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Abstract
Strong and ongoing artificial selection in domestic animals has resulted in amazing 
phenotypic responses that benefit humans, but often at a cost to an animal's health, 
and problems related to inbreeding depression, including a higher incidence of can-
cer. Despite high rates of cancer in domesticated species, little attention has been 
devoted to exploring the hypothesis that persistent artificial selection may also fa-
vour the evolution of compensatory anticancer defences. Indeed, there is evidence 
for effective anti-cancer defences found in several domesticated species associated 
with different cancer types. We also suggest that artificial selection can favour the 
“domestication” of inherited oncogenic mutations in rare instances, retaining those 
associated to late and/or less aggressive cancers, and that by studying these seem-
ingly rare anticancer adaptations, novel cancer treatments may be found.
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1  | INTRODUC TION

Humans have exerted artificial selection on plants and animals since 
the Mesolithic, resulting in the evolution of numerous domestic spe-
cies (Driscoll, Macdonald, & Brien, 2009; Larson & Fuller, 2014). In 
stark contrast to natural selection that shapes an organism's traits 
to maximize individual fitness, artificial selection favours individuals 
displaying attributes that are, for myriad reasons, relevant to humans 
(Zeder, 2012). Depending on the biology of the considered species 
and the nature and intensity of the domestication process, domes-
ticated species display particular biological modifications, including 
health related ones, compared to their wild ancestors (referred to as 
the “domestication syndrome,” e.g. Wilkins, Wrangham, & Tecumseh 
Fitch, 2014).

The health related consequences of domestication can be bene-
ficial or detrimental to a species relative to its ancestry. For instance, 
immune-related genes can evolve rapidly during the domestication 
processes (Glazko, Zybaylov, & Glazko, 2014; Jennings & Sang, 2019), 
as heightened immune performances improve the survival rate of in-
dividuals experiencing confinement or living at high density (Dong et 

al., 2015; Douxfils et al., 2011; Kuhlman & Martin, 2010). Conversely, 
human preferences for specific traits can increase pathological vulner-
ability, as selective breeding may lead to inbreeding depression and/or 
a concentration of deleterious alleles responsible for genetic diseases. 
In dogs, examples of such breed-specific diseases are retinal atrophy, 
neuropathy and ichthyosis (a genetic dermatosis) (André, Guaguère, 
Chaudieu, Genevois, & Devauchelle, 2017). Many domesticated ani-
mals (e.g. dogs, cats, cattle, horses) frequently develop cancer (Brodey, 
1979; Madewell, 1981; Rowell, McCarthy, & Alvarez, 2011) (Table 1). 
Further, the incidence of several kinds of cancer in domestic animals is 
much higher than in humans, with dogs and cats often cited as familiar 
examples (see table 2 in Vail and Thamm (2004)).

However, little attention is devoted to exploring the possibility 
that domestication may represent a unique selective context fa-
vouring the evolution of enhanced resistance and/or tolerance to 
cancer, particularly in long-lived domestic taxa like pets. Similarly, 
for cancers with underlying congenital causes, we could predict that 
artificial selection should retain through time inherited oncogenic 
mutations leading to late and/or less aggressive cancers, thus “do-
mesticating” these mutations.

TA B L E  1   Example of cancer types occurring in domesticated animals

Common name Species
Domesticated 
from

Time of 
domestication 
(years ago)

Predominant types 
of cancer Reference

Dog Canis familiaris Canis lupus 
(Grey wolf)

15,000 Mammary tumours 
in females, 
lymphoma and 
mast cell tumours

Paoloni and Khanna (2008); Thalmann et al. 
(2013); Boerkamp et al. (2014); Baioni et al. 
(2017)

Cat Felis catus Felis sylvestris 
lybica

10,000 Lymphoma Dorn (1967); Dorn et al. (1968); Driscoll et 
al. (2007); Driscoll et al. (2009); Vigne et al. 
(2016)

Ferret Mustela 
putorius furo

Mustela putorius 
(European 
polecats)

2,500 Adrenal and 
pancreatic 
tumours, 
lymphoma

Avallone et al. (2016); Schoemaker (2017)

Pig Sus scrofa 
domesticus

Sus scrofa (Wild 
boars)

9,000–10,000 Lymphoma Bastianello (1983); Groenen (2016)

Goat Capra hircus Capra aegagrus 
(Bezoar)

10,000 Skin cancer, 
lymphoma

Bastianello (1983); Löhr (2013)

