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Abstract

We use agricultural commodities futures prices to investigate decision making
in production when futures prices are governed by jump-diffusion process with sea-
sonal volatility. We derive a preference independent production rule for firms that
face both demand and production uncertainty. We compare this rule to the one
when only Brownian motion represents the source of risk with constant volatility.
Our analysis suggests that for most crops, the jump-diffusion model is sufficiently
accurate to guide production decision.
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Introduction

The production of agricultural commodities depends on factors such as weather, de-
mand fluctuations, and other state variables which are uncertain but relevant for pro-
ducer. Futures prices from organized market can provide useful information for pro-
duction, storage, and processing decisions (Black [9]). The value of a farmer’s crops,
once planted is affected by the same state variables as the futures prices of the same
commodities. These state variables include mainly weather or demand fluctuation.
Marcus and Modest [25] have found that the analysis of optimal decision in commod-
ity production is simplified by option pricing framework in continuous time. They
focus on an agricultural producer who faces production uncertainty and for whom ac-
tive futures markets already. Particularly, the value of crop is a claim to producer’s
revenue like an option written on equilibrium price as underlying. The equilibrium
price as is function of futures price and support system for a producer, since option
pricing technique is flexible enough to incorporate. But, although futures contracts on
agricultural commodities are useful to hedge against uncertainties, they may be more

∗Corresponding author: Université de Montpellier - UFR d’Ãconomie - Site de Richter, Av-
enue Raymond Dugrand CS 79606, 34960 Montpellier Cedex 2 France, email: jules.sadefo-
kamdem@umontpellier.fr, jsadefo@gmail.com

1



risky than expected.

Futures prices are sensitive to unexpected changes due to drastic weather changes or
extreme events, which can cause harvest destruction and other risk factors such as
negative shift of supply in commodity markets, excessive speculation of institutional
investors or decline in the growth rate of food production etc. For instance, when stock
markets drown, institutional investors use commodities as safe-haven assets to secure
their funds; in that case futures prices may even exhibit spikes. Marcus and Modest
[25] use Brownian motion in price dynamic to represent risk factor. But several au-
thors show that market prices are not normally distributed due to stylized facts such
as skewness, fat tails, breaks in time series, (see for example Hilliard and Reis [20],
Koekebakker and Lien [22], Mandelbrot [26]).

Then, the analysis of Marcus and Modest [25] is limited in two points about price
modeling: first, futures and index prices are governed solely by a geometric Brown-
ian motion that does not account for the risk of price jumps. Second, authors follow
Black’s [9] approach and consider a constant volatility parameter. This approach is not
realistic since seasonal, time-varying or/and stochastic volatility in commodity prices
has been proven to be essential when dealing with option pricing (Back et al. [5]).

In this paper, we build on Marcus and Modest [25] model, extending it in two respects
(stages): we first apply jumps detecting tests recently introduced in the literature on
observed prices of selected futures and commodity index and empirically analyze the
relevance of seasonal volatility in futures prices of agricultural commodities. We use
statistical tests, introduced by AÃ¯t-Sahalia and Jacod [2, 3] to effectively detect the
presence of jumps in discretely observed prices. We argue that taking into account
seasonal volatility for futures prices is pertinent in futures price dynamics for option
pricing purposes.

Secondly, we extend the model of Marcus and Modest [25] by taking into account
stylized fact including jump components in price dynamics. This initiative arises from
the first analysis of jump detection. We consider jump components in price dynam-
ics, as well as seasonality volatility for futures price. In doing so, we expect to bet-
ter handle the systematic risk due to market prices. But, when market prices are
modeled as LÃ c©vy processes, like jump-diffusion processes, the technique of option
pricing becomes slightly different. Indeed, the market with jumps is incomplete in
the the Harrison and Pliska [18] sense. Hence, the classical portfolio replication is no
more possible, since jump risk can not be easily hedged. We obtain a partial integro-
differential equation (PIDE) for option premium that we solve with numerical methods.

The remainder of the paper is organised as follows. Section 1 presents market settings
and investment conditions. In Section 2 we argue that geometric Brownian motion
may not sufficiently represent risk factor. We highlight statistical properties of futures
contract of one year maturity and commodity index prices. This consists in testing
the presence of jumps and showing how seasonality is relevant in volatility. Section
3 presents the model and the crop valuation formula. We compute numerical results
with the model with jump and compare them with the one without jump in Section
4. Section 5 concludes.
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1 Market setting

We consider the same rule of production decision for an agricultural producer as in
Marcus and Modest [25]. The production decision of an agricultural producer is subject
to uncertainty. The market of agricultural commodities is modeled as a stochastic
supply and demand system. Firms or farmers are assumed to be perfectly competitive
price takers in a well-developed futures market where riskless borrowing and lending
are possible at a constant interest rate r. The production setting is assumed to be
point input-point output where the crop is planted at time zero and harvested and
sold at time T . No interim production decisions are allowed. However, capital markets
are assumed to be open at all times so that portfolios can be continuously rebalanced.
Crops are normal goods in the sense that demand quantities decline when the market
price Pt raises at time t. The demand depends on wealth or income via a stochastic
shift parameter St, correlated with the activity of the general economy. We assume
that the shift parameter St is measured by a commodity index. It is likely that demand
shifts are correlated with the activity of the general economy and then they are treated
as if they were correlated with a commodity index. By assuming a functional form of
constant elasticity, market demand for the good, denoted by QT , at the time of the
harvest T , is then given by

QT = S
γ

TP
−ε
T , γ > 0, ε > 0 (1)

where Pt and St are random variables and γ and ε are respectively wealth and price
elasticities of demand. The demand function is isoelastic, that means that the price
elasticity of demand does not depend on the market price or the shift parameter. In
fact, the shift parameter represents all state variables that intervene in the demand
variation of the good at a given price. Shifts may come from any shock1 in the economy
that leads to higher consumption due to wealth shock, changes in saving behavior etc.

The supply of the commodity, available at time T , is modeled as the initial stock of the
good plus the output from the harvest. The output from the harvest, hence the value
of the crop, depends on expectations about the shift parameter ST and the market
price PT at time T . Initial stock is set to zero and farmer has little control over the fi-
nal output, so any yield is primarily determined by exogenous factors (such as wealth).

Furthermore, a price support system is available from the government, which compen-
sates the farmer for the gap between the market and support prices. We consider that
the support system does not affect spot or futures prices and that it allows the market
to clear itself. In the absence of price support, there is no output after the next harvest
or no inventory demand impounded into the market demand curve. The market would
clear at the harvest time T at price,

PT = S
γ/ε

T Q
−1/ε
T , (2)

and the value of the crop in the market at harvest time T is

VT = PTQT = S
γ

TP
1−ε
T . (3)

1The analysis can be extended to other demand shocks, for example a shock on price elasticities.
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If the support price is available at level P̄ , then the price of the good is given by

PT = max
[
S
γ/ε

T Q
−1/ε
T , P̄

]
(4)

and the value of the crop at time T becomes

VT = max
[
S
γ

TP
1−ε
T , P̄ S

γ

TP
−ε
T

]
. (5)

Further, we assume a producer k who holds a market share part θk,T of the total
output of crop such that 0 ≤ θk,T � 1, with

∑
k θk,T = 1. θk,t is a random variable

at time t ≤ T and represents the expectation of market share that a producer k will
realize at time T . We consider that the share of producer k is not correlated with
spot or futures prices or with any systematic factors affecting aggregate demand, such
as St. Hence, there is no correlation between the market share of producers and the
aggregate output. Notice that this assumption is reasonable only under perfect compe-
tition. Because, only a large producer would perceive a correlation as a simultaneous
raise of expected values of both θk and aggregate supply in case of a positive shock of
production. Further, no individual producer has effect on the ex ante distribution of
the returns available for investors.

The perfect competition assumption implies that the decision of an individual producer
does not affect the aggregate output or the aggregate value of the crop. Formally, if
Vt is the current value of the claim to the stochastic revenue from the aggregate crop
(measured in currency), θk,T (Ik) the fraction of the crop at time T produced by farmer
k and Ik the value of the factor inputs of farmer k (measured in currency), then under
perfect competition, each producer perceives that

∂θk
∂Ik

> 0, ∂2θk
∂I2

k

< 0, ∂V

∂θk
= 0. (6)

The producer decision rule is to increase the size of the crop as long as the increment of
the ex ante value exceeds the marginal cost of planting. So, the value of any individual
farmer’s crop at time T is given by

Vk,T = θk,T (Ik)VT , (7)

and each producer solves the following problem at time 0:

max
Ik
{Vk,0 − Ik} . (8)

In perfectly competitive market, the producer perceives his market share in order to
increase with his input level conditional on the input levels of other producers. Hence,
the value maximization implies that he should increase the size of the crop as long as
the increment of value θ′k(Ik)V exceeds the marginal cost of planting.

