T. R. Faisal, E. M. Khalil-abad, N. Hristozov, and D. Pasini, The impact of tissue morphology, 603 cross-section and turgor pressure on the mechanical properties of the leaf petiole in 604 plants, J Bionic Eng, vol.7, pp.11-23, 2010.

D. S. Falster, D. I. Warton, and I. I. Wright, User"s guide to SMATR: Standardised Major Axis 606 tests & routines Version 2.0, Copyright, 2006.

Z. Fan, F. Sterck, S. Zhang, P. Fu, and G. Hao, , 2017.

L. Fiorin, T. J. Brodribb, and T. Anfodillo, Transport efficiency through uniformity: 611 organization of veins and stomata in angiosperm leaves, New Phytol, vol.209, pp.216-227, 2016.

D. M. Gates, Transpiration and leaf temperature, Annu Rev Plant Physiol, vol.19, pp.211-238, 1968.

J. M. Gere and S. P. Timoshenko, Mechanics of materials, 1997.

S. M. Gleason, C. J. Blackman, S. T. Gleason, K. A. Mcculloh, T. W. Ocheltree et al., , 2018.

, Vessel scaling in evergreen angiosperm leaves conforms with Murray"s law and area-616 filling assumptions: implications for plant size, leaf size and cold tolerance, New 617 Phytol, vol.218, pp.1360-1370

S. Gourlet-fleury, J. M. Guehl, and O. Laroussine, Ecology and management of a neotropical 619 rainforest : lessons drawn from Paracou, 2004.

F. Guiana,

F. Hallé, R. Oldeman, and P. B. Tomlinson, Tropical Trees and Forests -An Architectural, 1978.

, Analysis

P. H. Harvey and M. D. Pagel, The comparative method in evolutionary biology, 1991.

K. Hikosaka, Interspecific difference in the photosynthesis-nitrogen relationship: 626 patterns, physiological causes, and ecological importance, J Plant Res, vol.117, pp.481-494, 2004.

G. P. John, C. Scoffoni, T. N. Buckley, R. Villar, H. Poorter et al., The anatomical and 628 compositional basis of leaf mass per area, Ecol Lett, vol.20, pp.412-425, 2017.

S. Lechthaler, P. Colangeli, M. Gazzabin, and T. Anfodillo, , 2019.

R. Lehnebach, J. Bossu, S. Va, H. Morel, N. Amusant et al., Wood 633 density variations of legume trees in french guiana along the shade tolerance 634 continuum: heartwood effects on radial patterns and gradients, vol.10, p.80, 2019.

A. Leigh, S. Sevanto, J. D. Close, and A. B. Nicotra, The influence of leaf size and shape on leaf 636 thermal dynamics: does theory hold up under natural conditions?, Plant Cell Environ, vol.637, pp.237-248, 2017.

, , 2020.

O. Leroux, , 2012.

, Bot, vol.110, pp.1083-1098

G. Li, D. Yang, and S. Sun, Allometric relationships between lamina area, lamina mass and 641 petiole mass of 93 temperate woody species vary with leaf habit, leaf form and 642 altitude, Funct Ecol, vol.22, pp.557-564, 2008.

G. Li, D. Yang, and S. Sun, Allometric relationships between lamina area, lamina mass and 644 petiole mass of 93 temperate woody species vary with leaf habit, leaf form and 645 altitude, Funct Ecol, vol.22, pp.557-564, 2008.

J. N. Mahley, J. Pittermann, N. Rowe, A. Baer, J. E. Watkins et al., , p.647

K. Mehltreter, M. Windham, W. Testo, and J. Beck, Geometry, allometry and 648 biomechanics of fern leaf petioles: their significance for the evolution of functional 649 and ecological diversity within the Pteridaceae, Front Plant Sci, vol.9, 2018.

K. A. Mcculloh, J. S. Sperry, and F. R. Adler, Water transport in plants obeys Murray"s law. 651, Nature, vol.421, p.939, 2003.

R. Milla and P. B. Reich, The scaling of leaf area and mass: the cost of light interception 653 increases with leaf size, Proc R Soc Lond B Biol Sci, vol.274, pp.2109-2115, 2007.

Ü. Niinemets, Is there a species spectrum within the world-wide leaf economics 655 spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll, 2015.

, Quercus ilex, New Phytol, vol.205, pp.79-96

Ü. Niinemets, A. Portsmuth, D. Tena, M. Tobias, S. Matesanz et al., Do we 658 underestimate the importance of leaf size in plant economics? Disproportional scaling 659 of support costs within the spectrum of leaf physiognomy, Ann Bot, vol.100, p.283, 2007.

Ü. Niinemets, A. Portsmuth, and M. Tobias, Leaf size modifies support biomass distribution 661 among stems, petioles and mid-ribs in temperate plants, New Phytol, vol.171, pp.91-104, 2006.

K. J. Niklas, Flexural stiffness allometries of angiosperm and fern petioles and rachises: 663 evidence for biomechanical convergence, Evolution, vol.45, pp.734-750, 1991.

K. J. Niklas, Petiole mechanics, light interception by Lamina, and "Economy in Design, 1992.

, Oecologia, vol.90, pp.518-526

K. J. Niklas, A mechanical perspective on foliage leaf form and function, New Phytol, vol.667, pp.19-31, 1999.

K. J. Niklas and E. D. Cobb, Evidence for "diminishing returns" from the scaling of stem 669 diameter and specific leaf area, Am J Bot, vol.95, pp.549-557, 2008.