Horse Equus callabus Equus ferus 5,500 Skin cancers, 
lymphoma

Knowles, Tremaine, Pearson, and Mair (2016); 
Gaunitz et al. (2018)

Guinea pig Cavia porcellus Cavia tschudii 5,000 Lymphoma Congdon and Lorenz (1954); Walker, Soto, and 
Spotorno (2014); Evans, Harr, Thielen, and 
MacNeill (2018)

Domestic 
laying hen

Gallus gallus 
domesticus

Gallus gallus 
(Red jungle 
fowl)

8,000 Ovarian cancer Fredrickson (1987); Tixier-Boichard, Bed'hom, 
and Rognon (2011); Johnson and Giles (2013)

Cow Bos taurus 
taurus

(Aurochs) 10,000–10,500 Skin cancer, bovine 
leukaemia

Madewell, 1981; Bollongino et al. (2012); 
Decker et al. (2014)

Sheep Ovis aries Ovis vignei, Ovis 
ammon, Ovis 
orientalisa

8,000–11,000 Skin cancer, 
jaagsiekte sheep 
retrovirus-
associated lung 
cancer

Lloyd (1961); Palmarini, Fan, and Michael Sharp 
(1997); Wang et al. (2019)

aThe exact ancestor of the sheep remains unknown. 
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Here, we discuss the evolutionary consequences of domestica-
tion in relation to cancer development and progression. We argue 
that strong and ongoing directional selection on particular traits 
in domestic animals, along with resultant high cancer incidence, 
may provide a selective environment that could generate evolu-
tionary “solutions” to fighting cancer that is not evident in humans 
or wildlife.

2  | HOW COULD DOMESTIC ATION LE AD 
TO NOVEL ANTIC ANCER ADAPTATIONS?

In natural environments, the evolution of cancer suppressive mecha-
nisms is weighted against other fitness-related functions (Jacqueline 
et al., 2017) in a manner akin to the high cost of immune system 
functioning leads to trade-offs with various life history traits and de-
mands (van der Most, Jong, Parmentier, & Verhulst, 2011; Norris & 
Evans, 2000). Conversely, domesticated species usually live in envi-
ronments that are unaffected by natural constraints such as compe-
tition, parasitism, predation or food limitation. This has at least two 
important implications in a cancer context: (a) domesticated animals, 
all things being equal, could theoretically invest more resources into 
fuelling their existing anticancer defences, and (b) if costly antican-
cer defences (resistance or tolerance) appear, they are more likely 
to be maintained in a protected environment devoid of threats as 
opposed to a natural ecosystem. When artificial selection exerts 
stronger coefficients of selection than any natural processes in the 
wild, it theoretically opens the window for the selection of unprec-
edented anticancer defences (Vittecoq et al., 2018).

The high incidence of cancer in domestic animals is at least 
partially the result of strong directional selection that has led to in-
breeding (Box 1) and/or evolutionary mismatches (Box 2). Indeed, 
cancer occurrence in domestic animals is often much higher than in 
humans or in their comparable wildlife ancestors. These high rates of 
cancer can result in special selective pressures. Then, by pleiotropy 
or through unique mutations related to domestication, selective 
pressure may lead to the odd unique solution to certain cancers, as 
shown below.

3  | ANTIC ANCER DEFENCES IN 
DOMESTIC ATED SPECIES

Compensation of a higher vulnerability to cancer through the se-
lection of specific cancer defences occurs in various domesticated 
species, like pigs. Cutaneous melanoma is usually an aggressive 
form of skin cancer. However, in the melanoblastoma-bearing 
Libechov Minipig, tumours naturally regress without external influ-
ence (Bourneuf, 2017; Vincent-Naulleau et al., 2004). Spontaneous 
and complete tumour regression occurs in 96% of pigs (even at 
the metastatic stage), six months after birth, and are character-
ized by tumour flattening, tumour drying and depigmentation 
(Vincent-Naulleau et al., 2004). In calves, spontaneous regression 

of congenital cutaneous hemangiomas has also been observed 
(Priestnall, Bellis, Bond, Alony-Gilboa, & Summers, 2010). From an 
evolutionary point of view, two nonmutually exclusive processes 
could explain this phenomenon. Due to the inherited nature of this 
cancer, the domestication process has likely retained hosts able to 
mount strong anticancer defences as a compensatory response, 
and/or those bearing the inherited oncogenic mutations yielding 
to less aggressive forms of melanoma. While the first hypothesis 
seems to be verified in pigs, that is with the host's immune sys-
tem playing a major role in eradicating melanoma cells (Kalialis, 
Drzewiecki, & Klyver, 2009), the second hypothesis is yet to be 
rigorously tested. Although genetic risk loci for osteosarcoma de-
velopment have been identified in the cohorts of three large dog 
breeds (Greyhound, Irish Wolfhound and Rottweiler) (Karlsson et 
al., 2013; Zapata et al., 2019), a previous study showed evidence 
of spontaneous regression occurring in four large dogs (> 40kg): an 
Irish Setter, a spayed mixed-breed dog, a Golden Retriever and a 
Rottweiler (Mehl et al., 2001), also potentially supporting the first 
hypothesis.

