J. G. Barbedo, A review on the main challenges in automatic plant disease identification based on visible range images, Biosyst. Eng, vol.144, pp.52-60, 2016.

J. G. Barbedo, Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification, Comput. Electron. Agric, vol.153, pp.46-53, 2018.

J. G. Barbedo, Factors influencing the use of deep learning for plant disease recognition, Biosyst. Eng, vol.172, pp.84-91, 2018.

J. G. Barbedo, L. V. Koenigkan, B. A. Halfeld-vieira, R. V. Costa, K. L. Nechet et al., Annotated plant pathology databases for image-based detection and recognition of diseases, IEEE Lat. Am. Trans, vol.16, pp.1749-1757, 2018.

H. Durmus, E. O. Gune, and S. M. K?rc?, Disease detection on the leaves of the tomato plants by using deep learning, Agro-Geoinformatics, 2017 6th International Conference on, pp.1-5, 2017.

K. P. Ferentinos, Deep learning models for plant disease detection and diagnosis, Comput. Electron. Agric, vol.145, pp.311-318, 2018.

A. Fuentes, S. Yoon, S. C. Kim, and D. S. Park, A robust deep-learning based detector for real-time tomato plant diseases and pests recognition, Sensors, vol.17, p.2022, 2017.

A. F. Fuentes, S. Yoon, J. Lee, and D. S. Park, High-performance deep neural networkbased tomato plant diseases and pests diagnosis system with refinement filter bank, Front. Plant Sci, vol.9, 2018.

H. Goeau, P. Bonnet, and A. Joly, Lifeclef plant identification task, Working Notes of CLEF 2015 -Conference and Labs of the Evaluation forum, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01182795

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning (adaptive computation and machine learning series), Adapt. Computat. Mach. Learn. Series, vol.800, 2016.

K. He, R. Girshick, and P. Dollar, Rethinking imagenet pre-training, 2018.

D. Hughes and M. Salathe, An open access repository of images on plant health to enable the development of mobile disease diagnostics, 2015.

M. Huh, P. Agrawal, and A. A. Efros, What makes imagenet good for transfer learning?, 2016.

S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, 2015.

Z. Iqbal, M. A. Khan, M. Sharif, J. H. Shah, M. H. Ur-rehman et al., An automated detection and classification of citrus plant diseases using image processing techniques: a review, Comput. Electron. Agric, vol.153, pp.12-32, 2018.

A. Johannes, A. Picon, A. Alvarez-gila, J. Echazarra, S. Rodriguez-vaamonde et al., Automatic plant disease diagnosis using mobile capture devices, Comput. Electron. Agric, vol.138, pp.200-209, 2017.

A. Joly, H. Goeau, H. Glotin, C. Spampinato, P. Bonnet et al., Lifeclef 2015: multimedia life species identification challenges, Experimental IR Meets Multilinguality, Multimodality, and Interaction, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01182782

A. Karpathy, CS231n Convolutional Neural Networks for Visual Recognition transfer learning, 2019.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, p.436, 2015.

S. H. Lee, C. S. Chan, S. J. Mayo, and P. Remagnino, How deep learning extracts and learns leaf features for plant classification, Pattern Recogn, vol.71, pp.1-13, 2017.

B. Liu, Y. Zhang, D. He, and Y. Li, Identification of apple leaf diseases based on deep convolutional neural networks, Symmetry, vol.10, p.11, 2017.

S. P. Mohanty, D. P. Hughes, and M. Salathé, Using deep learning for image based plant disease detection, Front. Plant Sci, vol.7, p.1419, 2016.

D. Oppenheim and G. Shani, Potato disease classification using convolution neural networks, Adv. Anim. Biosci, vol.8, pp.244-249, 2017.

A. Picon, A. Alvarez-gila, M. Seitz, A. Ortiz-barredo, J. Echazarra et al., Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild, Comput. Electron. Agric, 2018.

S. Prospero and M. Cleary, Effects of host variability on the spread of invasive forest diseases, vol.8, p.80, 2017.

A. Ramcharan, K. Baranowski, P. Mccloskey, B. Ahmed, J. Legg et al., Deep learning for image-based cassava disease detection, Int. J. Comput. Vision, vol.8, pp.211-252, 1852.

K. Simonyan and A. Zisserman, Very deep convolutional networks for largescale image recognition, 2014.

S. Slado-jevic, M. Arsenovic, A. Anderla, D. Culibrk, and D. Stefanovic, Deep neural networks based recognition of plant diseases by leaf image classification, Computat. Intell. Neurosci, 2016.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed et al., Going deeper with convolutions, 2014.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wo et al., Rethinking the inception architecture for computer vision, 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp.2818-2826, 2016.

Y. Toda and F. Okura, How convolutional neural networks diagnose plant disease, p.9237136, 2019.

E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, A comparative study of fine tuning deep learning models for plant disease identification, Comput. Electron. Agric, 2018.

E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, A comparative study of finetuning deep learning models for plant disease identification, Comput. Electron. Agric, vol.161, pp.272-279, 2019.

A. Torralba and A. A. Efros, Unbiased look at dataset bias, Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp.1521-1528, 2011.

T. Wiesner-hanks, E. L. Stewart, N. Kaczmar, C. Dechant, H. Wu et al., Image set for deep learning: field images of maize annotated with disease symptoms, BMC Res. Notes, vol.11, p.440, 2018.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, How transferable are features in deep neural networks?, Adv. Neural Inform. Process. Syst, pp.3320-3328, 2014.

J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, Understanding neural networks through deep visualization, Deep Learning Workshop, International Conference on Machine Learning (ICML), 2015.

M. D. Zeiler, G. W. Taylor, and R. Fergus, Adaptive deconvolutional networks for mid and high level feature learning, ICCV, vol.1, p.6, 2011.

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, Learning deep features for scene recognition using places database, Adv. Neural Inform. Process. Syst, pp.487-495, 2014.