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Abstract

This paper extends the work of Pindyck [1] by taking into consideration a large class family
of different utility functions of economic agents. As in Pindyck [1], instead of considering
a social utility function that is characterized by constant relative risk aversion (C.R.R.A),
we use the expo-power utility function of Saha [2]. In fact, depending on the choice of the
expo-power utility function parameters, we cover a diverse range! of utility functions and besides
covering the other utility functions that a C.R.R.A omits, Expo-power function permits us
to discern if under the other behaviors of economic agents, the willingness to pay remains
more affected by uncertain outcomes than certain outcomes, when we vary the expectation
and standard deviation of the temperature distribution probability. Our paper has maintained
the small-tailed gamma distributions of temperature and economic impact of Pindyck [1], not
only because they hinder infinite future welfare losses (for an exponential utility function), but
because it is easy to change some moments of the distribution (jointly or holding the others
fixed) while studying how uncertainty influences the willingness to pay as explained in Pindyck [1].
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1 Introduction

Climate change is often described as the biggest environmental problem of the 21st century (Stern et
al., 2006), although evidence is considered insufficient for some. According to the Intergovernmental
Panel on Climate Change (IPCC), greenhouse gas (GHG) emissions from human activities, including
the burning of fossil fuels such as coal, are "most likely" Temperature, changes in precipitation,
and increasing variability in weather conditions. Without a coordinated policy around the world,
advanced climate models predict that the average temperature in the United States for instance
will increase by about 3 to 8 degree Faraday (1.7 to 4.4 degrees Celcius) by the end of the century,
compared with today (IPCC 2007). In addition, the distribution of daily temperatures could be
expected to increase in order to pose serious problems of individual or societal well-being, resulting
in conflicts often due to starvation or, more generally, to the sharing of scarce resources diminished
by climate change. Several direct and indirect economic consequences of climate change (climate
damage) are: changes in crop yield, loss of land and capital due to rising sea levels, changes in fish
catches, material damage caused by hurricanes, changes in labor productivity and health expenditures
due to illness and heat stress; changes in tourism flows and energy demand for heating and cooling.
Other important impacts of climate change are studied outside the modeling framework. One of the
obvious consequences of climate change is the occurrence of more severe natural disasters, which are
causing loss of human life not to mention their increasingly significant financial costs. To limit the
negative consequences of climate change, scientists estimate that global warming can not exceed two
degrees Celcius above the pre-industrial temperature. However, we are moving towards the critical
threshold of 1.5 degrees Celcius . To limit global warming, we must reduce emissions of greenhouse
gases by 80% to 95% by 2050 compared to the amount emitted in 1990. Many studies already
show that this objective is achievable, but there is a need for urgent action at all levels. One must
change the way a whole society works is anything but obvious. This usually requires a long-term
effort on the part of the many sectors and actors that influence the way of life of this society. To
implement meaningful changes, incentives are generally required. It is therefore essential that the
political authorities take steps in this direction. Thus, several countries or insurance companies are
asking the question: what is the willingness to pay today of an individual or society to avoid or be
resilient faced with a temperature increase of 2 degrees Celcius compared to that of today ?

To this effect, as indicated in Pindyck [1] (which is our main reference for this paper), economic
analyze of climate change policies often focus on "probable" scenarios - those within a confidence
interval d About 66 — 90% - for emissions, temperature, economic impacts and abatement costs.
It would be difficult to justify the immediate adoption of a rigorous reduction policy in the light
of these scenarios and the consensual estimates of discount rates and other relevant parameters.
Indeed,Pindyck [1] wonders: 1) whether a rigorous policy can be justified by a cost-benefit analysis
that distributes all possible results; And 2) whether the demand for reduction depends more on
expected results or uncertainty about outcomes ?

Since, recent climate science and economic impact studies allow one to at least roughly estimate
the distributions for temperature change and its economic impact. Pindyck (2012) show how these
distributions can be incorporated in and affect conclusions from analyses of climate change policy.
In its framework for policy analysis, Pindyck [1] estimates a simple measure of “willingness to pay”
(WTP) that is the fraction of consumption w*(7) that an society would be willing to sacrifice, now
and throughout the future, to ensure that any increase in temperature at a specific horizon H is
limited to 7. Note that Pindyck [1] has focused only on the “demand side” of climate policy.

After a drawing on the current state of knowledge of global warming and its impact and the use
of information on temperature change distributions based on scientific studies compiled by the
IPCC, as well as information On the economic impacts of the recent "integrated assessment models"
(IAMs), Pindyck [1] focuses on the gamma distribution for these variables. It models the economic
impact as a relationship between temperature variation and the growth rate of GDP as opposed to
its level. This distinction is justified by theoretical and empirical considerations and implies that



global warming can have a permanent impact on future GDP. It then examines whether reasonable
values for the remaining parameters (eg, initial growth rate and risk aversion index) can give values
of w*(r) greater than 2% or 3% for Low values of 7, which could favor a strict abatement. It
also shows how w*(7) depends on the mean with respect to the standard deviation of the future
temperature, and it calculates the iso-WTP-combinations of mean and standard deviations for
which the WTP Is constant. This gives a further insight into how uncertainty drives WTP.

In the vein of Pindyck [1] and some of his references, we address the problem of calculating the
willingness to pay to avoid an increase in the temperature of the tau order. Note that Pindyck [1]
works under certain assumptions of which the two main ones we retain are that: 1) the variation
of temperature over time follows an asymmetric gamma probability distribution, and 2) the society
has a utility function of the CRRA type.

Our contribution is to say that a legal person, a society or a country does not necessarily have
preferences in the face of climate change characterized by a type CRRA utility function. In fact, it
is well-known that using CRRA framework imposes a specific restriction. At the end of the COP 21
in Paris, we noted that after the US presidential elections, the United States wanted to question its
accession to the Paris agreement. It should be noted that more years ago, during previous conferences
from Lima to Paris organized against climate change, several emerging countries (India, China, ...
etc) were reluctant. This shows that climate change aversion can not easily be measured by constant
risk aversion. With EU preferences, resistance to intertemporal substitution is constrained to be
equal to relative risk-aversion. Note that resistance to substitution controls the attitude toward
variations in consumption across time, under certainty. Also, risk-aversion controls the attitude
toward variations in consumption across states of the world, at a given date. Moreover, we can
mention that the modification of the curvature of the utility function makes substitution resistance
and risk aversion move.

As an alternative, we adopt the expo-power utility function of Saha Saha [2], which is quite flexible
and whose CRRA, DRRA, HRRA, CARRA, IRRA, DARA preferences can be identified according
to the choice of the parameters. We arrive under our new assumption, all things equally otherwise
as in Pindyck [1], highlighting a propensity to pay w*(7) which depends on the three parameters of
Expo-Power utility function. .

Usually, when an economic analysis of climate change policy is conducted, it is made in 5 steps?
which lead to reforms - even a stringent policy of abatement. In uncertainty, authorities sometimes
face the dilemma of spending funds almost unnecessarily on programs of climatic reduction or
do nothing and undergo the irreversible effects of climate change. In spite of this uncertainty
(uncertainty on predictions or available forecasts), it remains nevertheless wise to adopt a perfect
timing of preventive policy faced with irreversible risks. Although there are different views on the
quickness in adopting a policy of reduction, (see, for example, for two period models,Kolstad [3]
Fisher and Narain [4], and for multi-period models or with continuous time; Kolstad [5], Pindyck
[6, 7] and Newell and Pizer [8]) for a consideration of irreversible effects, Pindyck [9] undertakes a
study of the interaction between uncertainty and irreversibility in climate change policy.