The ancestor of domesticated hens could have potentially lived 
for 20–30 years and produced and incubated a small number of fer-
tile eggs during a restricted period of the year. In contrast, strong ar-
tificial selection in the domesticated jungle fowl hen has resulted in a 
short lifespan and prolific, daily ovulation and egg laying, culminating 
in the high frequency of ovarian cancer occurrence in this species 
(Johnson & Giles, 2013). The physiological sequelae associated with 
ovulation, that is inflammation that produces potentially mutagenic 
pro-oxidants and pro-inflammatory molecules, has been proposed 
as the underlying mechanism initiating malignant ovarian cancer in 
chickens. Hens, as young as two years of age (Johnson & Giles, 2013), 
and 30%–35% of birds older than three and a half years (mostly hens 
in research facilities as commercial hens are removed from the flock 
by age two) are susceptible (Fredrickson, 1987). Interestingly, a five-
fold variability between strains exists in the incidence of the disease 
(Johnson & Giles, 2006). Although genetic differences in cancer sus-
ceptibility between the strains cannot be excluded, since the strains 
derive from a similar genetic background, the subsequent evolution 
of anticancer responses in certain strains may be proposed.

Grey horses, especially those aged 15 years and over (up to 
80%), develop spontaneous melanomas without the influence of 
UV radiation. These dermal melanomas primarily develop under 
the tail root, in the genital regions and on the eyelids and lips 
(Seltenhammer et al., 2004). In contrast to humans, these melano-
mas are encapsulated and the metastatic process is retarded and/
or inhibited by unknown factors (Fleury et al., 2000).

In species that have been selectively bred for mammary gland 
growth and milk production (dairy cows and goats), there is a surpris-
ingly low occurrence of mammary tumours, in contrast to domestic 
carnivores (Munson & Moresco, 2007). At the onset of lactation, 
strong inhibition of gene expression in pathways that are involved in 
cell proliferation (i.e. cyclins, cell division cycle-associated proteins 
and proteins involved in DNA replication and chromosome orga-
nization) were observed in the bovine mammary gland (Finucane, 
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Box 1 Genetic factors that promote cancer in domestic animals, creating an environment for the evolution of unique 
anticancer adaptations

