝑖-1 𝑖𝑓 𝐺𝐶𝐵 𝑖 < 0 0 𝑖𝑓 𝐺𝐶𝐵 𝑖 ≥ 0 } ( 23 
)
where 𝐶𝑀 𝑗,𝑖-1 is the carbon mass of the organ 𝑗 from the day before 𝑖 (see Eq. ( 24)) and 𝐶𝑀 𝑡𝑜𝑡,𝑖-1 is the total carbon mass of the leaves, shoots, fine roots stump and coarse roots of the previous day.

Finally, the total mortality of each organ 𝑀 𝑗,𝑖 is computed as the sum of all mortalities: natural, pruning, leaf disease (for coffee only) and lack of carbohydrates.

Carbon and dry mass of organs

The carbon mass of an organ is incremented daily by adding its 𝑁𝑃𝑃 𝑗,𝑖 and removing its mortality:

𝐶𝑀 𝑗,𝑖 = 𝐶𝑀 𝑗,𝑖-1 + 𝑁𝑃𝑃 𝑗,𝑖 -𝑀 𝑗,𝑖 (24) 
The organ dry mass is computed using the carbon mass and the carbon content of each organ (𝐶𝐶 𝑗 , 𝑔 𝐶 𝑔 𝐷𝑀 -1 ).

Branch nodes

The plagiotropic branches of a coffee plant present several nodes of decreasing age from the orthotropic branch to the tip:

-several unproductive old nodes, close to the orthotropic branch;

-productive nodes from the previous year that potentially bear flower buds, and then fruits;

-newly formed nodes that bear leaves.

The coffee reproductive phenology is based on a 2-year cycle [START_REF] Camargo | Definition and outline for the phenological phases of arabic coffee under brazilian tropical conditions[END_REF]. For a given year N, the new flush of nodes bearing new leaves will bear flower buds by the end of year N, while the leaves from year N-1 (born by the fruiting nodes N-1) are shed. Given that each new node bears two leaves, one expects some proportionality between node number and leaf area for the year N [START_REF] Gutierrez | Tritrophic analysis of the coffee (Coffea arabica) -coffee berry borer [Hypothenemus hampei (Ferrari)] -parasitoid system[END_REF]. Such proportionality is used here to upscale the equations of [START_REF] Rodríguez | A coffee agroecosystem model: I. Growth and development of the coffee plant[END_REF] from the branch to the whole plant. The model computes the total number of newly formed nodes (𝐺𝑁 𝑖 ) on the coffee plant for year N, i.e.

the number of green wood nodes that will potentially bear flower buds by the end of the first year of the reproductive cycle:

𝐺𝑁 𝑖 = 𝐿𝐴𝐼 𝑖 • 𝑅𝑁𝐿 • 𝐶𝑁 ( 25 
)
where 𝑅𝑁𝐿 is the number of nodes per 𝐿𝐴𝐼 unit at 20 °C, assuming that this parameter is dependent on the growth temperature. 𝐶𝑁 is an empirical temperature-dependant correction coefficient that is a function of the mean temperature during the vegetative growth period (𝑇 𝑔𝑝 , °𝐶). This relationship is derived from [START_REF] Drinnan | Temperature affects vegetative growth and flowering of coffee (Coffea arabica L.)[END_REF]:

𝐶𝑁 = 0.4194773 + 0.2631364 • 𝑇 𝑔𝑝 -0.0226364 • 𝑇 𝑔𝑝 2 + 0.0005455 • 𝑇 𝑔𝑝 3 (26)
Note that this coefficient is from one of the only datasets in the literature that links coffee reproductive and vegetative growth to the ambient temperature.

Fruit development

The reproduction module is mostly inspired by [START_REF] Rodríguez | A coffee agroecosystem model: I. Growth and development of the coffee plant[END_REF], but upscaled to the whole plant (e.g. in Eq. ( 25)). Two main development processes are computed in the model: the flower bud cohorts of year N, and the fruit cohorts of the following year. The bud itself has two stages of development, while the fruit has five.

Buds can be initiated only during the bud initialization period (BIP) from day 𝐷 𝐵𝐼𝑃1 to 𝐷 𝐵𝐼𝑃2 . The buds appear on branch nodes in daily cohorts every day within that time window. The 𝐷 𝐵𝐼𝑃1 date is computed from the cumulative sum of degree days (𝑆 𝑑𝑑𝑇𝑓𝑓𝑏 ) after the date of end of vegetative development (𝐷 𝑉𝐺2 ).

The degree days are computed as follows:

𝑑𝑑 𝑖 = { 𝑇𝑐𝑎𝑛 𝑖 -𝑇 𝑚𝑖𝑛 𝑖𝑓 𝑇𝑐𝑎𝑛 𝑖 > 𝑇𝑚𝑖𝑛 0 𝑖𝑓 𝑇𝑐𝑎𝑛 𝑖 ≤ 𝑇𝑚𝑖𝑛 } (27)
where 𝑑𝑑 𝑖 are the degree days (°C) of day 𝑖, 𝑇𝑐𝑎𝑛 𝑖 the mean daily coffee canopy temperature, 𝑇𝑚𝑖𝑛 the minimum (i.e. base temperature) and 𝑇𝑚𝑎𝑥 the maximum temperature for physiological activity. One originality here is that the degree days are computed using the canopy temperature of each layer rather than measured air temperature because the microclimate close to the plant may differ depending on the local conditions (e.g. the cooling effect of shade trees).

𝐷 𝐵𝐼𝑃1 is computed as:

{ 𝑆 𝑑𝑑𝑇𝑓𝑓𝑏 = ∑ 𝑑𝑑 𝑖 𝐷 𝑖=𝐷 𝑉𝐺2 𝑖𝑓 𝑆 𝑑𝑑𝑇𝑓𝑓𝑏 < 𝐹 𝑇𝑓𝑓𝑏 𝐷 𝐵𝐼𝑃1 = 𝐷 𝑖𝑓 𝑆 𝑑𝑑𝑇𝑓𝑓𝑏 = 𝐹 𝑇𝑓𝑓𝑏 (28)
where 𝐹 𝑇𝑓𝑓𝑏 is the threshold value in degree days that triggers the start of the bud development window. It is considered that bud cohorts stop initializing when the first bud cohort initiated on the plant enters the fruit stage.

In other words, buds can be initiated every day as cohorts until the first fruit appears on the coffee plant. This day is denoted 𝐷 𝐵𝐼𝑃2 .

The number of buds initiated daily on a given cohort (𝐵𝑢𝑑𝑆1) from 𝐷 𝐵𝐼𝑃1 to 𝐷 𝐵𝐼𝑃2 depends on several factors: the incoming radiation (𝑅𝐴𝐷, 𝑀𝐽 𝑚 -2 𝑑 -1 ), the canopy degree day computed following Eq. ( 27) and the number of green nodes to support the buds (𝐺𝑁 𝑖 ). This computation follows Eq. ( 12) from Rodríguez et al.

(2011), here adapted to the whole plant:

𝐵𝑢𝑑𝑆1 𝑖 = (𝑎 𝑏𝑢𝑑 -𝑏 𝑏𝑢𝑑 • 𝑅𝐴𝐷 𝑖 ) • 𝐺𝑁 𝑖 • 𝑑𝑑 𝑖 (29)
where 𝑎 𝑏𝑢𝑑 and 𝑏 𝑏𝑢𝑑 are parameters.

Each bud initiated on day 𝑖 is considered to belong to the bud cohort of day 𝑖. There are as many cohorts as days between 𝐷 𝐵𝐼𝑃1 and 𝐷 𝐵𝐼𝑃2 .

Once initiated, bud cohorts develop for 𝐹 𝑏𝑢𝑑 𝑆1 degree days until they become dormant on day 𝐷 𝑏𝑢𝑑 𝑆1 :

{ 𝑆 𝑑𝑑𝑏𝑆1 = ∑ 𝑑𝑑 𝑖 𝐷 𝑖=𝑖𝑛𝑖𝑡 𝑖𝑓 𝑆 𝑑𝑑𝑏𝑆1 < 𝐹 𝑏𝑢𝑑 𝑆1 𝐷 𝑏𝑢𝑑 𝑆1 = 𝐷 𝑖𝑓 𝑆 𝑑𝑑𝑏𝑆1 = 𝐹 𝑏𝑢𝑑 𝑆1 ( 30 
)
where 𝑖𝑛𝑖𝑡 is the day of initialization of the cohort.

To potentially break dormancy, the bud cohort has to experience a minimum amount of cumulated rainfall (𝐹 𝑟𝑎𝑖𝑛 ) after 𝐷 𝑏𝑢𝑑 𝑆1 :

{ 𝑆 𝑟𝑎𝑖𝑛 = ∑ 𝑟𝑎𝑖𝑛 𝑖 𝐷 𝑖=𝐷 𝑏𝑢𝑑 𝑆1 𝑖𝑓 𝑆 𝑟𝑎𝑖𝑛 < 𝐹 𝑟𝑎𝑖𝑛 𝐷 𝑟𝑎𝑖𝑛 = 𝐷 𝑖𝑓 𝑆 𝑟𝑎𝑖𝑛 = 𝐹 𝑟𝑎𝑖𝑛 (31)
However, the bud cohort can cumulate a maximum of 𝐹 𝑏𝑢𝑑 𝑆2 degree days during its lifetime. If it does not break its dormancy before the day when this threshold is reached (𝐷 𝑏𝑢𝑑 𝑆2 ), it is considered desiccated. 𝐷 𝑏𝑢𝑑 𝑆2 is computed as:

{ 𝑆 𝑑𝑑𝑏𝑆2 = ∑ 𝑑𝑑 𝑖 𝐷 𝑖=𝐷 𝑏𝑢𝑑 𝑆1 𝑖𝑓 𝑆 𝑑𝑑𝑏𝑆2 < 𝐹 𝑏𝑢𝑑 𝑆2 𝐷 𝑏𝑢𝑑 𝑆2 = 𝐷 𝑖𝑓 𝑆 𝑑𝑑𝑏𝑆2 = 𝐹 𝑏𝑢𝑑 𝑆2 (32) 
The time window when buds from a cohort can potentially break their dormancy (𝑊 𝑓𝑟𝑢𝑖𝑡 𝑆1 ) is then found by solving Eq. ( 31) and Eq. ( 32):