The crop valuation is based on market price dynamics. In order to accurately model
these dynamics, we analyze data of selected commodity futures of one year maturiry.
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2 Statistical analysis of commodity prices

Agricultural commodity prices can exhibit jumps due to weather vagaries, decline
in food production growth, excessive speculation of institutional investors etc. Price
dynamics change more frequently than suggested by geometric Brownian motion and
leads to jumps. This implies a different structure of pricing model that should incorpo-
rate sudden changes. A number of empirical and theoretical studies show the existence
of jumps in price dynamics and their substantial impacts on financial management,
from portfolio and risk management to option pricing and hedging (Merton [27]; Bak-
shi et al. [6]; Bates [8]; and Johannes [21]). Hilliard and Reis [20] use transaction data
of commodity futures and futures options to illustrate the considerable differences in
modelled by jump-diffusion and geometric Brownian motion option prices. Jumps are
extreme events rarely observed in markets, since their occcurance depends on market
information (general announcements or speculative bubble). They are associated with
company-specific events such as announcements of scheduled earnings or unscheduled
news. Johannes [21] discusses impacts of jumps on derivatives securities. Testing for
the presence of jumps on futures and stock index prices would have greater implication
for the production rule (Lee and Mykland [24]). To effectively detect jumps in price
dynamics of our selected commodities prices, we apply statistical tests of AÃ¯t-Sahalia
and Jacod [2, 3], since they are based on a more general Itō-semimartingale structure
for asset price and volatility. We prefer a more general jump detection tests for possible
extention of our model (stochastic volatilities). We may use nonparametric jump test
of Lee and Mykland [24] based on realized returns and volatility. But, these authors
assume the drift and the diffusion coefficients not to change dramatically over a short
time interval and jump processes to be of finite-activity while AÃ¯t-Sahalia and Jacod
[2] consider a more general dynamic. Indeed, the intuition behind AÃ¯t-Sahalia and
Jacod [2] test statistic is directly link to the continuity (in probaility) of the sample
path of the observed process. Next section describes the intuition of AÃ¯t-Sahalia and
Jacod [2] jump test.

2.1 Jumps detection procedure

In pratice n values of asset price are observed during a time horizon [0, t]. Let ∆n be
the time step between two consecutive observations. Then, ∆n = t/n and at period
i∆n the log-price value Xi∆n is obtained for i = 0, 1 . . .. When n → ∞, ∆n → 0.
But, in reality n < ∞ and n → ∞ is assumed for convergence purposes. To find out
whether a process X = (Xt)t≥0 has discontinuities or not within the time period [0, t],
AÃ¯t-Sahalia and Jacod [2] use a statistic of variability measure based on the abso-
lute increment of X which converges under conditions. When convergence holds, it
becomes possible to determine if jumps are important enough to be taken into account.

Consider only the observations Xi∆n such that i∆n is smaller than or equal to t. The
goal is to detect sudden important changes in the data that have relative impacts on
the observation process. The increment ∆n

i X of the process X, for two consecutive
observed values during ((i− 1)∆n, i∆n], is used to define a variability statistic. ∆n

i X
is as follows

∆n
i X := Xi∆n −X(i−1)∆n

, for i = 1, 2, . . .
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Let define

B̂(p,∆n)t =
bt/∆nc∑
i=1

|∆n
i X|

p , (9)

where bxc denotes the integer part of x ∈ R. AÃ¯t-Sahalia and Jacod [2] prove that
B̂(p,∆n)t converges in two ways. When ∆n → 0, X is discontinuous ⇒ B̂(p,∆n)t

P−→ B(p)t
X is continuous ⇒ ∆1−p/2

n
mp

B̂(p,∆n)t
P−→ A(p)t

(10)

where A(p)t and B(p)t are defined in Appendix A, and

mp = E [|U |p] =
√

2p
2πΓ

(
p+ 1

2

)
with U being a standard normal random variable and Γ the gamma function. In prac-
tice, mp is estimated by Monte Carlo simulations or hypergeometric function.

Under assumption of p > 2, if X has jumps on [0, t], the limit of B̂(p,∆n)t does not
depend on the sequence (∆n)n and is strictly positive. On the other hand, when X
is continuous on [0, t], then B̂(p,∆n)t converges again towards a limit independent of
(∆n)n, but only after a normalization that does depend on the sequence (∆n)n. Since
the increments containing jumps are much larger than those that do not, their con-
tribution to the summation dominates all other terms. So, if there is a jump in the
time interval ((i− 1)∆n, i∆n], then the magnitude of the increment ∆n

i X is large and
independent of the sampling interval ∆n, whereas the magnitude of ∆n

i X is small and
depends on ∆n when there is no jump in that interval.

By introducing a ∆n-scaling integer k ≥ 2, a higher power further separates the mag-
nitudes of |∆n

i X|p in the two expressions of B̂(p, k∆n)t and B̂(p,∆n)t. The nonpara-
metric test statistic defined in AÃ¯t-Sahalia and Jacod [2] quantifies that idea. For
p > 3,

Ŝ(p, k,∆n)t = B̂(p, k∆n)t
B̂(p,∆n)t

. (11)

Concretely, testing for the presence of jumps on observed data boils down comparing
B̂(p,∆n)t on two differents ∆n-scales. For an integer k ≥ 2, B̂(p, k∆n)t and B̂(p,∆n)t
are compared by dividing the former by the latter to get the test statistic Ŝ(p, k,∆n)t.
In the presence of jumps, both B̂(p, k∆n)t and B̂(p,∆n)t do not depend on ∆n and
Ŝ(p, k,∆n)t converges to 1. Else, Ŝ(p, k,∆n)t also converges, but depends on the ∆n-
scaling parameter k.

For instance, a sum of squared variations of a standard Brownian motion indexed by
t ≥ 0, converges in probability to t ≥ 0, the commonly called quadradic variation of
Brownian motion. Then, for p > 3, its sum of p-power absolute variations also depends
on t by means of HÃ¶lder’s inequality which also is a function of ∆n. Thus Ŝ(p, k,∆n)t
depends on the scale integer k for Brownian motion. The test statistic then determines
a continuity structure for a standard Brownian motion. On the other hand, a variation
of Poisson process does not depend on the time interval, only the probability of jump
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occurrence depends on the interval. Hence, a sum of p-power absolute variations of
compound Poisson process converges towards the same value for any k. That is, the
size of the Poisson outcome does not depend on ∆n and the probability of a jump
occurring in ((i − 1)∆n, i∆n] goes to zero as ∆n → 0. In this case Ŝ(p, k,∆n)t tends
to 1 when ∆n → 0. In contrast to Brownian motion where some movement always
takes place (say continuity and the probability of movement is constant as ∆n → 0),
the size of the movement tends to zero as ∆n → 0.

As a result, Ŝ(p, k,∆n)t behaves substantially different when the sample path of X on
the time interval [0, t] encompasses jumps from the case where jumps are absent. From
AÃ¯t-Sahalia and Jacod [2], we have the following convergence results. For p > 3 and
k ≥ 2, when ∆n → 0,{

Ŝ(p, k,∆n)t −→ 1 if there are jumps,
Ŝ(p, k,∆n)t −→ kp/2−1 if there are no jumps.

(12)

For example, when p = 6 and k = 2, the test statistic Ŝ(4, 2,∆n)t will converge to 1
in the presence of jumps, while with the same values of p and k, it will converge to 4
in the absence of jump.

From the two convergences in (12), central limit theorem is applied to Ŝ(p, k,∆n)t
and two different convergence towards normal distribution with appropriately vari-
ances given in Appendix A. Indeed, either the null hypothesis of no jump or the null
hypothesis of the presence of jumps can be tested. We describe the different rejection
regions with their boundary under each null hypothesis in Appendix A.

2.2 Seasonality analysis

A commonly accepted definition of seasonality seems not to exist. However, a decision
to use seasonally unadjusted data can be justified by a prior suspicion that one’s model
is at least reliable for thinking about seasonal fluctuations, (Thomas J. Sargent in the
foreword to The Econometric Analysis of Seasonal Data, Ghysels and Osborn, 2001).

Seasonality is roughly defined as the intra-year variation that is repeated constantly
or in an evolving fashion from year to year (moving seasonality). If the increase in the
seasonal factors from year to year is too large, then the seasonal factors will introduce
distortion into the model. Mean and/or variance may vary over time, hence time-
constant seasonal mean and/or variance may be inappropriate. Franses [16] shows, on
UK stock price index and US Composite Leading Indicators index, seasonal fluctua-
tions when the means and/or variances vary over a period.