The impact of domestication bottlenecks on genetic variation
Bottlenecks, strong artificial selection and small founder population size (reduced effective population size) during domestication 
have had the unintentional effect of attenuating genetic diversity and increasing inbreeding, resulting in the accumulation of delete-
rious genetic variants (higher genetic load). Favouring certain haplotypes contributes to genetic erosion and increased likelihood of 
homozygosity, coupled with higher frequency of long stretches of consecutive homozygous genotypes in the genome (ROH: runs 
of homozygosity) (Szpiech et al., 2013). ROH disproportionately harbour more deleterious homozygotes than other parts of the 
genome, and the presence of identical pathogenic variants of both alleles can give rise to recessive disorders (Assié, LaFramboise, 
Platzer, & Eng, 2008; Hosking et al., 2010). Thus, the impacts of deleterious homozygous mutations are magnified through inbreeding 
(Szpiech et al., 2013).
Mutations associated with favoured traits are not purged
Harmful mutations, which are generally purged from small wild populations (Charlier et al., 2016; Hosking et al., 2010), can rise in 
anthropogenic environments with artificial selection (Kimura, Maruyama, & Crow, 1963) as the selective pressure that they experi-
enced in the wild becomes relaxed, allowing the frequency of nonsynonymous mutations to rise. If these mutations are associated 
with favoured phenotypes, humans will override the purging effect of nature and positively select for these traits (Bosse, Megens, 
Derks, Cara, & Groenen, 2019). In addition, if the detrimental variants are in linkage disequilibrium (LD) with the favoured allele that 
is strongly selected for (e.g. coat colour, milk production etc.), the frequency of the deleterious allele is expected to rise (i.e. genetic 
hitchhiking) (Smith & Haigh, 1974), resulting in genomic regions under strong selection harbouring elevated numbers of damaging 
mutations (Charlesworth, 2006; Good & Desai, 2014). Artificial selection and reductions in effective population size could also drive 
the frequency of deleterious alleles even higher (e.g. in cattle during the domestication process Kim et al., 2013). In addition, genetic 
drift can affect and increase mutation load in smaller populations, as seen in dogs (Björnerfeldt, Webster, & Vilà, 2006; Cruz, Vilà, & 
Webster, 2008; Marsden et al., 2016) and horses (Schubert et al., 2014). Despite their varied phenotypic diversity, domestic rabbits, 
dogs and cats have significantly lower genetic diversity compared to their wild conspecifics (Carneiro et al., 2011; Cho et al., 2013; 
Marsden et al., 2016). A higher proportion of deleterious alleles in ROH have been observed in pigs, chicken (Bosse et al., 2019) and 
cattle (Curik, Ferenčaković, & Sölkner, 2014; Zhang, Guldbrandtsen, Bosse, Lund, & Sahana, 2015), and in a Norwegian dog breed, 
the Lundehund (Kettunen, Daverdin, Helfjord, & Berg, 2017).
The impact of inbreeding, deleterious alleles and mutational load on cancer risk in domesticated animals
Loss of genetic variation and high mutational load can directly and indirectly contribute to cancer development and progression 
(Ujvari et al., 2018). Homozygosity of certain low-penetrance germline cancer genes has been identified as an underlying factor of 
some human cancers, for example oesophageal, oral, lung, bladder and breast cancer and acute lymphocytic leukaemia (reviewed 
in Denic, Frampton, & Gary Nicholls, 2007). Germline gene polymorphisms of known oncogenes (e.g. BRCA1, BRCA2, MC1R, KIT, 
NRAS and RAD51) have been associated with predisposition to various types of cancers (i.e. melanoma, mammary cancer, osteosar-
coma and histiocytic sarcoma) in dogs, cats, pigs and horses (Curik et al., 2000; Flisikowski et al., 2017; Rivera et al., 2009). Apart from 
oncogenes, mutations of tumour suppressor genes have been identified as underlying causes of breed-specific cancer predisposition 
in dogs (Schoenebeck & Ostrander, 2014). Inbreeding and low genetic diversity have also been associated with the increasing inci-
dence of domestic ferret cancers (Gustafson et al., 2018).
Reduced genetic diversity and infections by cancer-causing pathogens
Indirect consequences of reduced genetic diversity in domesticated animals could manifest in their propensity to cancer-causing 
infectious aetiologies. Genetically depauperate populations have been shown to be more vulnerable to pathogen infections than 
genetically diverse ones (reviewed in King and Lively (2012)), and loss of genetic diversity, particularly at important immune gene 
loci, can expose species (including domestic) to infections by cancer-causing pathogens (Acevedo-Whitehouse & Cunningham, 2006; 
Ujvari & Belov, 2011). The notion of transmissibility of tumours, malignant transformations caused by infectious agents, predates to 
the nineteenth century, when the jaagsiekte lung carcinoma in sheep was known to be transmissible, yet the causative retrovirus, 
was only identified in 1983 (Verwoerd, Payne, York, & Myer, 1983). Rous sarcoma virus (Rous, 1979; Weiss & Vogt, 2011); equine 
infectious anaemia virus (Vallée, 1904), feline and bovine leukaemia viruses (Onions, 1985) are all underlying pathologies that cause 
malignant transformation in domestic species.
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Box 2 Evolutionary mismatch between present and past environments, creating an environment for the evolution of 
unique anticancer adaptations