𝑊 𝑓𝑟𝑢𝑖𝑡 𝑆1 = [𝐷 𝑟𝑎𝑖𝑛 ; 𝐷 𝑏𝑢𝑑 𝑆2 ] 𝑖𝑓 𝑆 𝑟𝑎𝑖𝑛 = 𝐹 𝑟𝑎𝑖𝑛 𝑎𝑛𝑑 𝐷 𝑟𝑎𝑖𝑛 < 𝐷 𝑏𝑢𝑑 𝑆2 (33) 
The time window is shared by all the buds in the same cohort, but all the buds will not necessarily break their dormancy on the same day. The number of buds in a given cohort that break their dormancy on a given day within 𝑊 𝑓𝑟𝑢𝑖𝑡 𝑆1 depends on the combination of two factors: the mean diurnal air temperature within the coffee canopy during bud growth (𝐶𝐵, °𝐶) and the leaf water potential (𝛹 𝑙𝑒𝑎𝑓 , 𝑀𝑃𝑎) of the coffee plant. These conditions reflect the need for a drier period followed by an intense rainfall event for optimal dormancy break [START_REF] Rodríguez | A coffee agroecosystem model: I. Growth and development of the coffee plant[END_REF]. The number of buds breaking dormancy (𝐵𝑢𝑑𝑏𝑟𝑒𝑎𝑘) on a given day is computed as:

𝐵𝑢𝑑𝑏𝑟𝑒𝑎𝑘 𝑖 = 𝐵𝑢𝑑𝑆2 𝑖 • 𝑃𝑏𝑟𝑒𝑎𝑘 𝑖 • 𝐶𝐵 (34)
where 𝐵𝑢𝑑𝑆2 𝑖 is the number of stage 2 buds in the cohort that have not yet broken dormancy, 𝐶𝐵 is a temperature-dependant correction coefficient, and 𝑃𝑏𝑟𝑒𝑎𝑘 𝑖 is the rate at which they break dormancy, which is related to the leaf water potential (𝛹 𝑙𝑒𝑎𝑓 , 𝑀𝑃𝑎) using two parameters (𝑎 𝑝 and 𝑏 𝑝 ) as follows:

𝑃𝑏𝑟𝑒𝑎𝑘 𝑖 = 1 1 + 𝑒 𝑎 𝑝 +𝑏 𝑝 •𝛹 𝑙𝑒𝑎𝑓,𝑖 (35) 
𝐶𝐵 is implemented to include the effect of the average canopy temperature on the number of buds initiated during growth of the coffee plant. It is computed from a monotone Hermite spline [START_REF] Fritsch | Monotone Piecewise Cubic Interpolation[END_REF] fitted on the rather unique [START_REF] Drinnan | Temperature affects vegetative growth and flowering of coffee (Coffea arabica L.)[END_REF] dataset relating temperature and blossoming. More details are available on the help page of the eponym function of the R package of DynACof (https://vezy.github.io/DynACof/reference/CB.html).

When buds do break dormancy, they enter the fruit stage by forming a flower (stage 1 fruit). Then, the fruits develop and finally become mature (stage 4) then overripe (stage 5), when they fall onto the ground. Each bud breaking dormancy on day 𝑖 forms a new cohort of fruits, meaning that fruits forming a fruit cohort can originate from several different bud cohorts. The stage 1 fruits of the cohort then enter the carbon allocation scheme to undergo the successive stages of maturation. Under optimal conditions, the carbon mass of the fruit increases following a logistic growth over the growing period until it becomes overripe. This logistic growth during physiological development can be modeled as:

𝐿 = (1 + 𝑒 𝐹 𝑑𝑑 𝑖𝑛𝑓 -𝑆 𝑑𝑑𝑓𝑟𝑢𝑖𝑡 𝑠 ) -1 (36) 
where 𝐹 𝑑𝑑 𝑖𝑛𝑓 is the inflexion value of the logistic growth (in degree days), 𝑠 is the steepness of the logistic growth, and 𝑆 𝑑𝑑𝑓𝑟𝑢𝑖𝑡 is the number of degree days accumulated by the fruit since its flowering date.

The carbon demand of a cohort 𝑐 on day 𝑖 is computed as the sum of the carbon mass incremented by all fruits in the cohort under optimal conditions. It is computed using the derivative of the Eq. ( 36) as follows:

𝐷𝐸 𝑐 = { 𝐹𝑟𝑢𝑖𝑡𝑆1 • 𝐷𝐸 𝑜𝑝𝑡 • 𝐿 ′ 𝑖𝑓 𝑆 𝑑𝑑𝑓𝑟𝑢𝑖𝑡 < 𝐹 𝑜𝑣𝑒𝑟 0 𝑖𝑓 𝑆 𝑑𝑑𝑓𝑟𝑢𝑖𝑡 ≥ 𝐹 𝑜𝑣𝑒𝑟 } ( 37 
)
where 𝐹𝑟𝑢𝑖𝑡𝑆1 is the number of fruits in the cohort, 𝐷𝐸 𝑜𝑝𝑡 is the total carbon demand of a coffee fruit thoughout its development under optimal conditions including growth respiration, and 𝐹 𝑜𝑣𝑒𝑟 (degree days) the physiological age for fruits to become overripe and no longer require carbohydrates because they fall to the ground. Thereby, the total plant scale fruit carbon demand is computed as the sum of the demand of all the cohorts growing on the coffee plant:

𝐷𝐸 𝑓𝑟𝑢𝑖𝑡,𝑖 = ∑ 𝐷𝐸 𝑛 𝑐=1 𝑐,𝑖 (38) 
The fruit demand for carbon can be considered as a genetic growth potential, with optimal fruit growth when there are no limitations to the supply. It is a sink strength that depends on the number of fruits and the degree days and is independent of the carbon supply. Consequently, the allocation of carbon to fruits is constrained either by fruit demand or by the carbon supply as in Eq. ( 9). The fruit mass is then computed as in Eq. ( 24). The fruits that become overripe (i.e. are not harvested) are removed from the coffee plant and considered as a mortality.

Coffee bean quality is also computed using the fruit sucrose content of each fruit cohort (𝑐) based on the number of days after flowering, following the model of [START_REF] Pezzopane | Agrometeorological parameters for prediction of the maturation period of Arabica coffee cultivars[END_REF]:

𝑆𝑀 𝑖 = ∑ 𝐶𝑀 𝑐,𝑖 𝐶𝐶 𝑓𝑟𝑢𝑖𝑡 • (𝑆 𝑦0 + 𝑆 𝑎 • 100 1 + ( 𝑖 𝑆 𝑥0 ) 𝑆 𝑏 ) 𝑛 𝑐=1 (39) 
𝑆𝑀𝑂𝑝𝑡 𝑖 = ∑ 𝐶𝑀 𝑐,𝑖 𝐶𝐶 𝑓𝑟𝑢𝑖𝑡 • (𝑆 𝑦0 + 𝑆 𝑎 • 100) 𝑛 𝑐=1 (40) 
𝑀𝑎𝑡 𝑖 = 𝑆𝑀 𝑖 𝑆𝑀𝑂𝑝𝑡 𝑖 (41)
where 𝑆𝑀 𝑖 is the sucrose mass of all the cohorts 𝑐 on day 𝑖, and 𝑆𝑀𝑂𝑝𝑡 𝑖 is the optimal sucrose mass of the coffee bean, i.e. the sucrose mass of the bean if it was fully mature. 𝐶𝑀 𝑐,𝑖 is the carbon mass of the c th cohort on day i, 𝐶𝐶 𝑓𝑟𝑢𝑖𝑡 is the carbon content of the fruit, 𝑆 𝑦0 is the sucrose content at the beginning of the fruit development, 𝑆 𝑥0 is the day at which the maturation is at the inflexion point, and 𝑆 𝑎 and 𝑆 𝑏 are two maturation parameters. Harvest maturity is then simply the global fruit maturity on the day of harvest.

Harvesting takes place once each growing season, it is triggered on the date when total cumulated fruit mortality has been higher than fruit growth for more than ten days. This simple method ensures that harvesting occurs when the fruit stock is at its maximum to optimize yield.

Shade tree allometry

In addition to the common allocation scheme, each shade tree species has its own set of allometric relationships.

Any kind of allometry can be implemented and can then be used as input for the metamodels, or as an informative model output. In this study, allometric relationships were used to compute the tree crown radius and height from the tree branch dry mass and the tree density. The crown radius and height were then used to compute the LAD (leaf area density, 𝑚 𝑙𝑒𝑎𝑣𝑒𝑠 2 𝑚 𝑐𝑟𝑜𝑤𝑛 -3

) which is an input for the metamodels for the light extinction coefficients. Shade tree height is mandatory to compute the aerodynamic conductance and was computed in this study using an allometric relationships with the tree stem dry mass. The tree diameter at breast height was also computed from stem dry mass.

Temperature

The temperature of the foliage and the air inside the canopy is computed using the formalism proposed by Van de Griend and Van Boxel (1989) using the diffusivities for momentum transport and potential energy flow inside and in-between the inertial sublayer, the roughness sublayer, the air space of each canopy layers, the foliage and the soil. The temperature of the air inside the canopy is computed as:

𝑇𝑎𝑖𝑟𝐶𝑎𝑛 𝑖,𝑙 = 𝑇𝑎𝑖𝑟 𝑖 + 𝐻 𝑖,𝑙 𝜌 𝑖 • 𝐶𝑝 • 𝑔𝑏𝑢𝑙𝑘 𝑖 (42)
with 𝑖 the day, 𝑙 the canopy layer, 𝑇𝑎𝑖𝑟 the air temperature measured above the canopy, 𝐻 the sensible heat flux (𝑀𝐽 𝑚 -2 𝑑 -1 ), 𝜌 the air density (𝑘𝑔 𝑚 -3 ), 𝐶𝑝 the specific heat of air for constant pressure (𝑀𝐽 𝐾 -1 𝑘𝑔 -1 ) and 𝑔𝑏𝑢𝑙𝑘 the aerodynamic conductance for heat above the canopy (𝑚 𝑠 -1 ). If the coffee plants are grown in monoculture, Eq. ( 42) is applied directly to the coffee layer. If they are grown under shade trees, Eq. ( 42) is used for the shade tree, and the air temperature inside the coffee canopy is computed as follows:

𝑇𝑎𝑖𝑟𝐶𝑎𝑛 𝑖,𝑐𝑜𝑓 = 𝑇𝑎𝑖𝑟𝐶𝑎𝑛 𝑖,𝑡𝑟𝑒𝑒 + 𝐻 𝑖,𝑐𝑜𝑓 𝜌 𝑖 • 𝐶𝑝 • 𝑔𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦 𝑖 (43) 
with 𝑇𝑎𝑖𝑟𝐶𝑎𝑛 𝑖,𝑡𝑟𝑒𝑒 the temperature of the air inside the shade tree canopy computed using Eq. ( 42), and 𝑔 𝑖𝑛𝑡𝑒𝑟𝑙𝑎𝑦 the aerodynamic conductance at the interface between both canopy layers (𝑚 𝑠 -1 ).