Back et al. [5] study how volatility seasonality affects option prices in commodity
market and point out a definition of seasonality given by Svend Hylleberg in his book2

". . . the systematic, although not necessarily regular, intra-year movement
caused by the changes of the weather, the calendar, and timing of deci-
sions, directly or indirectly through the production and consumption deci-
sions made by agents of the economy. These decisions are influenced by

2This definition can be found in Svend Hylleberg, Modeling Seasonality, Oxford University Press,
1992.
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endowments, the expectations and preferences of the agents, and the pro-
duction techniques available in the economy."

Agricultural commodity markets are incumbent on weather cycles or calendar because
of harvest period and the perishability of agricultural goods (see Back et al. [5]). Agri-
cultural commodities are different than classical financial assets such as equities since
the commodity is grown and harvested in a seasonal fashion. Their price is higher just
before harvest and lower after, implying volatility clustering with regard to the differ-
ent periods. The perishability, thus the inventories are essential when new harvest is
not ready. Because harvested crop is consumed throughout the year, new information
about supply and demand affects all new crop contracts. Thus, the cost-of-carry3 re-
lationship, that link futures and spot prices, implies that a seasonal volatility trend
should be observed in all delivery months. In nutshell, these events are likely to occur
at the same period in a year, inducing a seasonality pattern in price volatility.

We analyze seasonality in agricultural commodity volatilities by computing the his-
torical estimated volatilities on grouped daily returns. We separately group the daily
returns by months for each year. The standard deviation of the daily returns is then
computed for each observation month and annualized to make the results easier to in-
terpret. In Section 2.3.3, we discuss the seasonal volatility of the selected commodity
futures and figure 6 shows the volatility patterns.

Besides, we test the presence seasonality in monthly volatilities by comparing the sum
of squared errors between a model with trend and a model with trend and seasonality
component. The test, known as Fisher seasonality test, is based on test statistic that
is compared to theoretical of Fisher-Snedecor table. There is seasonality when test
statistic value is greater than the theoretical value. Table 3 presents seasonality test
on monthly volatilities of selected commodity futures.

2.3 Data analysis

2.3.1 Empirical properties and stylized facts

Model selection and specification are generally driven by empirical facts of the time
series at hand. We compute standard statistics on daily returns of agricultural futures
prices. We select agricultural commodity in order to illustrate stylized facts that are
known for financial time series.

The data set consists of daily prices of one year futures contract of agricultural com-
modities of US market and of the Commodity Research Bureau Commodity Index
(CRBCI) price. Commodity Research Bureau or CRB is an analysis and research
company on commodity futures markets which is the benchmark of commodity mar-
kets in U.S. trade. All data span from the beginning of January 2000 to the end
of December 2012 and they are extracted from Stooq website. Particularly, we use
one year futures contract of corn, soybean, rough rice, coffee and cocoa prices. We

3Cost-of-carry is the cost of holding a position on futures market. For most investments, the cost-
of-carry is the risk-free interest rate that could be earned instead of holding the position. But, it
also includes storage costs for commodities or any income you missed by holding the position. So,
cost-of-carry = interest + storage cost - income earned.

8



continuously compound daily returns ri on each serie of observed prices between two
consecutive days as

ri = Xi∆n −X(i−1)∆n
; i = 2, 3, . . .

In doing so, we ignore the roll effect by assuming that closed to maturity position of a
contract is replaced by another contract of the same maturity. Hence, the returns are
considered continuously observed.

Table 1 provides descriptive statistics and standard test statistics from data. All agri-
cultural futures and the commodity index have positive annualized average return,
which indicates an investment in these asset would perform over the period from 2000
to 2012, without risk risk factor. The corn futures contract has the highest average
return (9.5%) of the entire sample while the lowest one is realized by coffee futures
contract (1.8%). The risk, as measured by the annualized standard deviation, ranges
from 26.41% for soybean futures to 34.14% for coffee futures. A quick look on volal-
itily values refines an investment analysis in these commodity futures contracts. For
instance, over the considered period, coffee futures presents the highest volatility and
is more risky.

Table 1: Descriptive statistics

Products n µ σ sk ku lev JB Qsq ADF

Corn 3266 0.095 0.3002 0.133 5.179 -0.022 656 29.70 -24.05
Soybean 3264 0.085 0.2642 -0.615 7.711 -0.025 3224 31.86 -22.75
RoughRice 3257 0.078 0.2836 0.612 13.07 -0.032 13973 40.83 -23.44
Coffee 3244 0.018 0.3414 0.190 6.617 0.053 1787 34.25 -23.56
Cocoa 3244 0.080 0.3260 -0.213 5.101 0.011 621 25.42 -23.01
CRBCI 3262 0.048 0.1837 -0.314 5.614 -0.069 982 2640.7 -24.84

N is size of observed returns by futures contract. µ is the average return and σ is the volatility of return
of thirteen years.
µ and σ are annualized respectively by n̄ and

√
n̄ with n̄ = n/13 being the average number of days per

year. Recall data span over thirteen years.
sk denotes the skewness of the return series, sk = 0 for normal distribution.
ku denotes the kurtosis of the return series, ku = 3 for normal distribution.
lev is the unconditional correlation between the squared return at date t and the return at date t− 1.

Negative values for lev indicate that large volatility tends to follow upon negative returns.
JB is the Jarque-Bera statistic for testing normality. The test statistic is asymptotically χ2 distributed

with 2 degrees of freedom. The relevant critical value at the 1% level is 9.518.
Qsq is the Ljung-Box portmanteau test for the null hypothesis of no autocorrelation in the squared

returns up to order 20. The test statistic is asymptotically χ2 distributed with 12 degrees of freedom.
The relevant critical value at the 1% level is 37.566.
ADF is the Augmented Dickey-Fuller test for the null hypothesis of unit root in the returns up to order

5. The test statistic is asymptotically Student distributed. The relevant critical value at the 1% level
from McKinon table is -2.56.

The skewness (sk) is non zero for all the selected commodities as well as the com-
modity index returns. So, large positive returns occur more often than large negative
returns for positive skewness and vice versa for negative skewness. The kurtosis (ku)
exceeds the normal value of 3 for all the assets. This implies that the presence of high
peaks and/or heavy tails. Skewness and kurtosis, together reflect that large outlying
observations occur more often than are expected under the assumption of normality.
The Jarque-Bera test statistic, as reported in column JB, confirms the departure from
normality for all return series at significance level of 1%. Mandelbrot [26] argues that
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many commodity asset returns follow a leptokurtic distribution. Further, the figure 2
of Appendix B displays QQ-plots of returns against the quantiles of the standard nor-
mal distribution for price time series. If the asset returns were normally distributed,
then the QQ-plot would approximate the straight line representing the standard nor-
mal distribution. Here, QQ-plots show that the historical quantiles in the tails of the
distribution are significantly larger than the normal distribution. Note how large the
y-axis scale of rough rice QQ-plot is than the one others’, which confirms the high
kurtosis and the high Jarque-Bera test statistic. High kurtosis induces the presence of
infrequent observations that are explained by stochastic volatility or the presence of
jumps, or both.
All these facts are in line with fat tails observed in financial asset returns. There-
fore, modeling by Brownian motion provides at best only a rough approximation for
these commodity prices. Besides, in Figure 3, the kernel density plots ovelaying his-
togram charts of return series strengthen the fact that observed prices are not normally
distributed. The distribution of log returns on prices is unimodal, so, skewness and
kurtosis are easy to interpret. The tail is longer and fatter on one side than on the
other (refer to x-axis) reflecting non zero skewness.

The augmented Dickey-Fuller test indicates if data are stationary and it is also a simple
way to check whether there is a mean-reverting behavior following Daniel [14]. Testing
for mean reversion is equivalent to testing for stationarity, because the coefficient of a
stationary AR(1) process is less than 1.

Another important property for modeling the asset price is the independence of as-
set returns. The assumption of independence, in statistical terms, means there is no
autocorrelation in historical returns. For all the commodities, Figure 4 diplays the au-
tocorrelation functions (ACF) and figure 5 the partial autocorrelation function (PACF)
in Appendix B. We observe no significant lags in the historical returns, which means
that the independence assumption is acceptable for the returns of all the price series.
However, the ACF and the PACF of returns do not reveal substantial information,
but the ACF of squared returns exhibits significant correlations up to an extended lag
length. The Box-Ljung statistics, reported in column Qsq of Table 1 confirms a signif-
icant correlation for the squared returns at significance level 1% for all series. Hence,
the relative small returns of quiet periods alternate with relatively volatile onr where
the variations of prices are rather large. The phenomenon of persistently changing
of volatility over time is pointed out by Mandelbrot [26] who relates it as volatility
clustering.