Another approach of economic analysis (instead of the 5 conventional stages) is to calculate a measure

2 According to Pindyck [1] : (1) Projections of future emissions of CO and equivalents (greenhouse gases) under a
usual scenario of reduction policy, and estimations of future atmospheric concentrations of CO2. (2)Average or regional
projections of temperature change which will result from strong concentrations of CO2. (3) Projections of G.D.P and
consumption lost due to the high temperatures. (4) Estimations of the cost of greenhouse gas dejection for diverse
concentrations. (5) Considerations on the social utility and the preferential time rate, in such a way of weighing the
consumption lost by reduction face to benefits of consumption which will follow a reduced warming.



of the willingness to pay %, like Pindyck [1], the fraction of consumption w*(7), that the society would
be ready to sacrifice* in order to ensure that any increase in temperature at a future time be limited
at 7, this, besides helping us solely focus on the influence of uncertainty and the ramifications thereof,
will save us from having to make estimations of future concentrations of gases and costs of abatement.

This paper builds on the work of Pindyck [1] and takes into consideration different classes of utility of
economic agents. Pindyck considers social utility through a C.R.R.A utility function and thanks to
the expo-power utility function of Saha [2], we will consider, by a variation of parameters governing
this function, all® the utility range except C.R.R.A . Besides covering the other utility classes that a
C.R.R.A omits, this function permits us to discern if under the other behavioral regimes of economic
agents, the willingness to pay remains more affected by uncertain outcomes than certain outcomes
when we vary the expectation and standard deviation of the temperature distribution.

Throughout the dissertation, unless otherwise specified, we will have the following abbreviations:

Throughout this paper, we maintain the small-tailed gamma distributions of temperature and
economic impact of Pindyck, not only because they hinder infinite future welfare losses (for an
exponential utility function), but because it is easy to change some moments of the distribution
(jointly or holding the others fixed) while studying how uncertainty influences the willingness to pay
as explained in Pindyck [1].

We calculate the W.T.P using an exponential utility function. Taking §=0 and ¢y=0.020, H=100,
and time t going up to 500 years, we obtain values of w*(0) close to those obtained by Pindyck
[1] ; about 2.5% for the DARA/DRRA class, 0.3% for the DARA/IRRA class, 0.025% for the
CARA/IRRA and 0.015% for IARA/IRRA classes. In the averse classes, an increase of the utility
discount rate leads to an increase of the W.T.P, even more, we have the two scenarios in the
DARA/IRRA class for an « parameterization threshold (5 held constant). For the least averse
class, DARA/DRRA, we have the opposite and an increase of the utility discount rate produces a
reduction of the W.T.P.

Uncertainty and climate policy; which, between uncertain and certain outcomes, have a greater
influence on the W.T.P 7, to answer this question, we calculate the W.T.P for changes in expectation
and the standard deviation of the temperature distribution (the parameter of economic impact held
constant at its predicted value of 0.0001363). For the same value of W.T.P, we also calculate the
corresponding expectation/standard deviation couple; as well, we calculate the sensitivity of the
W.T.P with respect to changes in £(T) and SD(T) (w*/0E(T) and Ow*/dSD) and for all these
different cases, treating expectation and standard deviation as economic goods, we calculate the
marginal rate of substitution, M.R.S=-(0w*/dSD)/(0w*/0E(T)), to unveil social preferences.

In what follows, in section 2, we explain the methodology and its relationship with that of Pindyck
[1]. Section 3 recalls the work of Pindyck and the inherent conclusions. Section 4 considers the
work of Pindyck from another angle, changing the C.R.R.A utility function for the Expo-power of
Saha [2] and shows the values of W.T.P and its parameterization obtained for this change. Section
5 summarizes the findings and provides future prospects. In section 6, we give the conclusion of our

paper.

3Throughout this paper will carry the abbreviation W.T.P .

4That this proportion of consumption be enough to limit the future temperatures at 7 is not the purpose of the
analysis, but to discern the willingness of the agents.

SC.AR.A, D.AR.A, LARA, D.RR.A and LR.R.A except C.R.R.A .



2 PINDYCK (2012) BACKGROUND REVISITED AND METHODOLOGY

Abbreviation Meaning
wW.T.P Willingness to pay.
w*(71) fraction of consumption that society would be willing to sacrifice to ensure that

any increase in temperature at a future point be limited to 7; Also W.T.P.

& expectation/mean of distribution.

SD Standard deviation of distribution.

T; temperature at time ¢.

Ty temperature at the horizon H.

t time.

G.D.P Gross Domestic Product.

g0 Initial G.D.P rate.

1) Utility disount rate.

n Index of risk-aversion.

a, B Parameters giving index of risk aversion in the exponential utility function.
w Social welfare.

T Parameter of temperature distribution.

¥ Parameter of economic-impact distribution (temperature on G.D.P.) .
L(T) Loss function (of G.D.P due to temperature T.) .

Table 1.1: List of abbreviations.

2 Pindyck (2012) Background Revisited and methodology

We resume the modeling of Pindyck (see Pindyck [1],291 — 293), and we introduce the exponential
utility function:

UC) =0 —e P 0>1,a#0,8+#0,a8 > 0.
that we use to calculate the fraction of consumption w*(7), that society would be willing to sacrifice
to ensure that any increase in temperature at a future point be limited to 7; this fraction, w*(7), is

a measure of the willingness to pay, W.T.P .

employing the consumption model of Pindyck,
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2vHTy 2vHTy t/H}
= — —29Ty)t 1/2 : 2.0.1
Ce = eap {~F1 T+ ~ 2Tt + Tt (1/2) (20.1)
If, Ty and v were known, social-welfare would be given by;
W= / U(Cye dt. (2.0.2)
0

where,

76t7ﬁe:vp{ - %Jr(gon'yTH)atJr 2107?(?/72%1 (1/2)t/H }

U(Cye ™ = e —e (2.0.3)

If we assume that society sacrifices a fraction w*(7) of the present and future consumption to ensure
that Ty < 7, with uncertainty at time ¢ = 0, social welfare would be given by;

Wi(r) = [0 — e 08y, [U(Cetar (204)
0

where, & ; is the conditional expectation at ¢ = 0 using the distributions of 7w and v, conditioned
by Ty <.

If no sacrifice of consumption is made, social welfare would be given by;

Wy = [0 —ePl& / U(Cy)e 0t (2.0.5)
0

where, & like before, is the expectation at ¢ = 0 using the distributions of Ty and ~, but without
any conditioning on Tg. The W.T.P to keep Ty < 7, is calculated as the quantity w*(7), which will
assert equivalence between Wi (7) et Wi.

2.1 The case of a C.R.R.A utility function: the work of R.S. Pindyck

Professor Robert S. Pindyck conducts a study of uncertainty in climate change policy, he
demonstrates how the W.T.P is more affected by uncertain outcomes® (standard-deviation instead of
expected mean temperature from temperature distribution) and suggests that a better understanding
of the uncertainty in temperature distributions and economic impact (in the I.P.C.C studies and
others) could lead to stronger W.T.P predictions, more reliable and possibly a better climate policy.
Throughout he uses a C.R.R.A utility function. In what follows, we resume the key points in Pindyck
[1] and later we will modify the C.R.R.A utility function.