The leaf temperature (𝑇𝑐𝑎𝑛) of each layer is then computed as:

𝑇𝑐𝑎𝑛 𝑖,𝑙 = 𝑇𝑎𝑖𝑟𝐶𝑎𝑛 𝑖,𝑙 + 𝐻 𝑖,𝑙 𝜌 𝑖 • 𝐶𝑝 • 𝑔𝑏ℎ 𝑖 (44) 
with 𝑇𝑎𝑖𝑟𝐶𝑎𝑛 the air temperature inside the given canopy layer, and 𝑔𝑏ℎ the leaf boundary layer conductance for heat (𝑚 𝑠 -1 ).

The temperature at the soil surface is similarly computed as:

𝑇𝑠𝑜𝑖𝑙 𝑖 = 𝑇𝑎𝑖𝑟𝐶𝑎𝑛 𝑖,𝑐𝑜𝑓 + 𝐻 𝑖,𝑠𝑜𝑖𝑙 𝜌 𝑖 • 𝐶𝑝 • 𝑔𝑠𝑜𝑖𝑙𝑐𝑎𝑛 (45)
with 𝑔𝑠𝑜𝑖𝑙𝑐𝑎𝑛 the canopy to soil aerodynamic conductance (𝑚 𝑠 -1 ).

Soil, water, and energy

The soil water balance module was inspired by the BILJOU model [START_REF] Granier | A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands[END_REF], which has already been parameterized for this coffee agroforestry system [START_REF] Gómez-Delgado | Modelling the hydrological behaviour of a coffee agroforestry basin in Costa Rica[END_REF] and is given in Appendix A. It has three layers, 0 to 1.25 m, 1.25 to 1.75 m and 1.75 to 3.75 m, respectively, to cover the whole root profile of the coffee plants [START_REF] Defrenet | Root biomass, turnover and net primary productivity of a coffee agroforestry system in Costa Rica: effects of soil depth, shade trees, distance to row and coffee age[END_REF].

The net radiation of the soil was computed using a MAESPA metamodel, and the partitioning between latent and sensible fluxes was parameterized using the average partitioning from the outputs of the MAESPA simulations [START_REF] Vezy | Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model[END_REF]. The shade tree and coffee transpiration (𝑇𝑟) and sensible heat (𝐻) were simulated using MAESPA metamodels. The net radiation of the shade tree and the coffee layers was computed as the sum of the latent (𝐿𝐸) and the sensible (𝐻) heat fluxes of each layer. The stand net radiation (𝑅𝑛) was then computed by summing the net radiation of the shade tree, the coffee and the soil.

Inputs and outputs

All parameters needed for a DynACof simulation are stored in specific input files for the shade tree, the coffee, the soil, the site and the meteorology. A set of example data is included into the package so any user can start a simulation without any data. This set of example file is also archived as a git repository on github.com The model has 245 output variables, mainly for energy balance, water balance, carbon assimilation and allocation, respiration, plant growth, yield and mortality for each organ type. The full list is available from the documentation (https://vezy.github.io/DynACof/reference/DynACof.html).

Model parameterization using a multi-objective approach

The MAESPA model was parameterized according to [START_REF] Vezy | Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model[END_REF] and was run on a 0.2 ha sub-plot of 4176 coffee resprouts (3 resprouts per coffee plant in average) and 14 shade trees at a half-hourly time-step throughout the year 2011. The shade trees are not planted along a regular planting pattern and they present large crowns, increasing the heterogeneity of the light distribution in the plot. The simulated sub-plot was reduced to the minimum area possible to decrease computation time, while encompassing coffee plants that are always in full sun or only partly under shade in the morning or during the afternoon.

Metamodels were then built from daily plot scale aggregations of MAESPA outputs and integrated in DynACof (Figure 1). The metamodels were built using linear regressions with MAESPA input variables as predictors.

The MAESPA dataset created from the simulations of the year 2011 was taken as a representative sample of most of the conditions of the growing cycle, with yearly climate variations, a highly variable shade tree LAI due to almost total leaf fall, and highly variable coffee plant structure, with resprouts ranging from 0 to 5 years old.

DynACof was run from January 1979 to the end of December 2016 at a daily time step. The climate inputs to the model came from the Coffee-Flux project between 2009 and 2016, and were computed between 1979 and 2008 using the method and data described in [START_REF] Hidalgo | Observed (1970-1999) climate variability in Central America using a high-resolution meteorological dataset with implication to climate change studies[END_REF]. The values and sources of the parameters used in DynACof are listed in Table 1 for climate and coffee, in Table 2 for the shade tree species, and in Table 3 for the soil. Given the large number of parameters and the scarce data on coffee and shade trees, some parameters were not measured in this study and were not found in the literature either, for example, the coffee carbon allocation coefficients (λ). Because allocation coefficients have multiple repercussions on other variables, notably on respiration through organ mass and on light interception through LAI, a multi-objective parameterization was needed. As computation time was a limiting factor, a manual multi-objective parameter tuning was preferred to algorithmic optimization. The values of the parameters were found by starting from expert a priori, and tuned manually to minimize the simulation error for NPP and biomass for each compartment using the first year of measurements reported in [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF] at a stand age of 33 year after planting, always keeping the values within a plausible range. In any case, the outputs of the model were evaluated on the second year of measurements, which was not used for model parameterization. (2) Parameters computed from another source (e.g. MRN from [START_REF] Ryan | Effects of climate change on plant respiration[END_REF] transformed to a daily time scale) (3) Parameters tuned starting from source value to make the model outputs match the first year of measurements from [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF]. Expert a priori is used as start value when no value was found in the literature. (2) Parameters computed from another source (3) Parameters set using an expert value (e.g. values from other species) or tuned starting from a source value to make the model outputs match the first year of measurements from [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF]. 

Results

Metamodels

The metamodels for shade tree 𝐾𝐷𝑖𝑓 and 𝐾𝐷𝑖𝑟 are presented in Table 4, and were computed using the shade tree 𝐿𝐴𝐷 (𝐿𝐴𝐷 𝑇𝑟𝑒𝑒 , 𝑚 2 𝑚 -3 ) as the sole predictor. The metamodel for 𝐿𝑈𝐸 (𝑔 𝐶 𝑀𝐽 -1 ) was made using climate inputs because it was found to depend more on the environment than on the plant structure. The other metamodels for plant transpiration (𝑇𝑟, 𝑚𝑚), sensible heat fluxes (𝐻, 𝑀𝐽 𝑚 -2 ) and soil net radiation are also presented in Table 4. Their performance was also assessed using four different statistics which showed that, despite being simple models, the metamodel predictions were in agreement with the validation sub-sample of the outputs of MAESPA in the simulated year 2011 (Table 4). Indeed, all metamodels gave high R 2 on the data on which they were trained, and high modelling efficiency, rather low nRMSE and low bias when applied to new data, except for 𝐾𝐷𝑖𝑟, which failed to capture the high day-to-day variability but still followed the overall trend. Although 𝐻 𝑇𝑟𝑒𝑒 did present satisfactory statistics overall, its nRMSE was high mainly due to the low (and sometimes negative) sensible fluxes of the shade tree which yielded a low average value.

GPP and energy fluxes

The modeled GPP, water and energy balance from DynACof were compared to the whole period of measurements using data gathered during the long-term Coffee-Flux eddy-covariance monitoring.

Overall, the model outputs for these variables computed in 2011 through metamodels were close to those computed directly from MAESPA (nRMSE: GPP = 15.4, Rn= 7.2, ETR= 23.9). Indeed, plant transpiration, plant sensible heat fluxes and soil net radiation were computed using MAESPA metamodels, and the parameter for soil energy partitioning into sensible and latent heat (i.e. soil evaporation) was also determined using the average value from the MAESPA simulations.

The simulated net radiation was close to measured values, with relatively high modeling efficiency (0.88) (Figure 2, Rn) and a low bias of 0.24 MJ m -2 d -1 that was reflected in the cumulated energy in Figure 3 The simulated sensible heat fluxes were in agreement with measured fluxes, except for a quasi-systematic bias of 1.48 MJ m -2 d -1 (Figure 2,H). The simulated GPP was close to the observed GPP in general (Figure 2, GPP), with a low positive bias of 0.38 gC m -2 d -1 and an nRMSE of 26.27. However, modelling efficiency remained low (0.14), mainly due to the high dispersion of the residuals, especially for high GPP values. Yet, when considering cumulated values of GPP over the whole period, the simulated GPP remained within the range of the measurement error (Figure 3.c). We also stress here that GPP remains a data-model product, derived from net ecosystem carbon flux measurements, but subject to several partitioning and modeling assumptions.

Overall, DynACof predictions of GPP and energy fluxes were in agreement with their respective measurements over the whole period (Figure 2 and Figure 3), confirming that the model performs reasonably well beyond the data on which the metamodels were calibrated (i.e. data from 2011). DynACof outputs were also compared to standard equations [START_REF] Allen | Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[END_REF][START_REF] Landsberg | Applying 3-PG, a simple processbased model designed to produce practical results, to data from loblolly pine experiments[END_REF] that are widely used for crops or plantations with more homogeneous canopies (i.e. constant LUE and Ks parameters for GPP, Rn computed using an average albedo, LE computed using the Penman-Monteith equation). As expected, the error was higher when the net radiation, the sensible and latent heat flux and the GPP were simulated using this approach compared to a simulation using metamodels from MAESPA (Table 5 andFigure C.1). Hence, the choice of metamodels in DynACof was justified. 