The so called leverage effect in stock market has the reverse effect in commodity mar-
ket. Leverage effect arises when stock prices drop, panic kicks into the markets and
volatilities raise. In many commodities this effect is reversed. The inverse leverage ef-
fect means volatilities raise when commodity prices increase. When commodity prices
go up, it is generally bad for the economy and panic sets in and it implies volatility
increase. Here, neither leverage effect nor its reverse is significant.

As fat-tailed distribution may imply the presence of jumps, we check in the next section
whether there are jumps in the series of observed prices with AÃ¯t-Sahalia and Jacod
[2] jump detection test.
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2.3.2 Testing for presence of jumps in agricultural futures prices

Following the jump detection test of AÃ¯t-Sahalia and Jacod [2] described earlier in
Section 2.1, we compute the test statistic Ŝ(p, k,∆n)t by setting p = 6 and k = 2 for all
futures prices. We derive critical values ccn,t and c

j
n,t respectively, for the null hypoth-

esis of absence of jumps and the null hypothesis of presence of jumps at level 5% and
10%. The null hypothesis of absence of jumps is rejected at significance level 5% for

Table 2: Jump detection tests

Absence of jumps Presence of jumps

Product Ŝ(p, k,∆n)t ccn,t (5%) ccn,t (10%) pc cjn,t (5%) cjn,t (10%) pj

Corn 3.063 3.076 3.280 0.048 19.28 15.24 0.43
Soybean 1.267 2.952 3.184 <1e-5 23.67 18.66 0.49
Rough rice 1.047 2.790 3.057 <1e-4 36.77 28.87 0.50
Coffee 1.230 3.136 3.326 <1e-7 29.89 23.51 0.49
Cocoa 3.322 3.205 3.380 0.081 15.20 12.06 0.39
CRBCI 2.921 2.990 3.213 0.039 14.39 11.43 0.41

The decision rule for details for null hypothesis of no jump is Ŝ(p, k,∆n)t < ccn,t and for null hypothesis of
presence of jumps is Ŝ(p, k,∆n)t > cjn,t, (see Appendix A). The probability that the null hypothesis is true
is p-value; pc is the p-value of null hypothesis of absence of jumps and pj is the p-value of null hypothesis of
presence of jumps.

all the observed prices, excepted for cocoa futures price, for which the same hypothesis
is rejected at level 10%. As the null hypothesis of presence of jumps is not rejected
for cocoa futures price at significance levels 5% and 10%, we assume that the cocoa
futures jumps within the period 2000 to 2012. However, the test statistic converges
towards 1 for soybean, rough rice and roffee futures prices as shown by the result of
convergence in case of absence of jumps in (12). When the test statistic Ŝ(p, k,∆n)t
converges towards to one, p-value is low. For other futures the test statistic is different
from 1. This could be caused the the daily prices that we use instead of using high
frequency data as advocate AÃ¯t-Sahalia and Jacod [2]. Another reason for non con-
vergence towards to right value could be small data size. Note that the null hypothesis
of presence of jumps is not rejeted for all price series.

One the presence of jumps is suggested, what kind of jump process is the right to
consider for the price dynamics? In fact, jumps are generally characterized by small
jumps and large jumps. AÃ¯t-Sahalia and Jacod [3] develop a statistical procedure
to discriminate between the finite and infinite activity of jumps in a semimartingale
discretely observed. The test is based on an arbitrary cutoff level to distinguish between
small and large jumps. There is always a finite number of big jumps. The question is
then, whether there is a finite or infinite number of small jumps. In our case, we assume
a finite number of jumps and we consider a compound Poisson process to represent
jump component for all price series. The compound Poisson process is the sum of a
number of jump sizes. The number of jump sizes follows a Poisson process with its
intensity being the average number per unit of time. Jump sizes are independent from
the number of jumps and they are independent and identically distributed random
variables. A compound Poisson process is a of finite activity, because its random
number of jumps is finite4. Adding jump component to the model considered by

4Compound Poisson process is piecewise constant LÃ c©vy process and its LÃ c©vy measure `(dx)
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Marcus and Modest [25], the new price model tries to capture excess skewness and
kurtosis.

2.3.3 Seasonality testing

Figure 6 represents the monthly volatilities of the commodity futures prices. Volatili-
ties vary according to same month of years and their increases and decreases alternate
periodically. The pattern of monthly volatilities over a determined period (not the
same period for all commodity futures) repeats itself along the thirteen years, subject
to varying levels. The periodic variations are more pronounced in some years than
in others. This fact may be due to sudden changes which cause irregular variation of
volatilities. The July 2000 volatility of coffee futures shows an extreme variation. This
fact could be attributed to the presence of jumps.

The test statistic of Fisher seasonality test is reported in Table 3 for monthly volatilities
of commodity futures. These values suggest seasonal volatility as shown by the graphics
of figure 6.

Table 3: Seasonality test on monthly volatilities

Corn Soybean Rough rice Coffee Cocoa

Test statistic 7.958 10.243 25.001 18.491 28.549

The test statistic is compared to the theoretical value of 1.81 which is the 5%
quantile of Fisher distribution with degree of freedom 11 and 143. The degree
of freedom 143 is the number of months in thirteen years minus the number
of independent parameters (which is 11, because as there are twelve months
in a year, then 12 parameters which are linked to each other) under the model
with trend and seasonality and minus the number of independent parameters
(which is 2) under the model with trend only.

Figure 6 also exhibits a deformation of seasonality in volatility pattern for all the com-
modity futures in December 2007 or just after this period. This highlight the subprime
crisis where speculators have used commodities as safe-haven because of their non cor-
relation with stock markets that had drowned.

3 Model and crop valuation

Marcus and Modest [25] show the equivalence of describing market equilibrium in terms
of the futures price and of the commodity, denoted by Ft, and St. Futures contracts
are settled daily and have zero value. Further, when the contract matures

FT = PT (13)

The current value Vt of the claim maturing at time T on stock of the commodity is
then function of Ft, St, θk,t and t, which together summarize all relevant information
concerning the crop valuation. We denote the current value of the prospective stock
of the commodity by Vt = V (Ft, St, t).

is given by the multiplication of the intensity λ and the jump size probability density f(dx): λf(dx).
Compound Poisson process is of finite activity because its LÃ c©vy measure is finite

∫
R
`(dx) = λ <∞.
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Formally, we consider a vector (Ft, St, θt)′ of stochastic processes at time t where Ft de-
notes the futures price, St the commodity index price and θt the share of a producer k.
The futures price is assumed to follow mean-reverting jump-diffusion. Mean-reversion
is motivated by the interaction of the supply and of the demand5. It is suggested by
Augmented Dickey-Fuller test results shown in Table 1 above. The stock index follows
a jump-diffusion process and the share of a producer a mean zero diffusion.

Schwartz and Smith [31] and Geman and Nguyen [17] observe that the market price of
risk can only be estimated with very low precision from derivatives data. We assumed
there exists a risk neutral probability measure Q under which price dynamics are
considered.

dFt
dFt−

= α(m− lnFt)dt+ σ1e
ϕ(t)dW1,t + (Y1,t − 1) dN1,t,

dSt
dSt−

= (µ)dt+ σ2dW2,t + (Y2,t − 1)dN2,t

(14)

with α > 0 the rate at which the futures return reverts towards its long-term mean
m, µ is the rate of the return on shift demand parameter measured by the commodity
index. The volatility of the futures price Ft is characterized by σ1 > 0 and by func-
tion ϕ(t), that describes the seasonal behavior of futures return volatility, σ2 > 0 is
the volatility of commodity index return. W1,t and W2,t are two correlated standard
Brownian motions associated to price processes F and S respectively, with constant
correlation ρ. N1,t and N2,t, are independent Poisson processes with intensities λ1 and
λ2 respectively, and Y1,t and Y2,t are respectively the jump sizes of Ft and St following
a log normal distribution. t− is the instant immediately before time t where there is
jump.

Back et al. [5] argue that the function ϕ(t) impacts the value of an option by affecting
the volatilities of underlying assets. We set ϕ(t) as in Back et al. [5] by

ϕ(t) = ψ sin (2π(t+ ω)) (15)

where we impose ψ ≥ 0 and ω ∈ [−0.5, 0.5] to ensure their uniquenss.