According to his model”, temperature follows;

t

T, = 2Ty[1 — (=)7] (2.1.1)

1
2
the G.D.P growth model is,

gt =90 —V1} (2.1.2)

5He generates a table of mean /standard-deviation couples which produce the same W.T.P, and even for high expected
mean temperature, he finds the corresponding standard deviation low, altogether producing the same W.T.P, which
demonstrates how certainty on the predicted mean temperature is more useful to society than the mean temperature
in itself.

"This model allows a doubling of temperature as t — oo, which is in accordance with the I.P.C.C [10, 11, 12].




2 PINDYCK (2012) BACKGROUND REVISITED AND METHODOLOGY

or, by (2.1.1), we have,

g = go — 12T [1 — (5)7] (2.1.3)

N

at the horizon H, the G.D.P is G.D.Py, but as we suppose slight losses (for a negative growth rate
gt), it is nevertheless updated and indeed is L(T")G.D. Py, where L(T) is the loss function (such that
at the horizon H, for time ¢, the percentage of G.D.P lost due to excess temperature T" is 1-L(T)).
Throughout we will use the loss function L(T") = e T and the consumption C;®, is given by,

b g(s)ds 2vHT. 2vHT,
c, = ehod - ewp{—l;(l/;; + (go — 29Tt + 12(1/5(1/2)'5/}1}. (2.1.4)
and the relation v/3? becomes v = QIZES)_ - ﬂﬁT

n
The utility function is U(Cy) = 1%7 , such that welfare is calculated as:

W= /U(Ct)e"”dt = /ew*f’t*w(%ﬁdt (2.1.5)
0 n 0
with
p=m—1)(g0 —2vTu) +0 (2.1.6)
w=2(n—1)yHTy/In(1/2) (2.1.7)

The LP.C.C [10] study foresaw temperature increases of 2 to 4.5 with an expectation of 3.0°C,
and the values predicted in more recent studies like the I.P.C.C [13] maintain predictions of the
same order due to reforms already in place to limit greenhouse gases. Weitzman [14], has percentile
estimations of 17% probability that the doubling of COy concentration would lead to a 4.5°C
growth of mean temperature, probability of 5% for a growth of > 7.0°C, and a probability of 1%
for an increase of > 10.0°C. In using these 3 percentiles, Pindyck fits a shifted gamma temperature
distribution.

This shifted gamma distribution, is the #-shifted gamma distribution:

flz;m N, 0) = F)(\r) (@—0) e X0 x>0, (2.1.8)

with I'(r) = [5° s""'e~*ds. Obtaining 7 = 3.8, A = 0.92, and 6 = —1.13.

Also, for the distribution of economic-impact (impact of temperature on G.D.P), we first find a

distribution for 8 in the loss function L(T") = e_ﬂTQ, and we use the relation v = 212%)71 /%T , to get

the v distribution.

According to the I.P.C.C [11], global G.D.P losses average 1-5%, for a 4°C warming, according to
Dietz and Stern [15] 0.5-2% of G.D.P lost due to T' = 3°C, and 1-8% for T' = 5°C. Standing on

Swith Co = 1.
ft g(s)ds 2~HT, 2vHT, t/H ft gods

9C, = eJo = exp{*ilg(l/f){ + (9o — 29Twu)t + 13(1/5 (1/2) / } but in fact, C; = L(T;eJo , since L(T) =

e_’BTg7 at horizon H,
2yHTy YHTH BT ol
Cn = - —29Ty)H — ¢ PTHi g90
" emp{ (i) T 0~ 2 TmH ln(l/Q)} e e

, which implies that v = 2&?511 eL
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Figure 2.1: Temperature distribution (£(7T") = 3.0°C,r = 3.8, A = 0.92)

the appellation of the I.P.C.C of ”most likely” which designates a confidence interval of 66%, it is
possible to build 3 percentiles from [1-5]: let 0.17 correspond to 1, 0.50 correspond to 3 and 0.83 to
5, such that all this makes a confidence interval of 83% — 17% = 66%, for a 4°C warming. We now
use!” the relation v/ to have the percentiles £(v) = 0.0001363 (corresponding to a 50% probability),
v = 0.0000450 (17%) and 2 = 0.0002265 (83%). Then we fit a shifted gamma distribution on these
three percentiles and we get r = 4.5, A = 21,341 and 0 = £(v) — ¥ = —0.0000746.

4000
3000
2000

1009

0.0002 0.0004 0.0008 0.0008

Figure 2.2: Economic-impact distribution (£(y) = 0.0001363,r = 4.5, A = 21, 341)

Now that we have the parameters for the temperature and economic-impact distributions, everything
makes sense and (2.1.5) is well defined. W.T.P is calculated as the quantity w*(7) which will
assert equivalence between the constrained welfare expectation (under a consumption reduced of
w*(7)%, temperature distribution censured!! en 7 and that of economic-impact unchanged) and
the unconstrained welfare expectation (under total consumption, of 100%, and the distributions as
estimated above).

10y = 2 ST " which implies that BT? = 227G =L HT~  Since for L% of lost G.D.P, 1 — L = exp[—BT?=

2in(2)—1 H n(2)
exp[—0.557THT], for H =100, T = 4°C, 0.97 = e~ 2235¢(7) .99 = ¢=223:5M1 (.95 = ¢~ 223572,

"we divide by [ f(T)dT so that it remains a density.

o
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We have,
00 T 400
1 —w*(7))t" 1 4
[ ;:U (T)] / F( )/ ew—pt—w(%)H f(T)g(’y) de'Y dt
— T
K 0 0T 6,

oo | +oo +oo
t
:1i/ //ew_pt_“(%)Hf(T)g('y)dev dt. (2.1.9)
T o1 6,

.
with F(7) = [ f(T)dT, 07, 6 the lower limits of the temperature and economic-impact distributions,
O

p and w as in (2.1.6) and (2.1.7).

which implies that w*(7) is given by;

oo | +00 400 1L ﬁ
f{ [ [ e QT £(T)g(y) de’y} dt
w*(r) - 1 - 0 16 b . (2.1.10)

T 400 .
{F%ﬂ [ [ e T £(T)g(y) dev} dt
Or 0,

o3

2.1.1 Certainty on temperature and its economic impact

Supposing that temperature follows with certainty (2.1.1), and that the economic parameter is
constant at its predicted mean of £(y) = 0.0001363, we have;

1- n T
W / et (DT gy = e / =T g (2.111)
—n -1
0 0

where p and w are given by (2.1.6) and (2.1.7), and p, and w; (due to w*(7)% of sacrificed
consumption) are given by;

pr = (n—1)(g0 — 27E(7)) + 6 (2.1.12)
wr =27H(n—1)E(y)/In(1/2) (2.1.13)
and the W.T.P is calculated as;
~ . 1
[ esmrtoh# gy
0

w*(r)=1- (2.1.14)

[ esrmprten (D gy
0

2.1.2 Uncertainty on temperature and its economic impact

In the case of uncertainty, we use the temperature distribution, f(7'), and economic-impact
distribution g(7), obtained higher to calculate the W.T.P as in (2.1.10).
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Figure 2.3: W.T.P and temperature change T7,n = 2, go = 0.015,0.020,0.025, = 0.

2.2 Influences on W.T.P
2.2.1 The case of certainty: W.T.P and T%.

Temperature follows T3 = 2Ty[1— (%)%], varying the W.T.P for values of Ty at the horizon H = 100,
we have in the figure, a calculation of w*(0), the willingness to pay to keep T} nil, with the parameters;
n=2,g9 = 0.015,0.020,0.025,§ = 0. W.T.P increases proportionally to T and inversely to gg, which
means that a smaller initial G.D.P growth rate would imply a greater W.T.P . According to Pindyck,
the more gg is small, the more we get a low consumption discount rate, which will produce a greater
W.T.P .