A significant proportion of human cancers are due to evolutionary mismatches as ecological conditions and lifestyles in modern so-
cieties have been reshaped, resulting in maladaptation with our inherent genetics: the latter profiles reflecting adaptations to earlier 
and very different environmental circumstances (Aktipis & Nesse, 2013; Greaves, 2015). One can also predict a negative relationship 
between the time since domestication and the amplitude of mismatches, since artificial selection during long-term domestication 
favours genetic changes allowing species to be better adapted to their novel phenotype and/or environmental conditions. We need 
to determine why mismatches persist in certain domesticated species.
Long-term artificial selection for size in dogs results in higher incidences of bone cancer in larger breeds compared to smaller ones 
(Nunney, 2013). This suggests that despite a long history of domestication, selection on genes responsible for height (and hence a 
larger number of cells) has not been accompanied by selection for more efficient cancer defences, as observed in wild species (e.g. 
Paul and Gwynn-Jones (2003); Abegglen et al. (2015); Svetec, Cridland, Zhao, and Begun (2016)). Perhaps cancer defence selection 
is a considerably slower process than size selection. Alternatively, one can suspect that priority has been given to selecting dogs of a 
large size, without selecting large dogs with higher cancer resistance.
Overcrowding and intensive husbandry, as well as transportation of many domesticated species can enhance the transmission and 
spread of cancer-causing pathogens. Examples include DNA viruses that cause a form of leukaemia in poultry (Marek's disease), pulmo-
nary carcinoma (jaagsiekte) in sheep, and a retrovirus causing bovine leukaemia (a virus that can be spread via contact, milk, saliva or 
commercial exchanges between herds) (Madewell, 1981). Similarly, bringing a wild species like the house sparrow Passer domesticus into 
captivity can induce hyperinflammation (Martin, Kidd, Liebl, & Coon, 2011), which is also known to promote tumorigenesis.
Finally, lifestyle and environmental factors linked to cancer-related deaths in humans, including diet and smoking also affect animals. 
Passive smoking and urban pollution have been associated with cancer in dogs (Reif, Bruns, & Lower, 1998; Reif & Cohen, 1971). 
Although controversial, certain studies suggest a link between exposure to household chemicals, herbicides and/or pesticides and 
the development of cancer in pets (Backer, Coss, Wolkin, Flanders, & Reif, 2008; Garabrant & Philbert, 2002; Gavazza, Presciuttini, 
Barale, Lubas, & Gugliucci, 2001; Glickman, Schofer, McKee, Reif, & Goldschmidt, 1989; Takashima-Uebelhoer et al., 2012). Obesity 
is also becoming a growing problem in dogs and cats. Overindulgence and accumulation of excessive amounts of adipose tissue in the 
body can predispose our closest companions to a plethora of diseases, including neoplasia (mammary tumours and transitional cell 
carcinoma) (German, 2006). Cancer also occurs in domesticated species including sika deer and cattle when animals are kept under 
suboptimal conditions, such as grazing on forage where the carcinogenic bracken fern (Pteridium aquilinum) grows (Jarrett, McNeil, 
Grimshaw, Selman, & McIntyre, 1978; Kelly, Toolan, & Jahns, 2014; Potter & Baird, 2000).
Negative effects of enhanced reproduction due to selection, and suppressed reproduction in pets
Domestication has led to increased reproductive effort and efficiency in several species, that is reaching sexual maturity earlier, 
surviving and reproducing longer, more frequent cycles, altered ovulation and sperm production rates, being less selective for mates, 
larger litter size, lessened embryonic mortality, shortened duration of pregnancy and lactational anoestrus (Setchell, 1992). In con-
trast to their wild counterparts, domestic cattle and pigs show no seasonal effect on their reproduction, reach puberty earlier and 
have shorter gestation. Similarly, laboratory rodents reach puberty earlier and show delayed senescence, ultimately doubling their 
reproductive lifespan.
Increased reproductive effort and efficiency cannot be disassociated from prolonged and altered fluctuation of endogenous hor-
mone levels, some of the critical underlying factors of malignant transformations. The study by El Etreby et al. (1980) found an as-
sociation between endocrine imbalance (increased secretory activity of pituitary growth hormone cells, and depressed secretory 
activity of follicle-stimulating hormone-, luteinizing hormone- and thyrotrophin-producing cells) and canine mammary tumorigenesis 
(Schneider, Dorn, & Taylor, 1969). Spaying bitches at a young age reduces the risk of mammary gland cancers in dogs and cats, but 
interestingly, the frequency of prostate cancer is slightly higher in neutered male dogs (Dorn, Taylor, Schneider, Hibbard, & Klauber, 
1968).
Reproduction is prevented in many domestic animals. As in humans (e.g. Whitaker, 2012), this results in a reproductive mismatch 
for domesticated animals, with females being exposed to prolonged high levels of progesterone without subsequent lactation (e.g. 
in canids), and/or to recurrent high peaks of oestrogen (e.g. felids) because waves of follicles undergo atresia (Munson & Moresco, 
2007). Thus, human interference with breeding of domestic animals results in lifelong exposure to steroid hormones which are major 
risk factors for mammary cancer development.
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McFadden, Bond, Kennelly, & Zhao, 2008). This suggests that anti-
cancer mechanisms compensating for increased risks of malignancies 
(associated with enhanced lobular alveolar growth (Reed, Kutasovic, 
Lakhani, & Peter, 2015)) have potentially been concomitantly and/or 
subsequently selected for.