Expectations about market share of a producer change only as new (unexpected) in-
formation becomes available. Hence, under assumption of rational expectations in the
sense that expected value of change in θ is zero, we assume θ to be described by a
simple diffusion process with zero drift.

dθk,t
θk,t

= σ3dW3,t (16)

where σ3 is the diffusion parameter associated to the standard Brownian W3. W3 is
independent of both W1 and W2 since the market share of a producer is assumed not
to be correlated with the futures and the commodity index prices.

5Mean-reversion in commodity market models the correlation between the convenience yield and
spot prices, spot price level dependent time-varying basis risk and negative relation between interest
rates and prices. The convenience yield is all effects evolving from the ownership of the physical
commodity compared to the ownership of a futures contract. See Schwartz [30] on the mean-reverting
behavior of commodity prices.
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3.1 Crop valuation

The value Vk,t of claim to a producer’s revenue is function of θt, Ft, St and t :
V (θk,t, Ft, St, t). It is the discounted value of expected revenues V (θk,T , FT , ST , T )
in a risk-neutral world6

V (θk,t, Ft, St, t) = e−r(T−t)EQ [V (θk,T , FT , ST , T )| Ft] (17)

where e−r(T−t) is the discount factor with the risk-free interest rate r and Ft is the
information set available at time t.

The final value of Vk,T at maturity T depends on whether there is government support
or not,

VT =

S
γ

TF
1−ε
T if no support

max
[
S
γ

TF
1−ε
T , P̄ S

γ

TF
−ε
T

]
if support.

(18)

where θk has been dropped to simplicify notation.

When there is no support, the crop value is straightforward from (18)

Vt = e(g−r)τS
γ

t F
1−ε
t (19)

with
τ = T − t

g = γr + 1
2ε(ε− 1)σ2

1e
2ϕ(t) + 1

2γ(γ − 1)σ2
2 + γ(1− ε)ρσ1σ2e

ϕ(t).

When agricultural support system is available, equations (5) and (13) give the final
condition of

VT = max
[
S
γ

TF
1−ε
T , P̄ S

γ

TF
−ε
T

]
. (20)

So, an increase in support level P̄ increases the value of the claim, as does the wealth
parameter St. Therefore, the value of Vt behaves like an European put option price
with random strike.

Let X1,t = lnFt denotes the logarithm of the commodity futures price and X2,t = lnSt
be the logarithm of the commodity index price. We derive a partial integro differential
equation (PIDE) for Vt = V (Ft, St, t) following Shreve [32] with final condition

VT = max
[
S
γ

TF
1−ε
T , P̄ S

γ

TF
−ε
T

]
(21)

in the following form

0 = ∂Vt
∂t

+
2∑
i=1

(
ηi −

1
2υ

2
i − λiκi

)
∂Vt
∂xi

+
2∑
i=1

1
2υ

2
i

∂2Vt
∂x2

i

+ ρυ1υ2
∂2Vt
∂x1∂x2

+
2∑
i=1

λi

∫ ∞
−∞

[V (Xi,t + Yi,t)− Vt] fYi(yi)dyi

(22)

6Risk-neutral world summarizes probability of future outcome adjusted for risk, which is then used
to compute expected asset value. The benefit of risk-neutral pricing approach is that once the risk-
neutral probability are calculated, it can be used to price the asset based on its expected payoff.
Theoretical risk-neutral probability differ from actual real world probability; if the latter were used,
expected value of a security would need to be adjusted for its individual risk profile.
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where fYi is the probability density function of the jump size Yi and

η1 = α(m−X1,t), υ1 = σ1e
ϕ(t),

η2 = µ, υ2 = σ2.

The crop value Vt depends on price dynamics modeled as jump-diffusion processes.
Closed form solution is no more possible because it is possible for hedging strategy
involving only continuous model as in Black [9]. When the underlying price dynamic
contains jump component, the hedging strategy as generalized in Harrison Pliska [18]
is no more possible and jump risk could be not hedged. So, we solve (22) numerical
with Monte Carlo method. Monte Carlo simulations provide a convenient framework
that approximate both continuous and jump-diffusion models of price dynamics. An-
other way to solve a PIDE is by Fourier transform via the characteristic function, (see
Carr and Manda [10]).

The basic idea behind of Monte Carlo simulations is for approximating the expecta-
tion of a function of a random variable. Option pricing with Monte Carlo method
is to calculate the expected value of a quantity which is a function of the solution
to a stochastic differential equation. It is based on the distribution of terminal asset
prices, determined by the process governing the future price movements. The calcu-
lation generates a serie of asset price trajectories and the terminal asset prices from
the trajectories are used to estimate the option price. The option price with Monte
Carlo simulation is often used as benchmark because the method is consistent in ap-
proximating expectation of function of random variable7. Since this is independent of
the number of dimensions, the Monte Carlo method does not suffer from the "curse of
dimensionality" that affects other numerical techniques. However, Monte Carlo simu-
lations are comparatively slow for pricing options on a single asset, but it can easily
be extended to multidimensions.

3.2 Optimal production rules

The producer chooses the size of the crop that maximize the value of his harvest. From
relation (8), it follows that the optimal choice of input Ik for producer k is implicitly
obtained by the first-order condition for the value maximization

∂θk(Ik)
∂Ik

V = 1. (23)

So, when individual production decisions are optimal, one extra unit of investment at
the margin leads to one unit increase in the ex ante value of crop for every producer
k. Indeed, using (7) we have

dVk,T = VTdθk,T + θk,TdVT

= VT
∂θk(Ik)
∂Ik

dIk with dVT = 0.

For dIk = 1, we have dVk,T = 1.

(24)

7Sam Savage has said about Monte Carlo simulation : What is the last thing you do before you
climb on a ladder? You shake it, and that is Monte Carlo simulation.

15



Then, dVk,T is proportional to dIk, and it follows that if any producer k overestimate
V , it will be incurring too high a marginal cost and will be overinvesting in the the
crop. Note that the marginal cost of one unit of output is

1
θ′k,T (Ik)QT

.

Let V ref (Ft, St, t) be the estimate value of crop when output are non-stochastic. In
this case futures price and commodity index are locally perfectly correlated, ρ = 1 and
we have

V ref (Ft, St, t) = e(a−r)τF
1−ε
t S

γ

t (25)

with
a = γr + γσ2

2
2

(
γ

ε
− 1

)
which can also be written as

V ref (Ft, St, t) = e−rτQTFt. (26)

The optimal production rule, when output is non-stochastic, is to set the marginal cost
of one unit of production equal to the discounted futures price

Fte
−rτ = 1

θ′k,T (Ik)Q
. (27)

Now, let denote by VM (Ft, St, t), the estimate value of crop when output is stochastic,
where M represents the price model. M = mm is the model of Marcus and Modest
[25] when price dynamics follow constant drift and volatility, M = mr when futures
price dynamics follow mean-reverting with constant volatility and M = j when price
dynamics follow jump-diffusion as (14).

The application of (27) when output is stochastic will lead producers to an inadequate
level of resources and expression (24) shows that the optimal level of marginal cost is
proportional to the farmer’s perception of the ex ante value of the crop. Therefore, by
comparing the estimates of V (Ft, St, t) when output is nonstochastic to when output
is stochastic, one may evaluate the percentage difference in marginal costs chosen by
a farmer who uses the rule in (27) instead of the correct rule. The percentage error in
marginal cost is a measure8 of resource misallocation

eM = V ref (Ft, St, t)− VM (Ft, St, t)
VM (Ft, St, t)

, M = mm,mr, j. (28)

Section 4.2 discuss the percentage error in marginal cost for different model of price
dynamics.

8However, that measure would require several inputs, such as farmers production functions, which
are not integral to the rest of the analysis. It does not necessarily indicate the magnitude of welfare
loss, which would more properly be measured by lost producer plus consumer surplus.
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4 Numerical applications

Numerical applications compare the decision rule under non-stochastic and stochas-
tic output subject to assumption of price dynamics. Marcus and Modest [25] assume
Brownian motion to represent the source of risk. We assume mean-reverting and mean-
reverting jump-diffusion for risk factor as well as seasonality in futures price volatility.
We derive the same decision rule as in Marcus and Modest [25] by considering these
stylized facts. As price dynamics include jump components, hedging against systematic
risk does not have closed form solution. We use Monte Carlo method to valuate the
crops as put option. The valuation from Monte Carlo method serves as reference price.

The crop value depends on model parameters. Fundamental parameter knowledge,
based on economic analysis of the factors, is perhaps the most meaningful channel for
model calibration. Nevertheless, data based methods are often needed to complement
and validate a particular model. Maximum likelihood method is a way to deal with
model parameter estimates from data at hand. However, we do not estimate price
elasticities with maximum likelihood method.