2.2.2 The case of uncertainty: W.T.P and 7.

In the case of uncertainty, everything is calculated as an expectation using the distributions of
temperature and economic-impact, and the W.T.P is given by (2.1.10). The following figure calculates
W.T.P with the values; n = 1.5 et 2, g9 = 0.015,0.020,0.025 and § = 0. W.T.P is inversely

proportional to 7, 7 and gg.

— n=15,g,=0.020
n=2.g,=0.015
n=2.g,=0.020

— n=2,g,=0.025

Figure 2.4: W.T.P, T and  uncertain, n = 1.5 and 2, gy = 0.015,0.020,0.025, § = 0.
According to the figure, consumers (with an index of risk aversion, n of 2, and with an initial

growth-rate, go of 0.020) would be ready to sacrifice about 2% of consumption to ensure that the
increase of temperature be nil.

10



2 PINDYCK (2012) BACKGROUND REVISITED AND METHODOLOGY

2.2.3 The case of uncertainty: W.T.P and 7.

Figure 2.5 shows the relation between w*(3) and n. W.T.P is inversely proportional to n and 9,
although under another temperature distribution with a higher mean, the W.T.P would be greater.
We have the parameters; 7 = 3, go = 0.020, § = 0 and 0.01.

— &=0
6=0.01

b
. ]

[=]

2.5

Figure 2.5: W.T.P and 7 for 7 = 3, g9 = 0.020, 6 = 0 and 0.01.

Similarly (but in this case, n'? and not go) as above, the more 7 is small (nearing 1), we have greater
W.T.P values, but as soon as § increases (be it just of 0.01), W.T.P is considerably reduced to less

than 2%.
In Figure 2.6, the mean of the temperature distribution is increased to, £(Ty) = 5.0°C, and we have,
for the same parameters as before, greater W.T.P values.

— 4=0
46=0.01

Figure 2.6: W.T.P and n for 7 = 3, £(Ty) = 5°C, go = 0.020,6 = 0 and 0.01.

2.3 Discussion and comments

To justify'? his choice of the G.D.P growth rate in the modeling of the economic impact, taking
into consideration the relation between temperature and the rate, instead of the growth level of
the G.D.P, Pindyck in Pindyck [16], conducts a comparative study of the two considerations, and
obtains almost similar values of W.T.P . It could also be the case that the low weight of distribution
tails underestimate the probability of catastrophic events (strong temperature increases beyond its

12Tn Ramsey’s growth model, the consumption discount rate is given by R; = 1g: + 6, so a small G.D.P growth
rate, go (or index 7, for a given ¢) will produce a small consumption discount rate and thus consumers would be more
inclined to sacrifice a fraction of their present and future consumption.

13This choice might underestimate G.D.P losses .
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3 THE MODEL WITH THE SAHA EXPO-POWER UTILITY FUNCTION

expectation or great G.D.P losses beyond predictions of the economic impact distribution) and thus
underestimating the W.T.P, but in Pindyck [17], Pindyck shows that so far as the marginal utility is
bounded, these events disappear and a small-tailed distribution could produce greater W.T.P values
than a thick-tailed distribution.

When he gets small W.T.P values (even for an utility discount rate of zero, 6=0.) This is due to the
low weight of the distribution tails and the fact that the corresponding consumption discount rate
(ngo) is also low, and losses at the horizon H=100 years, are very low in the early years. For the
C.R.R.A agent, if we want to have strong W.T.P values, we must be limited to small values of the
index of risk aversion (7<1.5), small G.D.P growth rate (gp<0.020) and a nil utility discount rate,
0=0.

For a variation of parameters'*, Pindyck obtains values of w*(0) (the willingness to pay to limit the
increase of temperature at 0) around 2%, and far below 2% (around 1%) in the case of limiting the
increase of temperature to the predicted value of the I.LP.C.C of 3°C'. The mean and the standard
deviation of the temperature distribution vary, and one at a time (holding the other constant each
time), he calculates the W.T.P . He also calculates the corresponding mean/standard deviation
couple producing the same W.T.P .

All through, the marginal rate of substitution obtained is larger for small values of standard deviation
and considerably larger means; which means that uncertainty on temperature (from the economic
agents’ point of view) is more important than certainty in terms of welfare; is a greater driving
force of W.T.P, and thus of climate policy. A W.T.P value of 2% is small but does not mean that
an abatement policy should not ensue; considering only 2% of the G.D.P for a country in terms of
monetary value, if not 1% to limit the increase to its predicted value of 3°C), this is a good investment.

3 The Model with the Saha Expo-Power Utility Function

Most economic agents do not exhibit a constant utility. The utility function we use is at the same time
D.R.R.A,LR.R.A,D.A.R.A, C.A.R.A and LA.R.A (by a variation of parameters); except C.R.R.A'?,
and as such is a complement to the work of Pindyck [1]. We use the utility function introduced by
Saha [2],

U(Cr)=0—e 7" 0>1,a#0,8#0,a8>0. (3.0.1)

We have, by a variation of parameters,

DRRA CRRA IRRA
DARA o<0,0<0 | O<a<l1l, >0
CARA | | a=18>0
IARA | | a>1,8>0

Table 3.1: Classification of the exponential utility function in terms of «, 5.

lets put, for U(Cy)e% given by (2.0.3),

1Gee Pindyck [1],pages 299 and 300.
5We note that R (w) = A(w) + wA’(w), and if our utility function is already C.A.R.A, we have A’(w) = 0, and
R'(w) = A(w)= constant# 0. So an utility function cannot be at the same time C.A.R.A and C.R.R.A .

12



3 THE MODEL WITH THE SAHA EXPO-POWER UTILITY FUNCTION

T 400
1
= 501 [ [ U@ @) (3.0.2)
o7 6,
+00 400
/ / U(Cy)e ™ f(T)g(v) dTd~. (3.0.3)
o7 0,
with F(r) = [ f(T)dT, 0r, 6, the lower limits of the distributions of temperature and
Or

economic-impact.

Proceeding like before, to find the willingness to pay,

[0 — e BO—w" ()" / M, (¢ _ B / Mo (£)dt
0 0
[0 — e P MG, = [0 — e PGo. (3.0.4)

and the W.T.P is given by;

w*(r)=1- (—;ln {9 —[0—e "] CE;O: })Ua . (3.0.5)

3.1 Certainty on temperature and its economic impact

In the case of certainty, temperature follows T; = 2Txy[1 — (é) ], and the parameter of economic

b1
impact is constant at v = £(y) = 0.0001363. As a result of w*(7)% of consumption sacrificed, at
time ¢, at the horizon H (because Ty < 7), C; takes the form,

Cy = e:cp{ (1/2) + (g0 — 2y7)t + l2 55)(1/2)t/H}

put,
_ 27HT
&= n(1/2)’ (3.1.1)
G =go — 29T. (3.1.2)

to calculate the W.T.P, we have;

(6 — e7 Ptz / g0t _ o~Ot—Ben{—atrtacritat, (1/2)11}) gy
0

_B] /(96—& o 6—6t—5@:cp{—a£+a§t+ag(1/2)t/H})dt
0
[0 — e‘ﬁ(l—w*(f))a]b =1[0- e_B]ITH- (3.1.3)

with & = ?;ngzH , ¢ = go — 29Ty under a full consumption regime.
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3 THE MODEL WITH THE SAHA EXPO-POWER UTILITY FUNCTION

We then have in this case that w*(7) is given by;

wh(r)=1— <—;ln {9— [e—eﬁ]%f})l/a. (3.1.4)

3.2 Uncertainty on temperature and its economic impact

In the case of uncertainty, like in Pindyck [1], everything is calculated as an expectation using the
distributions of temperature and economic impact, and the W.T.P is given by (3.0.5) .