Growth and yield

Overall, the multi-objective calibration of DynACof yielded realistic results for most compartments that were documented by field measurements. The modelled coffee carbon allocation by organs showed that plant reserves represented the compartment with by far the highest carbon flow, capturing on average 40.4% of the yearly plant carbon supply during the five last years of the simulation, with a daily maximum allocation of 63.1% and a minimum of 0% during fruit production (Table 6). This compartment also had a high turnover rate because reserves were re-distributed back to the carbon supply pool, making it an effective carbon buffer for the coffee plant from one season to another.

Leaves and branches were the organs with the highest NPP, representing 21.5% and 11.9% of the total yearly NPP respectively, during the last five years of the simulation. Fine roots represented 9.4%, stump and coarse roots 7.3%, and fruits 9.5% of total NPP. The high productivity of the branches was related to their high carbon demand that was often met by the supply, as well as for the stump and coarse roots. The simulated NPP was reasonably consistent with measurements for coffee (Table 5). For the shade trees, no direct measurements of the whole rooting system was available, therefore the comparison is not proposed here. Nevertheless, when cumulated into biomass, the results for both species were realistic (Figure 4, Figure 5). 

Discussion

Metamodels

Simulating complex processes in crop models using metamodels is a promising way to reduce computation intensity and avoid numerous equations that are often an important part of the development and application effort. Another advantage is that physiological data (e.g. photosynthetic parameters) are often sampled at a fine scale but can be used to parameterize a precise model (in this case, MAESPA) at a sub-hourly time step, and then be upscaled to field scale and to daily scale. In the present study, metamodels helped DynACof consider fine-scale processes explicitly such as spatial anisotropy instead of only using a parameter (e.g. a percentage of canopy cover), which significantly improved the model simulations. Replacing some metamodels by simple standard plot-scale models leads to a dramatic increase in simulation errors, as shown in the present study (Table 5), evidence that our metamodeling approach was appropriate.

The quality of the predictions of a metamodel relies first upon the ability of the original model to correctly simulate the processes involved in the system, and secondly on the ability of the metamodel to reproduce the outputs of the original model. The first point was investigated in a previous work [START_REF] Vezy | Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model[END_REF] where MAESPA successfully simulated the energy balance and the evapotranspiration in the same experimental plot.

The second point was addressed by choosing metamodels according to the best possible balance between the model complexity, the number of explanatory variables, and out-of-sample prediction quality. [START_REF] Marie | Extending the use of ecological models without sacrificing details: a generic and parsimonious meta-modelling approach[END_REF] found that despite being slower to compute, neural networks and multi-linear regressions with two or three level of interactions yielded higher R 2 than multi-linear regressions with no interactions, like those used in our study. However, four out of ten metamodels in our study gave R 2 higher than 0.90 with low nRMSE, which is considered highly accurate, three gave R 2 higher than 0.80, which is considered accurate [START_REF] Villa-Vialaneix | A comparison of eight metamodeling techniques for the simulation of N2O fluxes and N leaching from corn crops[END_REF], and only one metamodel could be considered not sufficiently accurate with a R 2 of 0.65.

For example, the LAD was used alone to predict the light extinction coefficient of the shade tree layer which was then used to compute its light absorption from its LAI. The diffuse extinction coefficient was predicted with high accuracy with an EF and a R 2 both equal to 0.95. The LAD is a useful proxy for within crown foliage aggregation, which was determined -along with the LAI -as the most important characteristic to model light penetration by [START_REF] Sampson | Influence of canopy architecture on light penetration in lodgepole pine (Pinus contorta var. latifolia) forests[END_REF]. However, other structural variables from the shade trees can be used as predictors to improve the metamodel accuracy. This was not the case in our study because shade trees structural data were measured only once for the year 2011, so only one value was given as input to MAESPA.

The metamodels for 𝐿𝑈𝐸 yielded R 2 and nRMSE similar to those found in [START_REF] Christina | Sensitivity and uncertainty analysis of the carbon and water fluxes at the tree scale in Eucalyptus plantations using a metamodeling approach[END_REF]: R 2 of 0.87 compared to 0.87 and 0.94 for shade tree and coffee respectively in our study, and an RMSE of 0.20 gC MJ -1 compared to 0.24 and 0.10 (shade tree and coffee resp.) in our study. Yet, despite being generally effective at reproducing a complex model output, applying metamodels to new conditions requires caution, as they can produce unexpected results outside their training values, especially if they use non-linear equations or when there is covariance between predictors. This was of particular concern in the present study because metamodels were fitted using a one year-long simulation of MAESPA only (2011). To overcome these problems, the 2011 data was checked to present a broad range of values for the target variables. Some conditions were still not met in the training sample, such as the period before the year 2000, when shade trees were pruned twice a year while the metamodels were trained on the system with free-growing trees. Yet, the 2011 training period included some days with very low E. poeppigiana LAI (i.e. 0.04 m 2 m -2 ) because E. poeppigiana loses all its leaves once a year, which helped the metamodel simulate a plausible range of transmittance values under low LAI pruning conditions.

Likewise, the cumulated evapotranspiration and energy balance were satisfactorily predicted compared to measurements, even outside their training period, although both computations depended to a great extent upon metamodels. The metamodel for the coffee LUE predicted an increase in values with a reduction in incoming radiation on the plant layer, which is in agreement with previous results reported in [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF].

As a result, DynACof simulations of Rn, GPP and AET were close to those produced by MAESPA reported in [START_REF] Vezy | Measuring and modelling energy partitioning in canopies of varying complexity using MAESPA model[END_REF], and more importantly, close to the eddy-covariance measurements from the long term Coffee-Flux monitoring from 2009 to the end of 2016 (Figure 2 and Figure 3). The agreement between simulated and measured values was particularly strong when cumulative fluxes were compared, which confirmed the high degree of consistency throughout the measurement period, mostly due to a low bias from the metamodels.

Hence, metamodels proved to be powerful tools to overcome the long-term trade-off between speed, accuracy, genericity and fast development of growth and yield models able to simulate whole crop rotations.

Growth and yield model outputs from DynACof

The evaluation of a crop model is often challenging due to the lack of data for parameterization and validation, yet our model was subjected to multi-objective evaluation using numerous observations from the same experimental field or from the literature. Nevertheless, it should be noted that the model was mostly parameterized using values in the literature, and better results would be expected using measurements or an optimization algorithm [START_REF] Van Oijen | Bayesian calibration of process-based forest models: bridging the gap between models and data[END_REF]. However, the model satisfactorily predicted most processes at plot scale with little or no discrepancy. The total autotrophic respiration represented 55% of the GPP, which is close to the 57% reported by [START_REF] Litton | Carbon allocation in forest ecosystems[END_REF] in a review of results from a wide range of forest ecosystems.

The simulated LAI for coffee was in agreement with the measured LAI, and the mean simulated leaf dry mass from 2011 (= 132.2 𝑔 𝐶 𝑚 -2 ) was in agreement with the measured values reported in [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF], [START_REF] Taugourdeau | Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry[END_REF] and [START_REF] Siles | Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica[END_REF], with values of 140.5, 143.7 and ranging from 102 to 176 𝑔 𝐶 𝑚 -2 respectively. The seasonal behavior of leaf biomass revealed a drop at the end of the "drier" season corresponding to natural leaf shedding followed by pruning, then a rapid increase at the beginning of the rainy season with a secondary minimum when fruit dry mass was high. Interestingly, the simulations well mimicked the seasonal observations reported by [START_REF] Taugourdeau | Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry[END_REF], and the simulation was close to measured values. The seasonality of the LAI was represented using two main drivers: pruning the leaves once a year, and the introduction of fruit cohorts. The first is a forced process, but the second is the result of successive computations that allows a smooth distribution of the demand for carbon required for grain filling during the period of reproductive development, depending on the developmental stage of each cohort. However, to date, the interannual variability in leaf area is barely perceivable in the simulations compared to the field conditions.

We assume that some processes driving this variability still need to be incorporated in the model, for example, a dynamic leaf life span using cohorts of leaves, more leaf diseases or nitrogen effects. Indeed, American leaf spot (ALS) was already included in the model following [START_REF] Avelino | Topography and crop management are key factors for the development of American leaf spot epidemics on coffee in Costa Rica[END_REF], but coffee leaf rust is the predominant disease affecting coffee plants in this region, which is not yet included due to the absence of a published model linking disease severity and leaf loss.

Total NPP is the consequence of the carbon assimilation, its allocation and the respiration of each specific organ.

Comparing the measured and simulated total NPP is an integrative evaluation of the model, and the total coffee NPP simulated by DynACof was in agreement with the NPP measured by [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF], with an overestimation of ca. 3.6% for both years (2011-2012 and 2012-2013).

However, the most important but most challenging integrative process to simulate is fruit yield, because its allocation follows a complex scheme spread out over two years with numerous development stages [START_REF] Camargo | Definition and outline for the phenological phases of arabic coffee under brazilian tropical conditions[END_REF], which was modeled in DynACof using a formalism inspired by [START_REF] Rodríguez | A coffee agroecosystem model: I. Growth and development of the coffee plant[END_REF].

DynACof predicted a green bean yield of 1382 (±205) kg ha -1 year -1 , which was within the range of values observed by [START_REF] Campanha | Growth and yield of coffee plants in agroforestry and monoculture systems in Minas Gerais, Brazil[END_REF][START_REF] Van Der Vossen | Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review[END_REF] and of the average yield in Central America [START_REF] Söndahl | Espresso coffee: the chemistry of quality[END_REF]. Furthermore, the Aquiares farm reported average yields of green beans of around 1333 (±336) kg ha -1 year -1 between 1995 and 2014 for fields close to the experimental plot, confirming that DynACof yield predictions were consistent. However, this comparison is only indicative and should be interpreted with caution because the conversion from whole fruit dry mass into processed green beans was made using a simple parameter (FtS, see Table 1) that may change depending on several factors, and because DynACof only simulates potential yield in the absence of fruit diseases or predators. Furthermore, the dataset used to fit the effect of temperature on the buds could overestimate the negative effect because [START_REF] Drinnan | Temperature affects vegetative growth and flowering of coffee (Coffea arabica L.)[END_REF] used coffee plants grown in relatively small pots (10 L), which can restrict root growth and then negatively affect the physiology of the coffee plant [START_REF] Ronchi | Growth and photosynthetic down-regulation in Coffea arabica in response to restricted root[END_REF]. [START_REF] Damatta | Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated[END_REF] found similar results on unpublished data though, confirming this negative effect is not only coming from the restricted root growth.