4.1 Parameter estimates for price dynamics

We first consider two types of continuous models for futures prices: constant drift and
volatility diffusion process as in Marcus and Modest [25] and mean-reverting model
with constant volatility. The commodity index price always follows constant drift and
volatility diffusion process in continuous futures price dynamic. Secondly, we use dis-
continuous models of (14). Tables 4 and 5 display maximum likelihood estimation of
parameters of respectively continuous and discontinuous models using observed prices.
The standard error of each parameter estimate is reported in square brackets just be-
low the parameter.

Table 4: Parameter estimates of continuous model

Parameters Corn Soybean R. Rice Coffee Cocoa CRBCI

Simple µ 0.1411 0.1203 0.1169 0.0763 0.1328 0.0656
diffusion [0.0045] [0.0058] [0.0166] [0.0163] [0.0096] [0.0084]

σ 0.3002 0.2642 0.2837 0.3414 0.3257 0.1842
[0.0084] [0.0101] [0.0116] [0.0171] [0.0158] [0.0085]

Mean-reverting α 0.0161 0.0125 0.0269 0.0014 0.0093
diffusion [0.0141] [0.0092] [0.0270] [0.0798] [0.0070]

m 0.1016 0.1693 0.2700 0.0992 0.1647
[3.8630] [3.7373] [2.0942] [6.5905] [5.5788]

σ 0.3002 0.2642 0.2836 0.3415 0.3257
[0.0054] [0.0060] [0.0086] [0.0071] [0.0058]

This table reports parameter estimates for constant drift and volatility in the upper part and mean-
reverting with constant volatility model in the lower part.

Volatility estimates with maximum likelihood method in Table 4 are the same as his-
torical volatilities in Table 1, while the average return is different the long-run term.
Positive long-run shows the up trend as Figure 1 exhibits it.
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Table 5 reports parameter estimates of the discontinuous model as, specified in equa-
tions (14).

Table 5: Parameter estimates of jump-diffusion model

Parameters Corn Soybean R. Rice Coffee Cocoa CRBCI

µ 0.0368
[0.0119]

α 0.0162 0.0123 0.0156 0.0014 0.0094
[0.0238] [0.0101] [0.0530] [0.2222] [0.0069]

m 0.0159 0.0146 0.1331 0.1754 0.1291
[4.1709] [4.3184] [1.7094] [7.0804] [5.5088]

σ 0.2997 0.2641 0.2484 0.3412 0.3257 0.1841
[0.0054] [0.0060] [0.0043] [0.0071] [0.0058] [0.0035]

ψ 0.0099 0.0125 0.2108 0.0077 0.0077
[0.0002] [0.0003] [0.0049] [0.0002] [0.0001]

ω 0.0107 0.0102 -0.0203 0.0054 0.0139
[0.0002] [0.0002] [0.0004] [0.0001] [0.0002]

λ 0.4246 0.2137 3.5690 0.1974 0.1361 0.3187
[0.0593] [0.0203] [0.0141] [0.4445] [0.0063] [0.1964]

κ 0.0004 0.0014 0.0094 0.0009 0.0014 0.0009
[0.0026] [0.0009] [0.0110] [0.0295] [0.0012] [0.0008]

s 0.0182 0.0096 0.0930 0.0078 0.0100 0.0092
[0.0019] [0.0004] [0.0139] [0.0028] [0.0002] [0.0009]

Volatility estimates are almost the same even in presence of jumps in price dynamics,
excepted for rough rice futures. Rough rice futures has the highest kurtosis and the
highest Jarque-Bera test statistic, from Table 1, which means that its fat tails are
likely due by more upward jumps than downward one (its skewness is positive). A
higher λ implies more jumps in data on average and the sense of jump depends on
the signs of skewness and κ. So, as expected rough rice futures varies more frequently
than other commodity futures; its jumps size volatility is the largest. The speed of
reversion is also stable compared to parameters of mean-reversion model without jump
component. The long-term mean is quiet instable for all commodity futures. Notice
that the parameter estimates by maximum likelihood method is model dependent or
sensitive to computation techniques like initialization.

We set wealth elasticity at γ = 0.50 as in Marcus and Modest [25], and estimate price
elasticities of considered commodity futures using the trade volume of year 2012.

Table 6: Price elasticity

Commodity ρ γ

Corn 0.589 0.238
Soybean 0.637 0.493
Rough righ 0.739 1.055
Coffee 0.615 0.455
Coffee 0.502 0.798

The crop value is larger (i) with increases in the futures price for 0 < ε < 1, (ii) with
decreases in the futures price for ε > 1, ∂Vk,t(·)/∂Ft = (1 − ε)(Vt/Ft), and (iii) with
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increases in wealth, ∂Vk,t(·)/∂St = γ(Vt/St) > 0. For instance, a decrease in rough rice
futures price involves a larger crop value for more investment, whereas it is relatively
the opposite for other commodities.

4.2 Comparison of optimal production rules

We consider three models for the crop value when output is stochastic that is com-
pared to the crop value when output is nonstochastic. The following tables present
the percentage error in marginal cost under different models for the considered com-
modities. The crop value V (Ft, St, t) is estimated by Monte Carlo simulations when
output is stochastic, even for Marcus and Modest [25]. We simulate one million price
trajectories using parameter estimates in the previous section. We use the December,
31st 2012 prices as initial values for both futures and commodity index.

4.2.1 Valuation in absence of agricultural support

In absence of price support, the value of crop is given by relation (19) subject to the
price dynamics when output is stochastic. Table 7 reports numerical results of the
difference in marginal costs. Our results suggest that marginal cost equal the futures
price (25), leads to produce too little whereas in Marcus and Modest [25] the results are
different. Our results also show that the crop value is underestimated with Brownian
motion price dynamics than with jump-diffusion price dynamics. The magnitude of
percentage errors are higher when prices follow jump-diffusion than when prices follow
continuous models. So, representing the source of risk by only Brownian motion do
not take into account all the risk factors.

Table 7: Comparisons of production rules without price
support

Commodity emm emr ej

Corn -0.0522 -0.0475 -0.0579
Soybean -0.0368 -0.0329 -0.0464
Rough rice -0.0115 -0.0121 -0.0318
Coffee -0.0348 -0.0243 -0.0396
Cocoa -0.0242 -0.0204 -0.0363

4.2.2 Valuation in presence of agricultural support

In the presence of agricultural price supports, for non-stochastic output, farmers would
not be expected to use the rule that the discounted futures price equals marginal cost
if Ft < P̄ , because the effective price must be at least P̄ . Thus, we assume the farmer
sets the discounted value of max(Ft, P̄ ) equal to the futures price, and

V ref
t = erτ ×max(Ft, P̄ ). (29)

When there is price support, Marcus and Modest [25] find a closed form formula when
output is stochastic. But, we use Monte Carlo method to compute the crop value when
output is stochastic whichever the price dynamics follow to make the results easy to
interpret.

19



The following Tables 8, 9 and 8 present estimates of the percentage difference in
marginal cost that would result from using the simple in (29) instead of the opti-
mal rule derived for stochastic output under price supports. We choose three possible
ratios of support price to futures price to illustrate the effect of stochastic output.

Finally, if the government were to guarantee farmers a minimum price equal to the cur-
rent futures price (which can be interpreted as the risk-adjusted expected spot price),
then the percentage error would be negative, except for corn futures. Again, the crop
value under Brownian motion underestimates risk factor.

To summarize, either in the absence or in the presence of price support, our results in-
dicate that the simple rule is not a good approximation to the market reality. Only the
corn producer with price support produces stands out from the considered agricultural
products.

Table 8: Comparison of production rule at support less
than futures price

P̄ /F = 0.75

Commodity emm emr ej

Corn 0.0731 0.0955 0.0952
Soybean -0.0744 -0.0714 -0.0714
Rough rice -0.0964 -0.0964 -0.0977
Coffee -0.0377 -0.0364 -0.0590
Cocoa -0.0984 -0.0979 -0.0979

Table 9: Comparison of production rule at support
equal futures price

P̄ /F = 1

Commodity emm emr ej

Corn 0.0731 -0.0984 0.0970
Soybean -0.0744 -0.0714 -0.0713
Rough rice -0.0964 -0.0964 -0.0976
Coffee -0.0377 -0.0362 -0.0567
Cocoa -0.0984 -0.0979 -0.0978

Table 10: Comparison of production rule at support
greater than futures price

P̄ /F = 1.25

Commodity emm emr ej

Corn 0.1318 0.0954 0.1318
Soybean -0.0679 -0.0715 -0.0680
Rough rice -0.0977 -0.0964 -0.0977
Coffee -0.0538 -0.0364 -0.0364
Cocoa -0.0978 -0.0979 -0.0978

20



5 Conclusion

We consider, in this paper, the production decision of a firm facing both demand
and output uncertainty as in Marcus and Modest [25], whom use Brownian motion
to describe uncertainty faced by an agricultural producer. We extend their model
by including jump component in price dynamics and derive the same preference-free
production rules which do depend on the existence of well-developed futures markets.
Particularly, including jump involves crop value to better consider sysmatic risk that
does not have a closed form valuation.
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A Jump detection test procedure

We summarize here the jump detection test designed by AÃ¯t-Sahalia and Jacod [2, 3].