Notably, benign tumours are more common than malignant tumours 
in Syrian hamsters, one of the world's most inbred animals (laboratory 
colonies of Syrian hamsters have originated from a single breeding 
pair in the 1970s) (Fritzsche, Neumann, Nasdal, & Gattermann, 2006). 
While malignant tumours may develop in hormone-producing glands 
(adrenal glands, lymph nodes) or digestive system organs, only four 
per cent of hamsters suffer from cancer, indicating that this severe 
inbreeding may have contributed to selection for alleles and genetic 
regions that provide enhanced tumour suppression.

Lost in the dichotomy between higher cancer resistance and 
lower cancer virulence, it is possible that the domestication pro-
cess selects for a higher tolerance to cancer. Even if it comes with 
non-neutral effects on vigour that would be fatal in the wild, domes-
tication can favour animals that tolerate the presence of tumours, 
by repairing the damage in a way that keeps the body functioning. 
An intriguing example (supporting the idea that domestication can 
also domesticate malignant diseases and/or favour tolerant hosts), 
concerns two species of tumour-harbouring hydra (Domazet-Lošo et 
al., 2014), kept under laboratory conditions for many years. Because 
the budding rate is reduced in tumour-bearing individuals com-
pared to healthy ones, individuals with tumours are outcompeted 
by healthy ones when experimentally maintained together, a result 
that is also likely to occur in the wild (Bosch personal communica-
tion). Laboratory settings provide the tumour-bearing hydra with 
conditions akin to a domestic environment (food ad libitum, stable 
environmental parameters and no competition with healthy indi-
viduals). Under these conditions, not only are the tumour-bearing 
polyps maintained through time, they also vertically transmit non-
aggressive tumours (to daughter polyps), as aggressive ones kill the 
hosts and are not transmitted. This example supports the idea that 
under domestic conditions, providing an environment with relaxed 
selective pressure, such unique host–tumour relationships evolve 
that are unlikely to exist in the wild.

4  | CONCLUDING REMARKS

Malignancies, from their appearance more than half a billion year 
ago (Aktipis & Nesse, 2013), trigger the evolution of myriad antican-
cer defences in multicellular organisms (Casás-Selves & DeGregori, 
2011; DeGregori, 2011). However, the evolution of these adapta-
tions is constrained by the need to achieve maximal fitness under 
different environmental conditions. A diversity of factors and/or 
ecological contexts has the potential to exacerbate cancer risks in 
organisms and, in return, boost the evolution of anticancer defences. 
For instance, the enhanced cancer defence of apoptotic response in 
elephants (although not a domesticated species) may be related to 
the fact that the elephant genome contains 20 copies of the tumour 

suppressive gene TP53 (Abegglen et al., 2015). Organisms natu-
rally or artificially exposed to environmental oncogenic factors can, 
sometimes rapidly, evolve specific adaptations to cope with pollut-
ants and their adverse effects on fitness (Vittecoq et al., 2018).

The domestication process places animals in unprecedented 
ecological contexts in which cancer risks are exacerbated on the 
one hand, but classical selective pressures are relaxed on the other 
(predation, food limitation). It is theoretically predicted that anti-
cancer defences could be qualitatively or quantitatively different 
compared to those in the wild. Enhanced anticancer defences, if any, 
are traditionally most efficient in young individuals (Greaves, 2007; 
Jacqueline et al., 2017) because longevity is not usually the trait 
targeted for by artificial selection in domestic animals. While this 
process contributes to maintaining higher rates of cancer in older 
domestic animals, it should not hide the fact that at younger ages, 
an absence of malignant problems should rely on more efficient an-
ticancer mechanisms than in wild species.

Domestication is not just a model but rather an authentic evo-
lutionary process, allowing us to explore how artificial selection 
has potentially shaped the evolution of original host–tumour rela-
tionships. This could be the beginning of novel treatment develop-
ment to eliminate or better tolerate cancer. Thus, rather than merely 
viewing the rare instances of cancer tolerance and resistance in do-
mestic animals as merely an oddity, and something to be ignored in 
the light of the high cancer incidences typical of domestic animals, 
we should make these the target of further study. Sharing informa-
tion from experimental and epidemiological studies between the 
veterinary and human medical fields could result in major advances 
in the understanding of selected anticancer defences during the do-
mestication process.
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