Moreover, the model was also compared to in situ measurements reported in gC m -2 by [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF], and predictions were found to be close to measured values, even following the same pattern of yearly variability, which is particularly hard to achieve considering the number of formalisms in use, and the potential cumulated error from one process to another.

The shift in the shade tree management from pollarded to free-growing appeared to have little impact on fruit production or maturity at harvest. This apparent stability came from the low density of the shade trees, which still transmitted at least 81.6% of the light during the mature state according to DynACof, compared to 86% reported in Charbonnier et al. (2013). [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF] reported that the higher LUE simulated by MAESPA for coffee plants under higher shade could compensate for most of the reduction in incident PAR, maintaining NPP at a nearly constant level as long as shade remains at low values. In DynACof, GPP was reduced only by 2.6% for a reduction of 7.9% in APAR, thanks to an increase of 5.8% in the LUE between the two periods of shade tree management, i.e. from low LAI in pruned shade trees to higher LAI in free-growing shade trees.

Another strength of the model is the prediction of canopy temperature under shade as a driver for plant biology, and water and energy balances, thanks to a full soil module inspired from the BILJOU model and to the MAESPA metamodels. Indeed, predictions of the cumulated AET and net radiation were very close to the nearly continuous measurements made from 2009 to 2015.

Given the model gave satisfactorily results for a wide range of processes using our multiple-objective strategy of parameterization and evaluation, i.e. different sets of variables measured in the same site at the same time, it can provide other information that cannot be discovered from the data only, and help researchers identify emergent properties in the system. For example, coffee LAI was strongly affected by pruning once a year and during the period in between by natural mortality and by the high fruit demand at the time of grain filling, which was also observed by [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF]. Another observation made using the model outputs is that except for stump and coarse roots, which are the only perennial compartments, biomass increased rapidly in the early stages of the plantation until it reached its maximum value for the whole rotation, after which biomass growth started to decrease with pruning, and found a new lower equilibrium between growth and mortality. The model also reproduced to some extent the biennial fruit production that was reported by [START_REF] Cannell | Physiology of the Coffee Crop[END_REF]. Finally, although the measured variables were acquired mostly at the end of the rotation, the model ran for the full rotation and the simulated variables reached the values measured by the end of the rotation, thereby revealing dynamics that remained hidden during the unknown part of the rotation (e.g. biomass reaching a specific equilibrium, according to the pruning intensity). Overall, it is clear that the model is able to compute several long term ecosystem services and paves the way for the analysis of possible trade-offs between them, depending on different management options and climate.

Although the model now needs to be applied in different soil, climate and shade management conditions to evaluate its true genericity, the process-based equations implemented in most modules already imply relative genericity. For example, the flowering events and timing are based on the model from and affects the reproductive phenology, but should be tested and refined for other vegetative limitations.

Model adaptation

DynACof can be easily adapted by users to other sites, other shade trees, other coffee varieties or managements by parameterizing the model accordingly. Adapting the model to other sites require mainly updating the site parameters (e.g. latitude, longitude, elevation), the soil properties (e.g. field capacity, pore fraction) and the meteorology. If the coffee cultivar is changed, the parameters linked to the coffee should be checked and updated if necessary (e.g. specific leaf area, allocation coefficients, base temperature). To change the management of the shade tree or the species, the user has to update the shade tree parameter file. The metamodels should be updated by the user whenever the plants structure or functioning is out of the range they were trained on. For example the LUE metamodel should be fitted using the atmospheric CO2 concentration and air temperature to integrate their effect for simulations under climate changes. They also can be replaced by any plot-scale equations because they are written as input code.

The model can then be calibrated and evaluated using field data. LAI for both shade tree and coffee is a key variable to measure because it is the result, and has an impact on many processes. The biomass increment of each organ can be measured to evaluate the plant NPP. For the coffee, key variables from the reproductive development are useful to evaluate the simulated yield, e.g. time of initiation and number of buds and flowers, and of course yield itself. The soil water content can be measured to evaluate the water balance module, and the leaf and soil temperature for the energy balance module.

DynACof can also be modified easily by developers because it was designed as modular as possible, with each module called in sequence at daily time-step. Developers can replace any module while still leveraging the others easily. For example the coffee module could be replaced by a module simulating any other plant, annual or perennial (e.g. cocoa, wheat, sugar cane, rice...). New modules can also be added, such as for nitrogen cycle.

This module could compute the nitrogen uptake, allocation and content for all organs from each plant species, and the mineralization processes from decaying organic matter (which already exist in the model) and microbial biomass in the soil, with eventual mineral fertilization input by management (e.g. urea, synthetic fertilizers, irrigation) or natural processes (e.g. precipitations).

Conclusion

DynACof (Dynamic Agroforestry Coffee Crop Model) was developed to simulate the effects of the environment, the soil, the species of shade tree and the management practices on coffee growth and yield. The shade management module can be set to any shade type and density, under full sun or agroforestry systems, applying pruning or thinning at any age, if required. The model can be used for full rotations at a daily time step for any surface area, from plot to landscape, or even to a region if properly distributed, under current, past or future climate conditions as long as the metamodels, built from MAESPA model simulations, are updated to the target conditions. The model was parameterized and evaluated using a comprehensive and unique dataset for energy and water balance, biomass and NPP from an experimental site in the Aquiares farm in Costa Rica.

A substantial advantage of DynACof being a tree-average plot model is the possibility to parameterize it using plot averages or totals, which are more frequently available from farms (e.g. yield, pruning intensity, coffee quality, etc.) because data remain scarce, especially under agroforestry management.

Two other important features of the model are the simulation of the canopy temperature (instead of air temperature) to control the plant growth according to the shade level, and the use of cohorts of flowers and fruits to consider grouped flowering in sub-tropical conditions and distributed flowering in equatorial climates. The model is implemented as an R and Julia packages for easy sharing and collaboration, and can be easily modified by adding new modules to compute pest attacks, nutrient cycling, soil organic matter decomposition or soil respiration. The methodology can be further generalized for any type of shade or climate by using different MAESPA simulation sets to train the metamodels. DynACof was built using a set of generic modules (e.g.

functions for aerodynamic conductance) that can be used in other models to simulate any type of agroforestry systems or intercropped systems.

In conclusion, DynACof concentrates considerable ecophysiological knowledge on coffee, and is an efficient tool to evaluate and optimize coffee crop yield, ecosystem services and their trade-offs in response to climate conditions and management scenarios. It was also designed to predict the impacts of climate change on coffee yield and the potential of changes in management to mitigate such effects.
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Water balance 5

The water flow is managed sequentially as in any other bucket model. 6

Interception and leaf evaporation 7

During a rainfall event, water can be either intercepted by the plants canopy, or directly reach the soil surface. 8

The water intercepted by the plants is either stored on the canopy surface, or flow along the branches and trunks 9 to finally reach the soil. The water that is stored on the canopy surface is then gradually evaporated back to the 10 atmosphere. 11

The first step for computing the water balance in the model is to compute a maximum potential rainfall 12 interception using the total stand LAI and an interception parameter as follows: 13

𝐼𝑛𝑡𝑒𝑟𝑐 𝑚𝑎𝑥 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑆𝑙𝑜𝑝𝑒 • 𝐿𝐴𝐼 𝑝𝑙𝑜𝑡 (A.1)
Any water intercepted by the canopy when the canopy water retention is already at full capacity (i.e. at 14 𝐼𝑛𝑡𝑒𝑟𝑐 𝑚𝑎𝑥 , mm) is considered as throughfall water. 15

The daily evaporation of the water stored in the canopy bucket is computed using the Penman-Monteith equation 16 as found in [START_REF] Allen | Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[END_REF] with an infinite stomatal conductance and a set of aerodynamic conductances. 17

Surface runoff 18

Water reaching the soil surface enter the surface layer (𝑊𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑅𝑒𝑠, mm). Any water entering this layer 19 when it is already full is considered as excess surface runoff, which is added to the superficial runoff itself 20 computed using a parameter: 21 .1 shows that GPP simulation was improved when using metamodels, and that net radiation was also 90 improved using metamodels, but mainly because the stand-scale reference equation had a systematic positive 91 bias compared to measurements. This bias could potentially be corrected knowing it a priori. The sensible heat 92 flux were also systematically more biased without metamodels. The latent heat flux simulated without 93 metamodel was close to the measurements for low values (< 5 m -2 d -1 ), but was increasingly overestimated 94 

Litter 123

The litter is simulated by the model as a mortality of biomass. The coffee leaf and resprout wood litter at plot 124 scale is mainly impacted by the pruning effect each year (Figure D.4). As expected, the fruit litter follow a 125 seasonal variation, related to the fruit production. The shade tree leaf litter is mainly impacted by the pruning 126 effect before 2000 (pruning management), and then by the natural seasonal variation. The simulated litterfall 127 from the coffee (i.e. mortality from leaves + resprout wood + fruits) is close to the observations made by 128 [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF], with values of 482 gC m -2 year -1 compared to 450 gC m -2 year -1 from their 129 measurements. The simulated tree litterfall (i.e. leaves + branches wood) is also close to the observations, with 130

  located in the central-Caribbean area of Costa Rica. The climate is tropical humid with no marked dry season, 3 014 mm mean annual precipitation and 19.5 °C mean annual temperature during the 1979 to 2009 period. The elevation of the research site ranges between 1 020 and 1 280 m a.s.l. and the mean slope is 11.31°. The vegetation consists of coffee plants (Coffea arabica L., var Caturra) planted below Erythrina poeppigiana, a leguminous shade tree. Both were planted in 1979. Shade trees were originally planted at a density of approximately 250 trees ha -1 and pollarded twice a year to optimize the light transmitted to the coffee layer. They were thinned to about 7.4 trees ha -1 in 2000 and left growing freely until the end of the study. The shade trees do not follow any particular planting pattern. The Aquiares farm is intensively managed

Figure 1 .

 1 Figure 1. Flowchart of the three-step metamodeling approach. 1/ The resolution for stand simulations in MAESPA was the individual tree and the half-hourly time step. 2/ The metamodels were fitted using inputs (meteorology and parameters) at daily and stand scale used as predictors to model the MAESPA outputs integrated at daily and stand-scale (training set, 80% of the data). The metamodels were evaluated on the validation set (20% of the data). 3/ The metamodel equations were injected into DynACof.