Let X = (Xt)t∈[0,T ] be the log-price process defined on a fix filtered probability space
(Ω,F , (F)t≥0,P), F can be seen as information filtration for market participants. For-
mally, X is assumed to have more general form of Itō-semimartingale which has a nice
representation in terms of a Wiener process and a Poisson random measure. That is

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σsdWs +

∫ t

0

∫
R
κ ◦ δ(s, x)(µ− ν)(ds, dx)

+
∫ t

0

∫
R
κ′ ◦ δ(s, x)µ(ds, dx)

(30)

where W denotes a (Ft)-standard Wiener process and µ is a (Ft)-Poisson random
measure on (0,∞) × R with intensity measure ν(dt, dx) = dt ⊗ λ(dx), and λ is a
σ-finite or infinite measure. The processes b = (bt)t∈[0,T ] and σ = (σt)t∈[0,T ] are
optional. Moreover, κ is a continuous function with compact support and κ′(x) = x
on a neighborhood of 0, and κ′(x) = x− κ(x). The characteristics of X are defined as
follow

At =
∫ t

0
bsds, 〈M〉t =

∫ t

0
σ2
sds, ν(dt, dx) = dtFt(dx)

and are absolutely continuous with respect to the Lebesgue measure and Ft(D) is op-
tional for all Borel subsets D of R. 〈M〉 is the quadratic variation of the continuous
local martingale. The volatility σt could have the same form as X, but with another
Wiener independent of the one (W,µ).

When X jumps, it is expressed by

∆Xt = Xt −Xt− with Xt− = lim
u↑t

Xu.

Notice that t− is the instant immediately before time t, so ∆Xt is different from an
increment of X which is expressed as Xt −Xs for s ≤ t. Futhermore, detecting jumps
for one-dimensional process is not a restriction since even if it were multimensional, a
jump would necessarily be a jump for at least one of its components.

Following Barndorff-Nielsen and Shepard [7], who argue that multipower absolute vari-
ations can separate the continuous part of the quadratic variation, AÃ¯t-Sahalia and
Jacod [2] base the jump detection procedure on processes that measure separately the
continuous and jump components of X. The variability of the continuous part and the
discontinuous part are defined respectivily for any positive number p as follow

A(p)t =
∫ t

0
|σs|pds and B(p)t =

∑
s≤t
|∆Xs|p (31)

with σt the instantaneous volatility parameter of the asset price dynamic. The higher
the value of p, the more seperable are A(p)t and B(p)t (AÃ¯t-Sahalia and Jacod [2]).
From n values of the price process observed within the time horizon [0, t] with each
value at i∆n, where ∆n = t/n and i = 1, 2, . . ., one has to decide whether X has
discontinuities or not the time period [0, t]. To find out whether discontiniuities are
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relevant for the observed data within the time period [0, t], AÃ¯t-Sahalia and Jacod
[2] propose a statistic of variability measure based on the absolute increment of X.
The statistic converges under conditions and gives raise to the target decision. The
increment of X within two periods is expressed, for i = 0, 1, . . .,

∆n
i X := Xi∆n −X(i−1)∆n

. (32)

Suppose that X is observed at each time step i∆n for all i = 0, 1, . . . such that only
observation times i∆n, i = 1, 2, . . . smaller than or equal to t are considered. So, when
n → ∞, then ∆n → 0. Notice that in the reality n < ∞, but n → ∞ is assumed
for convergence convenience. Deciding, for discretely observed data, whether there are
jumps or not is to detect sudden changes in data. In statistical term, it means, on the
basis of the observations Xi∆n over to the time interval [0, t], in which of the following
two complementary sets the path that is discretely observed falls{

Ωj
t = {ω : s 7→ Xs(ω) is discontinuous on [0, t]},

Ωc
t = {ω : s 7→ Xs(ω) is continuous on [0, t]}

For the given stochastic process in expression (30), it is equivalent to test whether the
coefficient δ is identically 0. We have

Ωj
t = {B(p)t > 0} for any p > 0.

Therefore, in any event, everything boils down to estimate, on the basis of the obser-
vations, the quantity B(p)t in (31) which depends on the choise of p. Indeed, for p > 2,
an estimator of B(p)t is defined by

B̂(p,∆n)t =
bt/∆nc∑
i=1

|∆n
i X|

p . (33)

The following convergences hold from AÃ¯t-Sahalia and Jacod [2]; when ∆n → 0, X is discontinuous ⇒ B̂(p,∆n)t
P−→ B(p)t

X is continuous ⇒ ∆1−p/2
n
mp

B̂(p,∆n)t
P−→ A(p)t

(34)

with
mp = E [|U |p] =

√
2p
2πΓ

(
p+ 1

2

)
where U is a standard normal random variable and Γ the gamma function. In pratice,
one can compute mp by Monte Carlo simulations. More generally we have

mk,p = E
[
|U |p|U +

√
k − 1V |p

]
= 2p

π (k − 1)p/2Γ
(
p+1

2

)2
F2,1

(
−p

2 ,
p+1

2 , 1
2 ,
−1
k−1

)
and
m1, p2

= mp

for U and V independent N (0, 1) variables and F2,1 is gaussian hypergeometric func-
tion.
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When p > 2, the limit of B̂(p,∆n)t does not depend on the sequence (∆n)n which
converges to 0, and it is strictly positive if X has jumps on [0, t]. On the other hand,
when X is continuous on [0, t], B̂(p,∆n)t converges again to a limit independent of
(∆n)n, but only after a normalization which depends on (∆n)n.

AÃ¯t-Sahalia and Jacod [2] propose a nonparametric test statistic in the following
form for p > 3

Ŝ(p, k,∆n)t = B̂(p, k∆n)t
B̂(p,∆n)t

. (35)

The intuition behind the test statistic Ŝ(p, k,∆n)t is that if there is a jump in the
time interval ((i− 1)∆n, i∆n], then the magnitude of the increment ∆n

i X is large and
independent of the sampling interval ∆n, whereas the magnitude of ∆n

i X is small
and depends on ∆n when there is no jump in that interval. A high power of ∆n

i X
further separates the magnitudes of |∆n

i X|p in the two expressions of B̂(p, k∆n)t and
B̂(p,∆n)t. Since the increments containing jumps are much larger than those that do
not, their contribution to the summation dominates all other terms.

Finally, Ŝ(p, k,∆n)t behaves substantially different when the sample path of X on
the time interval [0, t] encompasses jumps from the case where jumps are absent.
Ŝ(p, k,∆n)t converges in two ways.
For p > 3 and k ≥ 2, when ∆n → 0{

Ŝ(p, k,∆n)t −→ 1 if there are jumps,
Ŝ(p, k,∆n)t −→ kp/2−1 if there are no jumps.

(36)

This limiting results hold for any Itō-semimartingale of the form of X with no need to
estimate the model parameters, the test is then nonparametric.

A statistical test procedure needs convergence in distribution. AÃ¯t-Sahalia and Jacod
[2] provide central limit theorem for (12). Ŝ(p, k,∆n)t converges to normal distribution
on both the sets Ωj

t and Ωc
t , but with different parameters respectively.

When ∆n → 0, we have
Ŝ(p,k,∆n)t−1√

V̂ jn,t

L−→ N (0, 1) holds on Ωj
t

Ŝ(p,k,∆n)t−kp/2−1√
V̂ cn,t

L−→ N (0, 1) holds on Ωc
t

(37)

where V̂ j
n,t and V̂ c

n,t are the variances appropriately defined in each case. As the two
convergence results hold, either the null hypothesis of no jumps or the null hypothesis
of the presence of jumps can be tested. Hence with a significance level α ∈ (0, 1)
with a α-quantile zα of normal random U such that that P(U > zα) = α, the critical
(rejection) region can be computed.