3.3 Influences on W.T.P : the case of certainty.

In the case of certainty, temperature follows T; = 2T [1 — (%)%] and varying the W.T.P for values
of Ty at the horizon H = 100, we have in the figures which follow w*(0), the willingness to pay to
keep T} nil according to the different utility classes. We vary the parameters «, 3, 616, go and §, and
i study how these affect the W.T.P .

3.3.1 W.T.P and Ty: the case D.A.R.A and D.R.R.A: o <0, 5 <0.

This category represents the least risk averse agents, and with parameter values of a=-0.3, f=-3.55,
0=2.33, go=0.015, 0.020, 0.025, 6=0 we have:

[=]
=]

=]
=]

=]
(=]
o

— y=0.015
95=0.020
g,=0.025

=]
=]
r

=]
(=]
]

=]
=]
1

(=]
(=]

ra
b

=)

=3

Figure 3.1: W.T.P and temperature change T ,the case D.A.R.A and D.R.R.A, a=-0.3, §=-3.55,
0=2.33, go=0.015, 0.020, 0.025, 6= 0.

We have that, the W.T.P remains proportional to temperature increases, such that at the horizon
H, a greater value of Ty would produce a greater willingness to pay; similarly, the W.T.P remains
inversely proportional to the initial G.D.P growth rate, go. For Ty = 10°C, go = 0.015, Figure 3.1
tells us that, for the less averse person w*(0) = 7%.

3.3.2 W.T.P and T}: the case D.A.R.A and I.R.R.A: 0 <a <1, §>0.

This category represents the average risk averse agents, and with parameter values of «=0.42, f=1.2,
0=2.33, go=0.015, 0.020, 0.025, 6=0 we have:

The W.T.P remains proportional to temperature increases, and inversely proportional to the initial
G.D.P growth rate. For Ty = 10°C, gg = 0.015, Figure 3.2 tells us that for the averagely less averse
person w*(0) = 2%.

6We keep 6 constant at 2.33, since the exponential utility function is unique but for an affine transformation, the
parameter 6 does not affect the characterization of social utility classes.
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3 THE MODEL WITH THE SAHA EXPO-POWER UTILITY FUNCTION

my
(o)

— g=0.015
go=0.020
gy=0.025

Figure 3.2: W.T.P and temperature change T, the case D.A.R.A and I.LR.R.A, a=0.42, g=1.2,
0=2.33 , go=0.015, 0.020, 0.025, §=0.

3.3.3 W.T.P and Ty: the case C.A.R.A and I.LR.R.A: a=1, 8> 0.

This category represents the averagely more risk averse agents, and with parameter values of a=1,
£=1.2, §=2.33, gp=0.015, 0.020, 0.025, =0, we have:

o
wridy

— y=0.015
95=0.020
g,=0.025

Figure 3.3: W.T.P and temperature change Ty, the case C.A.R.A and I.LR.R.A, a=1, =1.2, 6=2.33
, 90=0.015, 0.020, 0.025, 5= 0.

The W.T.P remains proportional to temperature increases, and inversely proportional to the initial
G.D.P growth rate. For Ty = 10°C, go = 0.015, Figure 3.3 tells us that for the averagely more averse
individual w*(0) = 0.17%.

3.3.4 W.T.P and T}: the case I.LA.R.A and I.LR.R.A: a > 1, > 0.

This category represents the most risk averse agents, and with parameter values of a=1.2, f=1.2,
0=2.33, ¢go=0.015, 0.020, 0.025, =0, we have that W.T.P remains proportional to temperature
increases, and inversely proportional to the initial G.D.P growth rate. For Ty = 10°C, g9 = 0.015,
Figure 3.4 tells us that for the most averse individual w*(0) = 0.09%, and significantly below 1%.

3.4 Influences on W.T.P: the case of uncertainty.

In the case of uncertainty, temperature and the economic-impact parameters follow the distributions
of Figure 2.1 and Figure 2.2 respectively. Varying the W.T.P for values of 7 at the horizon H = 100,
in the following charts, we have the calculation of w*(7), the willingness to pay to keep Ty < 7, for
different values of 7. We vary the parameters «, 3, go and §, and study how these affect the W.T.P.
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3 THE MODEL WITH THE SAHA EXPO-POWER UTILITY FUNCTION

=

— gy=0.015
§o=0.020
§,=0.025

Figure 3.4: W.T.P and temperature change T}, the case I.A.R.A and I.LR.R.A, a=1.2, f=1.2, 6=2.33
, 90=0.015, 0.020, 0.025, 6=0.

3.4.1 W.T.P and 7: the case D.A.R.A and D.R.R.A: o <0, 8 < 0.
For parameters values of a=-0.2, -0.3, §=-3.55, §=2.33, go=0.019, 0.020, 0.021 and =0, we have:

— a=-02,,=0.020,5=-3.55
a=-0.3,9,=0.019 f=-3.55
a=-0.3. gy=0.020,3=-3 55

— a=-03,,=0.021 =-3.55

Figure 3.5: W.T.P and 7, the case D.A.R.A and D.R.R.A, a=-0.2, -0.3, 5=-3.55, §=2.33, go=0.019,
0.020, 0.021, 6=0.

In Figure 3.5, for a=-0.3, §=-3.55 and ¢y=0.019, we have that the less averse individual would be
willing to sacrifice w*(0) = 2.3%. If we take the values of a=-0.2 and gy=0.020, the value of w*(0)
increases to 2.9%. We have that, for agents characterized by a DARA/DRRA utility, the W.T.P is
proportional to « and inversely proportional to gy and 7. In fact, for the D.A.R.A/D.R.R.A class,
w*(0) is terribly sensitive!” to a decrease in gg, and if go falls to 0.018, w*(0) increases significantly
to 16.4% in Figure 3.6.

3.4.2 W.T.P and 7: the case D.A.R.A and I.LR.R.A: 0<a <1, §>0.

For values of a=0.35, 0.42, 5=1.2, #=2.33, go=0.019, 0.020, 0.021 and 6=0, we have:

In Figure 3.7, with parameter values of «=0.42, f=1.2 and go=0.019, w*(0)=0.3%, and if « is reduced
to 0.35, for gop=0.020 and the same value of 8, w*(0) inceases to 0.44%. We have, in this utility class,
that the W.T.P is inversely proportional to o, 7 and gp.

3.4.3 W.T.P and 7: the case C.A.R.A and I.R.R.A: a=1, 5> 0.

For values of a=1, =1.2, =2.33, go=0.019, 0.020, 0.021 and §=0, we have in Figure 3.8, for
90=0.020 and $=1.2, that w*(0)=0.025%. Since « is constant in this case, to know how the W.T.P

17if for example go decreases to 15% we have values of w*(0) close to 100%, which doesn’t translate into a climate
policy, reason why we took the initial value of go at 0.019, which is very close to its expected value of 0.020 .
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3.155-‘
0.180

orssE — a=-0.3,9,=0.01800,8=-3.55

0.150 a=-0.3,g,=0.01805 8=-3.55

o rash a=-0.3,gp=0.01810,8=-3 55

0.140 ¢

Figure 3.6: W.T.P and 7, the case D.A.R.A and D.R.R.A, a=-0.3, §=-3.55, §=2.33 , go=0.01801,
0.01802, 0.01803, §=0.