(

  https://github.com/VEZY/DynACof_inputs) for convenience. The main input values used for this study are listed on the paragraph 3.5. The input variables for the meteorology file should provide at least the maximum and minimum air temperature of the day (°C), the RAD or PAR (MJ m -2 d -1 ), and the relative humidity (%) or vapor pressure deficit (hPa). The full list of mandatory and optional inputs the user can provide are available from the documentation (https://vezy.github.io/DynACof/reference/Meteorology.html).

  38 Tree density (before/after thinning) Taugourdeau et al. (2014) (1) Parameters effectively measured or computed for this study.

  .a. The high point density along the identity function indicated that modeled evapotranspiration (Figure 2, AET) was relatively close to the measurement in average, even though the simulations presented a relatively high error for a few measurements (in dark blue in the figure). Yet, the cumulated AET from DynACof (Figure 3.b) showed good consistency compared to cumulated measurements, indicating that simulated values converge towards the measured value asymptotically.

Figure 2 .

 2 Figure 2. Comparison between measured (x-axis) and modeled (y-axis, DynACof) net radiation (Rn, 2009-01-01 to 2016-11-28), actual evapotranspiration (AET, 2009-03-01 to 2013-12-31), sensible heat flux (H, 2009-03-01 to 2013-12-31) and gross primary productivity (GPP, 2009-01-01 to 2013-12-31) from the Coffee-Flux project in the Aquiares coffee agroforestry plantation at the scale of the whole plot (shade tree + coffee + soil layers) and at daily time scale. The color scale represents point density. nRMSE= normalized Root mean square error, EF= modeling efficiency and bias= modeling bias. One dot represents one day.

Figure 3 .

 3 Figure 3. DynACof simulation of cumulated partitioning for a\ energy, b\ evapotranspiration and c\ gross primary productivity over the 2009-2016 period at daily time-scale. MAESPA simulation of Rn (net radiation) and AET (actual evapotranspiration) in the year 2011 and measurements of the three variables are also presented for model assessment. Missing cumulative GPP values (i.e. gaps between measurement polygons) were gap filled using DynACof modelled GPP to present a longer measurement period. The inserts in figures a\ and b\ show the cumulative energy partitioning and evapotranspiration for the year 2011 for easier comparison with MAESPA simulations from Vezy et al. (2018).

Figure 4 .

 4 Figure 4. Main outputs of the Erythrina poeppigiana shade tree simulated by DynACof over the whole rotation. Coffee plants were planted in 1979 together with Erythrina. Trees were pruned twice a year until thinning in 2000, and then allowed to grow freely. The thinning event is represented by the vertical dashed line. a\ LAI dynamics compared to measurements by LAI2000 (Taugourdeau et al., 2014) +/-SD ; b\ Light transmitted by the shade tree compared to Charbonnier et al. (2013) plot average; c\ Stem and d\ branch carbon mass compared to measured values reported in Charbonnier et al. (2017).

Figure 5 .

 5 Figure 5. Simulated coffee plant carbon biomass per organ (dotted lines) over a full plantation cycle (1979-2016), compared to measured biomass (green dots: one observation, green lines: continuous measurement and polygon: mean observation +/-SE). a/ Simulated leaf C mass compared to measured NDVI calibrated using LAI2000, and converted into dry mass using leaf SLA and dry mass to carbon mass ratio (Taugourdeau et al., 2014), see Table 1; b/ Simulated wood C mass from branches compared to average +/-SE measured by Charbonnier et al. (2017); c/ Simulated C mass in stump and coarse roots compared to measured stump C mass +/-SE in Charbonnier et al. (2017) + measured perennial root C mass from Defrenet et al. (2016); d/ Simulated fruit dry mass compared to values measured by Charbonnier et al. (2017) for 2011 and 2012 at harvest; e/ Simulated fine roots C mass compared to a 2011 measurement by Defrenet et al. (2016); and f/ Simulated reserves compared to reserves measured by Cambou (2012), assumed to represent the minimum value of the year.

  Figure C.1 shows that GPP simulation was improved when using metamodels, and that net radiation was also 90

  Figure D.3. Input (Tair) and simulated temperatures. The simulated temperatures are presented as the difference between the 121
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Table 1 . Main parameters used in DynACof (full list available at https://github.com/VEZY/DynACof). NB: SCR= Stump and Coarse Roots, FRoot= Fine roots, Shoot= Resprout wood (i.e. orthotropic axis and branches).

 1 

	Parameter	Unit		Value	Description	Source
	Site					
	Latitude	degree	9.93833	Latitude	This study 1
	Longitude	degree	-83.728	Longitude	This study 1
	Timezone			6	Time zone	This study 1
	Elevation	m		1040	Elevation	This study 1
	Height_Coffee	m		1.2	Coffee height, for zht and z0	This study 1
	ZHT	m		25	Climate data meas. height	This study 1
	Stocking_Coffee	Plant ha -1	5580	Coffee initial planting density	This study 1
	Coffee light interception					
	KDif	0-1		0.3906	Diffuse light extinction coeff.	This study 1 (MAESPA)
	KDir	0-1		0.3410	Direct light extinction coeff.	This study 1 (MAESPA)
	Vegetative development					
	AgeCofMax	Year		40	Max. length of plantation cycle	This study 1
	AgePruning	Year		5	Age at first pruning	This study 1
	D_pruning	DOY		74	Day of year for pruning	This study 1
	SLA	𝑚 𝑙𝑒𝑎𝑓 2	𝑘𝑔 𝐷𝑀 -1	10.97	Specific leaf area	Charbonnier et al. (2017) 1
	RNL	Node LAI -1	91.2	Ref. # nodes per LAI unit at 20°C Drinnan and Menzel (1995) 2
	DELM	𝑔 𝐶 𝑐𝑜𝑓 -1 𝑑 -1 2.0	Max. leaf carbon demand	This study 1
	DVG1	DOY		105	Beginning of vegetative growth	This study 1
	DVG2	DOY		244	End of vegetative growth	This study 1
	kres	0-1		0.08	Max. reserves used per day	Cambou (2012)
	𝜆_Shoot	0-1		0.12	Allocation to resprout wood	Charbonnier et al. (2017) 3
	𝜆_SCR	0-1		0.08	Alloc. to perennial wood	Charbonnier et al. (2017) 3
	𝜆𝑟_Leaf	0-1		0.85	Remaining carbon alloc. to leaves Charbonnier et al. (2017) 3
	𝜆𝑟_FRoot	0-1		0.15	Rem. carbon alloc. to fine roots	Charbonnier et al. (2017) 3
	lifespan_Leaf	day		265	Leaf lifespan	Charbonnier et al. (2017)
	lifespan_Shoot	day		7300	Resprout lifespan	van Oijen et al. (2010a)
	lifespan_SCR	day		7300	Perennial wood lifespan	van Oijen et al. (2010a)
	lifespan_FRoot	day		365	Fine root lifespan	Defrenet et al. (2016)
	m_FRoot	0-1		0.05	Fine root to leaf pruning effect	This study 3
	CC_Fruit CC_Leaf CC_Shoot CC_SCR CC_Shoot 𝜀Fruit 𝜀Leaf 𝜀FineRoot 𝜀Shoot 𝜀SCR NC_Fruit NC_Leaf NC_Shoot NC_SCR NC_FRoot	-1 𝑔 𝐶 𝑔 𝐷𝑀 -1 𝑔 𝐶 𝑔 𝐷𝑀 -1 𝑔 𝐶 𝑔 𝐷𝑀 -1 𝑔 𝐶 𝑔 𝐷𝑀 -1 𝑔 𝐶 𝑔 𝐷𝑀 -1 𝑔 𝐶 𝑔 𝐶 -1 𝑔 𝐶 𝑔 𝐶 -1 𝑔 𝐶 𝑔 𝐶 -1 𝑔 𝐶 𝑔 𝐶 -1 𝑔 𝐶 𝑔 𝐶 -1 𝑚𝑔 𝑁 𝑔 𝐶 -1 𝑚𝑔 𝑁 𝑔 𝐶 -1 𝑚𝑔 𝑁 𝑔 𝐶 -1 𝑚𝑔 𝑁 𝑔 𝐶 𝑚𝑔 𝑁 𝑔 𝐶 -1	0.4857 0.463 0.463 0.475 0.463 1.6 1.279 1.279 1.2 1.31 11 29.6 4.1 5 18	Fruit dry mass carbon content Leaf dry mass carbon content Resprout wood dry mass C content Cambou (2012) Cambou (2012) Cambou (2012) Perennial wood dry mass C content Cambou (2012) Resprout wood dry mass C content Cambou (2012) Fruit growth respiration cost Poorter (1994) 2 Leaf growth respiration cost Dufrêne et al. (2005) 3 Fine root growth respiration cost Dufrêne et al. (2005) 3 Shoot wood growth resp. cost Dufrêne et al. (2005) 3 Perennial wood growth resp. cost Dufrêne et al. (2005) 3 Fruit nitrogen content van Oijen et al. (2010a) Leaf nitrogen content Ghini et al. (2015) Resprout wood nitrogen content Ghini et al. (2015) Perennial wood nitrogen content Cambou (2012) Fine root nitrogen content van Praag et al. (1988)
	Q10_Fruit	1		2.4	Temperature effect on Rm	Charbonnier (2013)
	Q10_Leaf	1		2.4		Charbonnier (2013)
	Q10_Shoot	1		2.4		Charbonnier (2013)
	Q10_SCR	1		1.65		van Oijen et al. (2010a)
	Q10_FRoot	1		1.65		van Oijen et al. (2010a)
	MRN	𝑔 𝐶 𝑔 𝑁 -1 𝑑 -1	0.06336	Base maintenance respiration	Ryan (1991) 2
	pa_Fruit	0-1		1	Percentage of living cells in fruits This study 3
	pa _Leaf	0-1		1	P. of living cells in leaves	This study 3
	pa_FRoot	0-1		1	P. of living cells in fine roots	This study 3
	pa_Shoot	0-1		0.37	P. of living cells in resprout wood Dufrêne et al. (2005)
	pa_SCR	0-1		0.21	P. of living cells in perennial wood Dufrêne et al. (2005)