Under the null hypothesis of no jumps, Ŝ(p, k,∆n)t converges towards kp/2−1 > 1 for
an integer k ≥ 2 and a real number p > 3. The critical (rejection) region is given by

Ccn,t = {Ŝ(p, k,∆n)t < ccn,t}
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Figure 1: One year of agricultural futures price: from january 2000 to december 2012

with the boundary
ccn,t = kp/2−1 − zα

√
V̂ c
n,t. (38)

where 

V̂ c
n,t = ∆nM(p, k)Â(2p,∆n)t

Â(2p,∆n)2
t

Â(p,∆n)t = ∆1−p/2
n

m2
p

bt/∆nc∑
i=1

∣∣∣∆i
nX
∣∣∣p 1{|∆i

nX|≤ϑ∆$
n }

M(p, k) =
kp−2(1 + k)m2p + kp−2(k − 1)m2

p − 2kp/2−1mk,p

m2
p

.

Under the null hypothesis of presence of jumps, Ŝ(p, k,∆n)t converges towards 1 for
an integer k ≥ 2 and a real number p > 3. The critical region is given by

Cjn,t = {Ŝ(p, k,∆n)t > cjn,t}

with the boundary
cjn,t = 1 + zα

√
V̂ j
n,t. (39)

where 
V̂ c
n,t = ∆n(k − 1)p2D̂(2p− 2,∆n)t

2B̂(p,∆n)2
t

D̂(p,∆n)t = 1
kn∆n

bt/∆nc∑
i=1

∣∣∣∆i
nX
∣∣∣p ∑
j∈In,t(i)

(∆j
nX)21{|∆j

nX|≤ϑ∆$
n }

where (kn)n is a sequence of integers satisfying, for ∆n → 0, the criteria kn → ∞,
kn∆n → 0. One may take kn =

⌊
K/∆1/2

n

⌋
or kn =

⌊
K/∆1/4

n

⌋
, for a constant K to

construct the set In,t(i) (see Le Courtois and Walter [23], p. 54)

In,t(i) = {j ∈ N : j 6= i : 1 ≤ j ≤ bt/∆nc , |i− j| ≤ kn}.

AÃ¯t-Sahalia and Jacod [2] discuss about the choice of parameters ϑ and $ and
advice to set $ closed to 0.5 (as $ = 0.47 or $ = 0.48) and ϑ ∈ (0, 1) is chosen
between 3 and 5 times the "average" value of σ. The volatility σ of the continuous
part of the semimartingale can be consistently estimated, in the presence of jumps, by(∫ t

0 σ
2
sds

)1/2
.

B Statistical properties
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qqplot.pdf

Figure 2: QQ-plot of return versus Standard Normal
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kdensity.pdf

Figure 3: Kernel density overlayed with histogram

27



figAutocorrelation.pdf

Figure 4: Autocorrelation functions
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figPAF.pdf

Figure 5: Partial Autocorrelation functions
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Figure 6: Monthly volatility of futures prices

30



References

[1] AÃ¯t-Sahalia, Y., Maximum-Likelihood Estimation of Discretely-Sampled Diffu-
sions: A Closed-Form Approximation Approach, Econometrica, 70, 223-262; 2002.

[2] AÃ¯t-Sahalia, Y. & Jacod, J., Testing for Jumps in a Discretely Observed Process,
Annals of Statistics, 37, 184-222; 2009.

[3] AÃ¯t-Sahalia, Y. & Jacod, J., Testing Whether Jumps Have Finite or Infinite
Activity, Annals of Statistics, 39, 1689-1719; 2011.

[4] Anderson, R. W., Some Determinants of the Volatility of Futures Prices, Journal
of Futures Markets, 5, 332-348; 1985.

[5] Back, J., Prokopczuk, M. & Rudolf M., Seasonality and the valuation of commodity
options, Journal of Banking and Finance, 37, 273-290; 2013.

[6] Bakshi, G., Cao, C. & Chen, Z., Empirical Performance of Alternative Option
Pricing Models, Journal of Finance, 52, 2003-2049; December 1997.

[7] Barndoff-Nielsen, O. E & Shepard, N., Econometrics of testing for jumps in fi-
nancial economics using bipower variation, Journal of Financial Econometrics, 4,
1-30; 2006.

[8] Bates, D. S., Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in
Deutsch Mark Options, Review of Financial Studies, 9, 69-107; 1996.

[9] Black, F., The Pricing of Commodity Contracts, Journal of Financial Economics,
3, 167-179; January-March 1976.

[10] Carr, P., & Madan, D., Option pricing and the Fast Fourier transform; Journal
of Computational Finance, 4, 61-73; 1999.

[11] Cheang G.H.L & Chiarella C., Hedge Portfolios in Markets with Price Disconti-
nuities, Quantitative Finance Research Centre; 2004.

[12] Cont, R. & Tankov, P., Financial Modelling with Jump Processes, Chapman &
Hall-CRC Financial Mathematics Series; 2004.

[13] Das, S. R., The surprise element: jumps in interest rates, Journal of Economet-
rics, 11 215-260; 2002.

[14] Daniel K., The power and size of mean reversion tests, Journal of Empirical
Finance, 8, 493-535; 2001.

[15] Deaton, A. & Laroque, G., On the behaviour of commodity prices, Review of
Financial Studies, 59: 1-23; 2002.

[16] Franses, P. H., Testing for seasonality Economics Letters, North-Holland, 38, 259-
262; 1992.

[17] Geman, H. & Nguyen, V.-N., Soybean inventory and forward curve dynamics,
Management Science, 51, 1076-1091; 2005.

31



[18] Harrison, J.M. & Pliska, S.R., Martingales and stochastic integrals in the theory
of continous trading, Stochastic Processes and their Applications, 11 215-260; 1981.

[19] Hilliard, J. E. & Reis, J., Valuation of Commodity Futures and Options Under
Stochastic Convenience Yields, Interest Rates, and Jump Diffusions in the Spot;
Journal of Financial and Quantitative Analysis, Vol. 33, No. 1, pp. 61-86; Mars
1998.

[20] Hilliard, J. E. & Reis, J., Jump Processes in Commodity Futures Prices and Op-
tions Pricing; American Journal of Agricultural Economics, Vol. 81, No. 2, pp.
273-286; May 1999.

[21] Johannes, M., The Statistical and Economic Role of Jumps in Interest Rates;
Journal of Finance, 59, No. 2, pp. 227-260; February 2004.

[22] Koekebakker, S. & Gudbrand Lien., Volatility and Price Jumps in Agricultural
Futures Prices-Evidence from Wheat Options; American Journal of Agricultural
Economics, Vol. 86, No. 4, pp. 1018-1031; Novembre 2004.

[23] Le Courtois, O. & Walter C., Risques financiers extrÃames et allocation d’actifs;
Economica, Mars 2012.

[24] Lee, S. S. & Mykland P. A., Jumps in Financial Markets: A New Nonparametric
Test and Jump Dynamics; Review of Financial Studies, Vol 21, nÂ◦ 6, 2535-2563
2008.

[25] Marcus, A. J., & Modest, D. M., Futures Markets and Production Decisions,
Journal of Political Economy, Vol. 92, No. 3, pp. 409-426; June 1984.

[26] Mandelbrot, B., The variation of certain speculative prices, Journal of Business,
36(4), 394-419.; June 1984.

[27] Merton, R. C., Option pricing when underlying stock returns are discontinuous,
Journal of Financial Economics, 3, 125-144; June 1976.

[28] Øksendal, B., Stochastic differential equations, Springer, 5th ed, Berlin; 2000.

[29] Pagan, A. R., The econometrics of financial markets., Journal of Empirical Fi-
nance, 3(1), 15-102; 1996.

[30] Schwartz, E.S., The stochastic behavior of commodity prices: implications for
valuation and hedging, Journal of Finance, 52, 923-973; 1997.

[31] Schwartz, E. S. & Smith, J., E., Short-term variations and long-term dynamics in
commodity prices, Management Science, 46, 893-911; 2000.

[32] Shreve, E. S., Stochastic calculus for finance II - continuous-time models, Springer,
New York ; 2004.

32


	Market setting
	Statistical analysis of commodity prices
	Jumps detection procedure
	Seasonality analysis
	Data analysis
	Empirical properties and stylized facts
	Testing for presence of jumps in agricultural futures prices
	Seasonality testing


	Model and crop valuation
	Crop valuation
	Optimal production rules

	Numerical applications
	Parameter estimates for price dynamics
	Comparison of optimal production rules
	Valuation in absence of agricultural support
	Valuation in presence of agricultural support


	Conclusion
	Jump detection test procedure
	Statistical properties