0.004

— a=0.35,g,=0.020,8=1.2
a=0.42,g,=0.019,8=1.2
a=0.42,g,=0.020,8=1.2

— a=042,g,=0.0218=12

0.003

0.002F

0.001

Figure 3.7 W.T.P and 7, the case D.A.R.A and I.LR.R.A, a=0.35, 0.42, §=1.2, #=2.33, go=0.019,
0.020, 0.021, 6=0.

behaves with respect to increases in «, we shall see, in the next figure, how for a > 1, the W.T.P
decreases; So the W.T.P remains inversely proportional to «;, 7 and go. For the variation with respect
to 3, we shall see later that W.T.P is also inversely proportional to S.

0.00020

— a=1.0,0=0.019,8=1.2
a=1.0,gy=0.020,8=1.2
a=1.0,g,=0.021,8=1.2

0.00015

0.00010 F

0.00005 |

Figure 3.8: W.T.P and 7,the case C.A.R.A and LLR.R.A, a=1, 5=1.2, #=2.33, go=0.019, 0.020,
0.021, 0=0.

3.4.4 W.T.P and 7: the case I.LA.R.A and I.LR.R.A: o > 1, § > 0.

In this case, we progressively fall into the most averse utility class, IARA/IRRA ; and we get the
lowest values of W.T.P . For values of =1.07, 1.2, =1.2, §=2.33, go=0.019, 0.020, 0.021 and §=0,
we have:
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000015
— a=1.07,4,=0.020 =12

a=1.2,g,=0.019,8=1.2
— a=1.2,g,=0.020,8=1.2
— a=1.2,,=0.021,8=1.2

0.00010 F

0.00005 |

Figure 3.9: W.T.P and 7, the case LA.R.A and [.LR.R.A, a=1.07, 1.2, =1.2, §=2.33, g9=0.019,
0.020, 0.021, 6=0.

and we see in Figure 3.9 that if « is reduced from 1.2 to 1.07, with the same value of 3, w*(0)
increases from 0.015% to 0.018%. We therefore have in this case as seen above, that the W.T.P is
inversely proportional to «, 7 and gp.

3.4.5 W.T.P and a: £(T)=3 and 5: the case D.A.R.A and D.R.R.A: a <0, 5 <0.

For the DARA /DRRA class, with £(T")=3, the least averse class (if not at all), we get values of w*(3)
close to a 100% for values of a<-0.35, for §=0.01 (a<-0.33, for 6=0.).

— B=-3.55.6=0
f=-3.55.4=0.01
025 020 015 010"
:].:]‘2'.::;
0.030f
:].:]EEE—
:u.:u::uf— — fi=-3.556=0
3.::155_ B=-3556=001
0010 f -
00050
om0 I—CITEEI T o2 015 <00

Figure 3.10: W.T.P and 7=3, the case D.A.R.A and D.R.R.A, 3=-3.55, #=2.33, ¢9=0.020, =0,
0.01.

Above, in the DARA/DRRA frame, we said that the W.T.P is directly proportional to a, but this
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is not always the case. In fact, for some small values of «, the W.T.P is inversely proportional,
and then there is bifurcation, and the W.T.P becomes directly proportional. In Figure 3.10, for
a variation of values of «, with S constant at -3.55, gp=0.020, for §=0, the W.T.P is inversely
proportional to a until a@=-0.31, then proportional thereafter (for 6=0.01, until a=-0.33, then
proportional thereafter).

Moreover, for the case DARA/DRRA, just as in the C.R.R.A frame, an increase in the utility
discount rate, §, would reduce the W.T.P; we will see that this is not always the case for other
utility classes.

If we increase £(T) to 5, with the same parameter values, we can see in Figure 3.11 that the two
curves of w*(3) have risen; from 3.4% to 6.4% for §=0.01, « around -0.34 (for 6=0, « around -0.325).
We see that an increase of £(T") leads to an increase of w*(3).

w (3)

00681 \
0051 \
o4k || — p=-355.6=0
oozf || / B=-3.55,6=0.01
o.0zf K ________———-“'”

2.01F

-0.20 -0.25 -0.20 -0.18

—0.10

Figure 3.11: W.T.P and 7=3,the case D.A.R.A and D.R.R.A, £(T")=5, f=-3.55, 6=2.33, gp=0.020,
6=0, 0.01.

3.4.6 W.T.P and a: £(7)=3 and 5: the case D.A.R.A and I.LR.R.A: 0 <a <1, 3>0.

For the case DARA/IRRA, with £(T")=3, the averagely least averse class, we obtain values of w*(3)
around 1%. For values of a in (0,1), with § constant at 1.2, go=0.020, 6=0 and 0.01, we have:

w (3)

0.010

0.008 |
et — B=12.6=0
0.004} F=1.2,6=0.01
0.002 F
—
0.3 0.4 - I:JIFI I:J.fl - I:II_I - I:JﬂB ¢

Figure 3.12: W.T.P and 7=3, the case D.A.R.A and I.R.R.A, =1.2, #=2.33, go=0.020, =0, 0.01.

Unlike the case DARA/DRRA, here, the W.T.P is always inversely proportional to alpha and an
increased utility discount rate, §, can either increase or decrease the W.T.P; in Figure 3.12, although
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Figure 3.13: W.T.P and 7=3, the case D.A.R.A and L.R.R.A, £(T)=5, =1.2, 6=2.33, gp=0.020,
6=0, 0.01.

0 is increased from 0 to 0.01, for «<0.26, w*(3) is decreased, and for a>0.26, w*(3) is increased.

If we increase £(T) to 5, in Figure 3.13, with the same parameter values, we see that w*(3) is
proportional to £(T).

3.4.7 W.T.P and a: £(7T)=3 and 5: the case C.A.R.A and I.LR.R.A: =1, 5> 0.

For the CARA/IRRA frame, with £(7')=3, the averagely more averse class, « is constant at 1 and
B varies for positive values. For 8 varying in [0.2,1.2], go=0.020, =0 et 0.01, we have:

w2

0.003 |

—_— C[=1,-§=U

0.002 L
L C[=1,(5=U.U1

0.001

—1 g
1.2

Figure 3.14: W.T.P and 7=3, the case C.A.R.A and I.LR.R.A, a=1, §=2.33, gp=0.020, =0, 0.01.

We find that the W.T.P is inversely proportional to 8 but directly proportional to § because in
Figure 3.14, an increase in the utility discount rate, ¢, increases the W.T.P .

If we increase £(T) to 5, with the same parameter values, we have:
and likewise, we see that w*(3) is proportional to £(T).

3.4.8 W.T.P and a: £(T)=3 and 5: the case I.A.R.A and I.LR.R.A: o > 1, 5> 0.

When we take values of a>1, for 3 positive, we fall into the most averse utility class, IARA/IRRA,
and we get the least values of w*(3) . For a varying in [1.001,1.8], gp=0.020, §=0 et 0.01, we get:
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Figure 3.15: W.T.P and 7=3, the case C.A.R.A and L.LR.R.A, £(T)=5, a=1, §=2.33, go=0.020, 6=0,
0.01.
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Figure 3.16: W.T.P and =3, the case .A.R.A and I.LR.R.A, 5=1.2, 6=2.33, go=0.020, §=0, 0.01.

For this case we find that W.T.P is inversely proportional to «, and like before, directly proportional
to & because in Figure 3.16, an increase of the utility discount rate, §, increases W.T.P .

If we increase!® £(T) to 5 with the same parameter values, we get that w*(3) is proportional to &(T').