Table 1 (continued). Main parameters used in DynACof.
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	Parameter	Unit	Value	Description	Source
	Reproductive development			
	a_bud	𝐵𝑢𝑑𝑠 𝑑 -1	0.00287	Number of buds initiated per day	Rodríguez et al. (2011)
	b_bud	1	-4.1. e -6	Param. for bud initialization	Rodríguez et al. (2011)
	F_Tffb	Degree day 4000	Time of first floral buds	Rodríguez et al. (2011)
	a_p	1	5.78	Probability of bud dormancy break	Drinnan and Menzel (1995);
	b_p	1	1.90	calculated from leaf water potential	Rodríguez et al. (2011)
	F_rain	mm	40	Cumulative rain to break bud dormancy Zacharias et al. (2008)
	age_Maturity	Year	3	First age of flowering after planting	van Oijen et al. (2010a)
	VF_Flowering	Degree day 5500	Very first flowering of coffee plant	Rodriguez et al., 2001
	F_buds1	Degree day 840	Bud stage 1	Meylan (2012); van Oijen et al.
	F_buds2	Degree day 2562	Bud stage 2	(2010a)
	F_over	Degree day 3304	From pinhead to overripe (stage 5)	Rodríguez et al. (2011)
	s	1	0.05	Empirical coefficient for fruit growth	Rodríguez et al. (2011)
	FtS	0-1	0.63	Fruit to seed dry mass ratio	Wintgens (2004)
	Sucrose accumulation				
	S_a	[sucrose]	5.3207	Parameters used to model sucrose	Pezzopane et al. (2012)
	S_b	1	-28.556	accumulation in coffee fruit	Pezzopane et al. (2012)
	S_x0	Degree day 190.972		This study 3
	S_y0	[sucrose]	3.4980		Pezzopane et al. (2012)
	DE_opt	𝑔 𝐷𝑀	0.164	Optimum berry C demand	Wintgens (2004)
	(1) Parameters effectively measured or computed for this study.	

Table 2 . Parameters used in DynACof for the shade tree layer (E.poeppigiana). NB: Leaf life span was computed using the phenology routine. CR= Coarse Roots, FRoot= Fine roots.
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	Parameter	Unit	Value Description	Source
	Vegetative development				
	SLA DELM_Tree	𝑚 𝐿𝑒𝑎𝑓 2 𝑔 𝐶 𝑡𝑟𝑒𝑒 -1 𝑑 -1 778.5 𝑘𝑔 𝐷𝑀 17.4	Specific leaf area Max. leaf carbon demand	van Oijen et al. (2010a) Charbonnier et al. (2017) 2
	𝜆_Stem	0-1	0.20	Alloc. to stem	This study 3
	𝜆_Branch	0-1	0.25	Alloc. to branches	This study 3
	𝜆_CR	0-1	0.10	Alloc. to coarse roots	This study 3
	𝜆_Leaf	0-1	0.26	Alloc. to leaves	This study 3
	𝜆_𝐹Root	0-1	0.05	Alloc. to fine roots	This study 3
	lifespan_Branch	day	7300	Branch life span	van Oijen et al. (2010a)
	lifespan_FRoot	day	90	Fine root life span	van Oijen et al. (2010a)
	lifespan_CR	day	7300	Coarse root life span	van Oijen et al. (2010a)
	CC 𝜀_Branch 𝜀_Stem 𝜀_CR 𝜀_Leaf 𝜀_FRoot NC_Branch NC_Stem NC_CR NC_Leaf NC_FRoot	-1 𝑔 𝐶 𝑔 𝐷𝑀 -1 𝑔 𝐶 𝑔 𝐶 -1 𝑔 𝐶 𝑔 𝐶 -1 𝑔 𝐶 𝑔 𝐶 -1 𝑔 𝐶 𝑔 𝐶 -1 𝑔 𝐶 𝑔 𝐶 -1 𝑚𝑔 𝑁 𝑔 𝐶 -1 𝑚𝑔 𝑁 𝑔 𝐶 -1 𝑚𝑔 𝑁 𝑔 𝐶 -1 𝑚𝑔 𝑁 𝑔 𝐶 𝑚𝑔 𝑁 𝑔 𝐶 -1	0.47 1.2 1.2 1.33 1.392 1.392 5.0 5.0 8.4 35.9 8.4	Tree dry mass carbon content Branch growth respiration cost Stem growth respiration cost Coarse root growth resp. cost Leaf growth respiration cost Fine root growth resp. cost Branch nitrogen content Stem nitrogen content Coarse root nitrogen content Leaf nitrogen content Fine root nitrogen content	van Oijen et al. (2010a) This study 3 This study 3 Litton et al. (2007) Villar and Merino (2001) = 𝜀Leaf This study 3 This study 3 van Oijen et al. (2010a) van Oijen et al. (2010a) van Oijen et al. (2010a)
	Q10_CR				

Table 3 . BILJOU sub-module parameters
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	Parameter	Unit	Value	Description	Source
	TotalDepth	m	3.75	Total simulated soil depth	This study
	Wm1; Wm2; Wm3	mm	210;58;64 Minimum water content, layers 1, 2, 3 Gómez-Delgado et al. (2011)
	Wf1; Wf2; Wf3	mm	290; 66; 69 Field capacity, layer 1;2;3	Gómez-Delgado et al. (2011)
	IntercSlope	𝑚𝑚 𝐿𝐴𝐼 -1 0.2	Rainfall interception by leaves	Gómez-Delgado et al. (2011)
	WSurfResMax	mm	120	Max. water on the surface reservoir	Gómez-Delgado et al. (2011)
	fc	𝑚𝑚 𝑑𝑎𝑦 -1 13.4	Min. infiltration capacity	Gómez-Delgado et al. (2011)
	alpha	1	101.561	Coef. for max. infilt. capacity	Gómez-Delgado et al. (2011)
	kB	day-1	0.038	Discharge coeff. for surface runoff	Gómez-Delgado et al. (2011)
	Soil_LE_p	%	0.70	Soil energy partitioning coefficient	This study (MAESPA)

Table 4 .

 4 MAESPA metamodel equations. 𝑳𝑨𝑫 𝑻𝒓𝒆𝒆 (𝒎 -𝟐 𝒎 -𝟑 ) is the leaf area density of the shade tree, 𝑷𝑨𝑹 𝒍 (𝑴𝑱 𝒎 -𝟐 𝒅𝒂𝒚 -𝟏 )

the photosynthetically active radiation reaching the layer considered (e.g. PAR transmitted by the shade tree layer for the 𝑳𝑼𝑬 𝑪𝒐𝒇 and transmitted by the coffee layer for

  𝑹𝒏 𝑺𝒐𝒊𝒍 ), 𝑻 𝒂𝒊𝒓 (°𝑪) and 𝑽𝑷𝑫 𝒂𝒊𝒓 (

𝒉𝑷𝒂) are the air temperature and vapor pressure deficit measured above the canopy

  , 𝑨𝑷𝑨𝑹 𝒍 (𝑴𝑱 𝒎 -𝟐 𝒅𝒂𝒚 -𝟏 ) is the PAR absorbed a the given layer, and 𝑾𝒊𝒏𝒅 (𝒎 𝒔 -𝟏 )

is the wind speed. R 2 : adjusted r-squared, nRMSE: normalized Root Mean Squared Error, EF: modelling efficiency. Bias, nRMSE and EF statistics were computed on out-of-sample data, R 2 on the sample used to train the model.

  

	Metamodel	R 2	Bias	nRMSE EF
	𝐾𝐷𝑖𝑓 𝑇𝑟𝑒𝑒 = 0.6146417 -0.5321444 • 𝐿𝐴𝐷 𝑇𝑟𝑒𝑒 + 𝜀 𝑖 ̂ 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.02296613)	0.95	1.2•10 -3 6.52	0.95
	𝐾𝐷𝑖𝑟 𝑇𝑟𝑒𝑒 = 0.4754740 -0.4015379 • 𝐿𝐴𝐷 𝑇𝑟𝑒𝑒 + 𝜀 𝑖 ̂ 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.05439675)	0.65	5.2•10 -3 20.89	0.60
	𝐿𝑈𝐸 𝐶𝑜𝑓 = 2.77258689 + 0.01034341 ⋅ 𝑇 𝑎𝑖𝑟 -0.71823829 • √𝑃𝐴𝑅 𝐶𝑜𝑓 + 0.01537693 ⋅ 𝑉𝑃𝐷 𝑎𝑖𝑟	0.94	2.1•10 -3 7.81	0.94
	+ 𝜀 𝑖 ̂ 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.0921815)			
	𝐿𝑈𝐸 𝑇𝑟𝑒𝑒 = 2.91332985 + 0.07195458 ⋅ 𝑇 𝑎𝑖𝑟 -0.03124228 ⋅ 𝑉𝑃𝐷 𝑎𝑖𝑟 -0.24092238 ⋅ 𝑃𝐴𝑅 𝑡𝑟𝑒𝑒 + 𝜀 𝑖 ̂ 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.2664409)	0.87 -4.9•10 -3 9.84	0.89
	𝑇𝑟 𝐶𝑜𝑓 = -0.82327839 + 0.03089959 ⋅ 𝑇 𝑎𝑖𝑟 + 0.15777166 ⋅ 𝐴𝑃𝐴𝑅 𝐶𝑜𝑓 + 0.07297392 ⋅ 𝑉𝑃𝐷 𝑎𝑖𝑟 + 𝜀 𝑖 ̂ 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.1481428)	0.88	5.1•10 -3 19.98	0.87
	𝑇𝑟 𝑇𝑟𝑒𝑒 = -0.55231394 + 0.01798136 ⋅ 𝑇 𝑎𝑖𝑟 + 0.02229318 ⋅ 𝑉𝑃𝐷 𝑎𝑖𝑟 + 0.16053935 ⋅ 𝐿𝐴𝐼 𝑇𝑟𝑒𝑒 + 0.48838455 ⋅ 𝐴𝑃𝐴𝑅 𝑇𝑟𝑒𝑒 + 𝜀 𝑖 ̂ 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.08087603)	0.83	7.5•10 -3 24.11	0.81
	𝐻 𝐶𝑜𝑓 = -0.7678758 + 0.5461716 ⋅ 𝑃𝐴𝑅 𝐶𝑜𝑓 -0.3207445 ⋅ 𝑉𝑃𝐷 𝑎𝑖𝑟 + 2.6837429 ⋅ 𝑇𝑟 𝐶𝑜𝑓 + 𝜀 𝑖 ̂ 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.4506168)	0.96	6.6•10 -2 10.14	0.97
	𝐻 𝑇𝑟𝑒𝑒 = 0.19869391 + 0.70967904 ⋅ 𝐴𝑃𝐴𝑅 𝑇𝑟𝑒𝑒 -0.78428282 ⋅ 𝐿𝐴𝐼 𝑇𝑟𝑒𝑒 -0.68444250 ⋅ 𝑇𝑟 𝑇𝑟𝑒𝑒 -0.03157318 ⋅ 𝑉𝑃𝐷 𝑎𝑖𝑟 + 0.06780685 ⋅ 𝑊𝑖𝑛𝑑 + 𝜀 𝑖 ̂ 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.08)	0.77	4.3•10 -3 58.85	0.79
	𝑅𝑛 𝑆𝑜𝑖𝑙 = -1.050189 + 1.766872 • 𝑃𝐴𝑅 𝑆𝑜𝑖𝑙 + 𝜀 𝑖 ̂ 𝑤ℎ𝑒𝑟𝑒 𝜀 ∼ 𝑁(0,0.2257816)	0.98	4.2•10 -2 8.80	0.98