3.4.9 W.T.P, £(T) and SD(T).

In order to discover between certain and uncertain events, which affect the most the W.T.P for
each subclass, in what follows, we calculate the W.T.P for changes in expectation and standard
deviation of temperature!'?; expectation, which is our grasp of certainty, and the standard deviation,
of uncertainty, will vary one in turn (holding the other constant each time), and we shall observe
the W.T.P produced. We shall also calculate, for the same value of W.T.P, the corresponding
expectation/standard-deviation couple; as well, we shall calculate the sensitivity of the W.T.P with
respect to changes in £(T') and SD(T) (Ow*/0E(T') and dw* /IS D). For all these different cases, we
shall calculate the marginal rate of substitution??, M.R.S, between expectation/standard-deviation,
treating expectation and standard-deviation as economic goods, and we would finally be able to

decide which of the two influences the most the W.T.P of economic agents.

8Why increase the expectation value?: Because a recent study like Sokolov et al. [18], suggests expected temperature
values around 4-5°C at the horizon 2100.
9The parameter for economic impact held constant at its expected value of 0.0001363, as in Pindyck [1] .

2OM.R.S=-(0w" /0SD)/(dw™* JOE(T)) .
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Figure 3.17: W.T.P and 7=3, the case .A.R.A and L.LR.R.A, £(T")=5, f=1.2, §#=2.33, go=0.020,
5=0, 0.01.

3.4.10 W.T.P, £(T) and SD(T): £(T)=3 and 4 : the case D.A.R.A and D.R.R.A: o < 0,
B8 < 0.

For values of £(T")=3, a=-0.3, §=-3.55, #=2.33, gp=0.020 et =0, we are in the DARA/DRRA class.
In Table 3.2, we calculate w*(0) (the willingness to pay to prevent any increase of temperature)
for changes in the mean and standard-deviation of temperature distribution. In the first part, the
standard deviation is maintained at 2.12 and the mean varies, then it is the mean that is held
constant at 3.0 and the standard deviation varies; finally, the third part shows combinations of mean
and standard deviation which produce the same W.T.P of 0.0179.

ET) SD(T) w*(0) Ow*/OE(T) Ow*/dSD M.R.S

1.2°C 2.12°C  0.0032 0.0018 0.0070 -2.20
3.0°C  2.12°C 0.0179 0.0038 0.0081 -2.13
4.8°C 2.12°C  0.0257 0.0045 0.0088 -1.97
6.6°C 2.12°C  0.0342 0.0050 0.0089 -1.76
3.0°C 1.53°C  0.0107 0.0021 0.0172 -7.91
3.0°C 2.12 0.0179 0.0038 0.0081 -2.13
3.0°C 3.5°C 0.0259 0.0043 0.0060 -1.39
3.0°C 4.5°C 0.0305 0.0064 0.0190 -2.94
4.2°C 1.7°C 0.0179 0.0036 0.0166 -4.53
3.0°C 2.12 0.0179 0.0038 0.0081 -2.13
1.0°C 3.45°C  0.0179 0.0033 0.0022 -0.66
0.2°C 3.45°C  0.0179 0.0046 0.0036 -0.78
0.11°C  4.12°C  0.0179 0.0048 0.0180 -3.73
4.922°C 1.554°C  0.0179 0.0041 0.0240 -5.81

Table 3.2: W.T.P, changes in £(T) and SD(T'). y=E&(v)=0.0001363, £(T)=3. a=-0.3, §=-3.55,
§=2.33, go=0.020 and 6=0.

Apart from extreme values of £(T') and SD(T'), dw*/0E(T) is contained in the range 0.0018-0.0064

and Ow*/9SD in 0.0022-0.0240, in such a way that the M.R.S lies between -1 and -3.75. We can see
that the M.R.S oscillates between small and large values; in Figure 3.18 from -5.81 for (1.55,4.92)
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3 THE MODEL WITH THE SAHA EXPO-POWER UTILITY FUNCTION

to -2.13 for (2.12,3.0) and -3.73 for (4.12,0.11)?!, incrementing the expectation of the temperature
distribution to 4.0°C, we have the iso-W.T.P curves in Figure 3.18 and we can see how the W.T.P
is directly proportional to changes in the mean. The fact that the M.R.S is large in absolute value
for small values of standard deviation shows us how major changes in the mean are equivalent in
terms of welfare, to small changes in the standard deviation (The average doubles from 2.5 to 5, the
standard deviation reduces only by 0.8 but still producing the same W.T.P of 0.0179). The top curve
shows combinations of mean and standard deviation for which the W.T.P is 0.0221, this value of the
W.T.P results in keeping the standard deviation at 2.12°C, but incrementing the mean to 4°C.

5 T T T T T T T T T

T [
6L
=49
MRS
MRS =-145

WTP =0.0221

~

=]

MRS = —0.43

MRS =-3.737
1 1 1 1 1 1
1.5 2.0 25 3.0 35 4.0 453 3.0
(T

Figure 3.18: Iso-W.T.P curves, w*(0)=0.0179 (£(T)=3) and w*(0)=0.0221 (£(T")=4.0°C); a=-0.3,
3=-3.55, 6=2.33, go=0.020 and §=0.

3.4.11 W.T.P, £(T) and SD(T): £(T)=3: the case D.A.R.A and LR.R.A: 0 < o < 1,
5> 0.

We have, for £(T')=3 and parameter values of a=0.42, =1.2, 6=2.33, gp=0.020 and §=0, as before
in Table 3.3 results for the DARA/IRRA class. dw*/0E(T') lies within 0.0008-0.0134 and dw*/dSD
within 0.0002-0.0603, in such a way that the M.R.S should lie within -0.3 and -5. We can notice
that the M.R.S oscillates between small and large values; in Figure 3.19 from -16.81 for (1.54,4.78)
to -2.27 for (2.12,3.0) and -12.27 for (3.81,0.67).

The fact that the M.R.S is large in absolute value for small values of the standard deviation shows us
how major changes in the mean are equivalent, in terms of welfare, to small changes in the standard
deviation (The mean doubles from 2.5 to 5, the standard deviation reduces only by 1.5 but producing
the same W.T.P of 0.0027). We have the corresponding iso-W.T.P curve,

3.4.12 W.T.P: £(T) and SD(T): £(T)=3: the case C.A.R.A and LR.R.A: =1, § > 0.

For parameter values of a=1, =1.2, §=2.33, go=0.020 and §=0, we are in the CARA/IRRA class.
In Table 3.4, Jw*/OE(T) lies within -0.0165-0.0055 and Ow*/dSD within -0.0876-0.0087, in such

2for T=4.0°C, from -4.9 for (1.628,5.511) to -1.45 for (2.12,3.0) and -0.45 for (4.839,0.327).
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3 THE MODEL WITH THE SAHA EXPO-POWER UTILITY FUNCTION

ET) SD(T) w*(0) ow*/oE(T) Ow*/0SD M.R.S
1.2°C  2.12°C  0.0018 0.0026 0.0017 -0.67
3.0°C  2.12°C 0.0027 0.0011 0.0026 -2.27
5.2°C  2.12°C  0.0042 0.0017 0.0020 -1.15
5.8°C  2.12°C  0.0046 0.0023 0.0023 -1
3.0°C  1.53°C  0.0018 0.0134 0.0108 -0.81
3.0°C 2.12°C 0.0027 0.0011 0.0026 -2.27
3.0°C  2.117°C  0.0027 0.0011 0.0037 -3.30
4.78°C  1.54°C  0.0027 0.0008 0.0145 -16.58
4.8°C  1.53°C  0.0027 0.0019 0.0002 -0.14
4.2°C  1.66°C  0.0027 0.0008 0.0037 -4.22
3.0°C  2.12°C 0.0027 0.0011 0.0026 -2.27
0.6°C  3.85°C  0.0027 0.0064 0.0414 -6.46
0.67°C  3.81°C  0.0027 0.0049 0.0603 -12.27
Table 3.3: W.T.P, changes in £(7") and SD(T). ~y=&(7y)=0.0001363, £(T)=3. «a=0.42, =1.2,
0=2.33, gp=0.020 and §=0.
E{T‘]
sl
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/

—
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(=]

35 4.0
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Figure 3.19: Iso-W.T.P curve, w*(0)=0.0027 (£(7)=3.0°C); a=0.42, f=1.2, #=2.33, gp=0.020 and

0=0.

a way that the M.R.S is within -5 and -2. We can see that the M.R.S oscillates between low and
high values; in Figure 3.20 from -2.44 for (1.54,4.122) to -0.57 for (2.12,3.0) and -0.34 for (2.9214,2.0).

Similarly as before, we have larger (in absolute value) M.R.S values for small standard deviation

values.
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Figure 3.20: Iso-W.T.P curve, w*(0)=0.0002 (£(7)=3.0°C); a=1, f=1.2, #=2.33, gp=0.020 and 6=0.

E(T)  SD(T)  w*(0) Ow*/E(T) dw*/dSD M.R.S
1.2°C 2.12°C 0.0002 0.0008 0.0001 -0.13
3.0°C 2.12°C  0.0002 0.0008 0.0004 -0.57
52°C  2.12°C 0.0004  -0.0001 0.0002  -1.83
7.0°C 2.12°C 0.0005 -0.0003 -0.0008 -2.45
3.0°C 1.53°C 0.0002 0.0055 0.0047 -0.87
3.0°C 2.12°C  0.0002 0.0008 0.0004 -0.57
3.0°C 4.5°C 0.0004 -0.0165 -0.0876 -5.29
3.0°C 3.5°C 0.0003 -0.0003 -0.0067 -18.42
2.0°C 2.9214°C  0.0002 0.0011 0.0003 -0.34
3.8°C 1.64°C 0.0002 0.0002 0.0008 -4.58
4.122°C 1.54°C 0.0002 0.0035 0.0087 -2.44
3.0°C 2.12°C  0.0002 0.0008 0.0004 -0.57
1.0°C 3.679°C 0.0002 -0.0013 -0.0108 -1.86

Table 3.4: W.T.P, changes in £(T") and SD(T). v=E(v)=0.0001363, £(T)=3. a=1, =1.2, §=2.33,

90=0.020 and 6=0.

3.4.13 W.T.P: £(T) and SD(T): £(T)=3: the case I.LA.R.A and LR.R.A: o> 1, > 0.

For parameter values of a=1.2, =1.2, §=2.33, go=0.020 and §=0, we are in the TARA/IRRA
class. In Table 3.5, Ow*/0E(T) lies within -0.0016-0.0008 and Ow*/9SD within -0.0266-0.0341, in
such a way that the M.R.S lies within -17 and -47. We can see occasional jumps in the M.R.S in
Figure 3.21 for large values of standard deviation, which explains why sometimes averse people do
not care about the certainty in the predictions of economic analysis. Although we get this result, in
general the slope increases more significantly for small values of standard deviation, as above.
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E(T)  SD(T)  w*(0) Ow*/IE(T) dw*/dSD M.R.S

1.2°C  2.12°C  0.0002 0.0008 0.0001 -0.13
3.0°C 2.12°C 0.00018 0.0006 0.00009 -0.16
2.0°C 2.12°C  0.00015 -0.0004 -0.0018 -4.39
7.0°C  2.12°C  0.0003 -0.0006 -0.0008 -1.33
3.0°C  1.53°C  0.00016 -0.0016 -0.0266 -16.31
3.0°C 2.12°C 0.00018 0.0006 0.00009 -0.16
3.0°C  2.52°C  0.00019 0.0008 0.0004 -0.62
3.0°C  2.30°C  0.00019 0.0006 0.0001 -0.32
3.57°C  1.65°C  0.00018 0.0008 0.0008 -9.125

3.6°C 1.6°C  0.00018 0.00018 0.0006 -3.71
1.8°C  3.16°C  0.00018 0.00018 0.0008 -4.29
1.0°C  3.75°C  0.00018 0.0008 0.0341 -42.18
3.0°C 2.12°C 0.00018 0.0006 0.00009 -0.16

Table 3.5: W.T.P, changes in £(T") and SD(T). v=E&(v)=0.0001363, £(T")=3. a=1.2, f=1.2, =2.33,
g0=0.020 and §=0.

(T
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MRS =-42.18
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30(m)

Figure 3.21: Iso-W.T.P curve, w*(0)=0.00018 (£(7)=3.0°C); a=1.2, 5=1.2, §=2.33, gp=0.020 and
0=0.

4 Discussion and Conclusions

We resume the work of Pindyck [1] with the exception of the utility function and the ramifications
generated from such a consideration. For a choice of conservative parameters®?, we obtain values of
w*(0) around 2.5% for the DARA /DRRA class, 0.3% for the DARA/IRRA class, 0.025% and 0.015%
for the CARA/IRRA and IARA/IRRA classes. In the case of w*(3), limiting the temperature
increase at the I.P.C.C’s predicted value of 3°C', these percentages are reduced; we get values of

22We take 6=0 and go=0.020 as in Pindyck [1].
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w*(3) around 2% for the DARA/DRRA class , 0.2% for the DARA/IRRA class, 0.020% and 0.007%
for the CARA/IRRA and TARA/IRRA classes respectively.

After this analysis, the remarkable result obtained is that, unless we are in the least averse
class, increased utility discount rate does not necessarily lead to a W.T.P reduction; in fact, in
the averse classes?®, an increased utility discount rate increases the W.T.P, and much more, we
have both scenarios in the DARA/IRRA class for an « parameterization threshold (3 held constant).

It is rather intuitive that the less averse individual would sacrifice more and the more averse less,
and this, without having to estimate the W.T.P in the different subclasses, gives a decreased W.T.P
as aversion increases. Returning to the title of this paper, uncertainty and climate change policy;
which, between uncertain and certain outcomes, have a greater influence on the W.T.P 7, the
answer is uncertain outcomes. As Pindyck, we get decreasing iso-W.T.P curves with strong
M.R.S values for small standard deviation values (and corresponding large means). Although
there are occasional jumps of the M.R.S in averse classes for large standard deviation values (and
corresponding small means), overall (as shown in the iso-W.T.P curves), the slope increases for
small standard deviation values and corresponding large means, which is why we get strong M.R.S
values in these regions. We can therefore conclude that, whatever be the class of aversion,uncertain
outcomes affect more the W.T.P, are a greater enhancer of W.T.P, and thus, of climate policy.
The W.T.P values obtained in this paper are consistent with a moderate climate policy. It is true
that 2.5% of the G.D.P translates into a considerable monetary amount, but is justified if indeed we
can limit any increase in temperature.

What proportion of consumption, if sacrificed, will be enough to limit future temperatures at a
desired 7 7, or, what parameterization (for o, 8 and 6 in the exponential utility function) is a perfect
representation of the different aversion sub-classes 7. An answer to these questions will bring further
clarifications to the modeling of this paper and lead to effective climate-policy reforms.
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