Table 5 . DynACof modelling performance with (yes) and without (no) metamodels from MAESPA.
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	Statistics	nRMSE		EF		Bias	
	Metamodel	yes	no	yes	no	yes	no
	Rn (MJ m -2 d -1 )	15.26	31.84	0.88	0.50	0.24	2.87
	LE (MJ m -2 d -1 )	28.22	42.46	0.28	-0.68	0.29	1.44
	H (MJ m -2 d -1 )	53.92	130.07	0.22	-3.56	1.48	4.03
	GPP (gC m -2 d -1 )	26.28	41.36	0.14	-1.14	0.38	0.99

Table 6 . DynACof simulation of NPP per organ type and plant layer separated according to shade tree management options, either with high density and pruned (until 2000) or free growing with low density after thinning in 2000. Average measurements for two years (2011/2012 -2012/2013) from Charbonnier et al. (2017) are also provided for comparison.
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	Organ	Average NPP (𝑔 𝐶 𝑚 -2 𝑦𝑒𝑎𝑟 -1 ± 𝑆𝐷) for the last 5 years
	Coffea arabica	Pruned Ep	Free growing Ep Measured (free growing Ep)
	Leaves	308.9 (3.0)	303.3 (12.3)	263.5
	Perennial wood: Stump + coarse roots 104.2 (4.0)	99.1 (12.2)	161.5
	Branches	170.7 (6.6)	162.2 (20.0)	210
	Fine roots	134.5 (7.1)	127.2 (18.4)	148
	Fruits	136.3 (7.1)	133.0 (11.3)	126
	Reserve balance	580.0 (51.3)	534.1 (119.1)	

  Eucalyptus sp. or any species, tree density and management such as pruning or thinning. In specific situations, it would be advisable to develop specific modules for coupling the nutrient cycles with the carbon and water cycles already available in the current version of DynACof. Therefore, the current version is assumed to simulate the potential outputs, only for situations without any nutrient stresses. Drought is already present in the model through leaf water potential

	Rodríguez et al. (2011),
	which reproduced satisfactorily these processes on contrasted sites. However, the user should keep in mind that
	metamodels are not generic, and should be updated when applied to new conditions (e.g. different soil or

planting design). The overall genericity of DynACof should allow its application to other climate conditions such as under climate changes, other locations with different soils and climates, and other shade management systems such as coffee grown in full sun or under Cordia alliodora, banana plants,

DynACof with metamodels from MAESPA (red) or stand-scale equations (blue) compared to field measurements.
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Despite the high initial planting density, the LAI of the shade trees remained relatively low during the first period when the shade trees were pruned, i.e. from planting to thinning, when it dropped to a particularly low value of 0.02 m 2 m -2 on average in the first year, then resumed during the second period. The LAI of the shade trees subsequently increased to reach a maximum of ca. 0.66 m 2 m -2 in the last year of the simulation (Figure 4). The leaves of E. poeppigiana shed naturally between January and February in Aquiares and then recover rapidly until May [START_REF] Taugourdeau | Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry[END_REF]. The observed phenology was matched by the model, with a simulated range and dynamic of LAI values close to the observations made in the same plot averaged over the whole measurement period [START_REF] Taugourdeau | Leaf area index as an indicator of ecosystem services and management practices: An application for coffee agroforestry[END_REF]. Despite a low density of 7.3 trees ha -1 after thinning in 2000, the simulated shade trees intercepted up to 18.4% of the light at maximum LAI in 2016, which was consistent with the values measured in the same plot (Charbonnier et al., 2013). The simulated dry mass of tree stem and branches represented on average 47.2% and 4.4% of the total plot shade tree carbon mass while pruned, and 27.2% and 27.4% of the total carbon mass, respectively, at the end of the cycle when left to grow freely.

The annual stem mass growth was close to linear under pruning management and became close to exponential when trees were not pruned after thinning, with the stem NPP increasing almost five times in the five last years of the simulation compared to the five years preceding thinning (Table 6). Branch mass grew much more slowly due to higher mortality when pruned but grew as fast as the stem when the tree was left to grow freely. As seen in Figure 4, both stem and branch mass simulations were in the range of the observations reported by [START_REF] Charbonnier | Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system[END_REF] in the same plot.
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Appendix A: soil water balance model 1

The soil water balance model is largely derived from the BILJOU model [START_REF] Granier | A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands[END_REF]. It is a "bucket" 2 model, meaning that the soil is represented by the depth dimension only, itself divided into layers of given 3 thickness.

With 𝑊 1 the first layer water content (mm), 𝑊𝑚 1 the minimum water content of the first layer, 𝑊𝑓 1 the field 25 capacity of the first layer and 𝑓𝑜 and 𝑓𝑐 the maximum and minimum infiltration capacity respectively (mm day - 26 1 ). 27

Then, 𝑊 1 is updated by adding the water that infiltrated from the surface bucket to its previous water content. 28 If 𝑊 1 exceeds 𝑊𝑓 1 after this operation, the excess water drains into the second layer. This last operation is 29 repeated for the two following layers, 𝑊 2 and 𝑊 3 with their own field capacity 𝑊𝑓 2 and 𝑊𝑓 3 . 30

Soil surface evaporation 31

The soil surface evaporation (mm) is computed using the soil net radiation coming from a metamodel of 32 MAESPA and a partitioning parameter (𝑆𝑜𝑖𝑙_𝐿𝐸_𝑃): 33

with λ the latent heat of vaporization (MJ kgH2O -1 ). 34

Root water uptake 35

The water that is absorbed by the plants roots (𝑅𝑜𝑜𝑡𝑊𝑎𝑡𝑒𝑟𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑙 ) for a given layer 𝑙 is computed from the 36 total stand transpiration (𝑇 𝑡𝑜𝑡𝑎𝑙 ), the total root fraction in the layer (𝑅𝑜𝑜𝑡𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑙 ) and the extractable water 37 from the layer (𝐸𝑊 𝑙 ) as follows: 38

Each layer's water content is then updated by removing to it the root water uptake. 39

Water potential 40

The soil water potential (𝛹 𝑠𝑜𝑖𝑙 , 𝑀𝑃𝑎) is computed using the equation from [START_REF] Campbell | A simple method for determining unsaturated conductivity from moisture retention data[END_REF] as follows: 41

with 𝛹 𝐸 (MPa) the air entry water potential, 𝑊 𝑡𝑜𝑡 the total soil water content (mm) and 𝜃 𝑠 the saturated water 42 content (m 3 m -3 ). 43

And the leaf water potential (𝛹 𝑙𝑒𝑎𝑓 , 𝑀𝑃𝑎) is computed as follows: 44

Where 𝑇 𝑙 is the plant transpiration (𝑚𝑚), 𝑀 𝐻20 the molar mass of water, and 𝐾 𝑡𝑜𝑡 the soil to leaf hydraulic 45 conductance (𝑚𝑜𝑙 𝑚 -2 𝑠 -1 𝑀𝑃𝑎 -1 ) 46

Energy balance 47

The soil energy balance is computed using the soil net radiation from the metamodels of MAESPA and the 48 partitioning coefficient as in Eq. (A.4) for both the latent and sensible fluxes. The soil heat storage is neglected 49 because its variability is low at daily time-scale and because it tends to return at equilibrium after several days. 50 If the shade tree is pruned, it breaks the relationship between the tree stem dry mass and its height as shown in 62

Eq. (A.10). Instead, the tree height is computed using the trunk height as follows: 63

𝐻 𝑡𝑜𝑡 = 𝐻 𝑐𝑟𝑜𝑤𝑛 + 𝐻 𝑡𝑟𝑢𝑛𝑘 (A.12)

The underlying hypothesis behind Eq. (A.11) is that E. poeppigiana are pruned by stakeholders so the trunk 64 height do not exceed 3 meters high. 65

Crown dimensions 66

The crown radius (m) is computed as follows: 67

with 𝑃 𝑐𝑟𝑜𝑤𝑛 the crown projection, itself computed as: 68 .14) with 𝐷𝑀 𝑏𝑟𝑎𝑛𝑐ℎ the shade tree branch dry mass in 𝑔 𝑚 -2 . 69

The crown height (𝐻 𝑐𝑟𝑜𝑤𝑛 ) is taken as equal to the crown radius as shown in Table 2 from Charbonnier et al. 70 (2013). 71

LAD 72

The leaf area density (LAD) is computed as follows: 73

with 𝐿𝐴 𝑡𝑟𝑒𝑒 the shade tree leaf area. 74

Appendix C: comparing DynACof with and without metamodels 76

To assess the importance of using metamodels from MAESPA to integrate fine scale processes to DynACof, 77 we compared DynACof outputs for GPP, Rn, LE and H with and without metamodels. The GPP without 78 metamodels was simulated using constant values for the light use efficiency and constant values for the light 79 interception coefficients of the Beer-Lambert's equation for both the coffee and the shade tree layers. The 80 parameterization was made using the average values from the MAESPA simulations. The net radiation without 81 metamodels was simulated using the equation from [START_REF] Allen | Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[END_REF] The highest coffee contribution to the plot-scale GPP can be explained by its higher LAI, and hence higher light 100 interception compared to the shade tree. The shade tree thinning in 2000 has a high impact on these variables 101 during the first three years. 102 103