K. J. Niklas, E. D. Cobb, Ü. Niinemets, P. B. Reich, A. Sellin et al., Diminishing returns" in the scaling of functional leaf traits across and within species 672 groups, Proc Natl Acad Sci, vol.671, pp.8891-8896, 2007.

K. J. Niklas, E. D. Cobb, and H. Spatz, Predicting the allometry of leaf surface area and dry 674 mass, Am J Bot, vol.96, pp.531-536, 2009.

, , 2020.

K. Niklas and H. Spatz, , 2012.

F. Normand, C. Bissery, G. Damour, and P. Lauri, Hydraulic and mechanical stem 677 properties affect leaf-stem allometry in mango cultivars, New Phytol, vol.178, pp.590-602, 2008.

M. E. Olson, R. Aguirre-hernández, and J. A. Rosell, Universal foliage-stem scaling across 679 environments and species in dicot trees: plasticity, biomechanics and Corner"s Rules, 2009.

, Ecol Lett, vol.12, pp.210-219

M. E. Olson, T. Anfodillo, J. A. Rosell, G. Petit, A. Crivellaro et al.,

L. O. Cárdenas and M. Castorena, Universal hydraulics of the flowering plants: vessel 683 diameter scales with stem length across angiosperm lineages, habits and climates, Ecol 684 Lett, vol.17, pp.988-997, 2014.

M. E. Olson, J. A. Rosell, S. Zamora-muñoz, and M. Castorena, Carbon limitation, stem growth 686 rate and the biomechanical cause of Corner"s rules, Ann Bot, vol.122, pp.583-592, 2018.

M. E. Olson, D. Soriano, J. A. Rosell, T. Anfodillo, M. J. Donoghue et al.,

T. Dawson, J. Martínez, M. Castorena, A. Echeverría, C. I. Espinosa et al., Plant height and 690 hydraulic vulnerability to drought and cold, Proc Natl Acad Sci, vol.115, pp.7551-7556, 2018.

Y. Onoda, I. J. Wright, J. R. Evans, K. Hikosaka, K. Kitajima et al., , p.692

M. Westoby, Physiological and structural tradeoffs underlying the leaf 693 economics spectrum, New Phytol, vol.214, pp.1447-1463, 2017.

D. F. Parkhurst and O. L. Loucks, Optimal leaf size in relation to environment, J Ecol, vol.60, p.505, 1972.

G. Petit, T. Anfodillo, and M. Mencuccini, Tapering of xylem conduits and hydraulic 697 limitations in sycamore (Acer pseudoplatanus) trees, New Phytol, vol.177, pp.653-664, 2008.

G. Petit, F. Declerck, M. Carrer, and T. Anfodillo, Axial vessel widening in arborescent 699 monocots, Tree Physiol, vol.34, pp.137-145, 2014.

G. Petit, S. Pfautsch, T. Anfodillo, and M. A. Adams, The challenge of tree height in 701 Eucalyptus regnans: when xylem tapering overcomes hydraulic resistance, New 702 Phytol, vol.187, pp.1146-1153, 2010.

G. Petit, T. Savi, M. Consolini, T. Anfodillo, and A. Nardini, Interplay of growth rate and 704 xylem plasticity for optimal coordination of carbon and hydraulic economies in 705 Fraxinus ornus trees, Tree Physiol, vol.36, pp.1310-1319, 2016.

J. Pittermann, M. E. Olson, and D. Way, Transport efficiency and cavitation resistance in 707 developing shoots: a risk worth taking, Tree Physiol, vol.38, pp.1085-1087, 2018.

A. Pivovaroff, S. Sack, and L. Santiago, Coordination of stem and leaf hydraulic conductance 709 in southern California shrubs: a test of the hydraulic segmentation hypothesis, Phytol, vol.710, pp.842-850, 2014.

H. Poorter and J. R. Evans, Photosynthetic nitrogen-use efficiency of species that differ 712 inherently in specific leaf area, Oecologia, vol.116, pp.26-37, 1998.

, , 2020.

R. Poorter and . Dma, Leaf size and leaf display of thirty-eight tropical tree 714 species, Oecologia, vol.158, pp.35-46, 2008.

C. A. Price and B. J. Enquist, Scaling mass and morphology in leaves: an extension of the 716 WBE model, Ecology, vol.88, pp.1132-1141, 2007.

P. B. Reich, D. S. Ellsworth, and M. B. Walters, Leaf structure (specific leaf area) modulates 718 photosynthesis-nitrogen relations: evidence from within and across species and 719 functional groups, Funct Ecol, vol.12, pp.948-958, 1998.

J. A. Rosell and M. E. Olson, The evolution of bark mechanics and storage across habitats in a 721 clade of tropical trees, Am J Bot, vol.101, pp.764-777, 2014.

J. A. Rosell, M. E. Olson, and T. Anfodillo, Scaling of xylem vessel diameter with plant size: 723 causes, predictions, and outstanding questions, Curr For Rep, vol.3, pp.46-59, 2017.

L. Sack and N. M. Holbrook, Leaf hydraulics, Annu Rev Plant Biol, vol.57, pp.361-381, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00964677

L. Sack, C. Scoffoni, A. D. Mckown, K. Frole, M. Rawls et al., , 2012.

C. Scoffoni, D. S. Chatelet, J. Pasquet-kok, M. Rawls, M. J. Donoghue et al., , 2016.

, Hydraulic basis for the evolution of photosynthetic productivity, Nat Plants, vol.2, p.16072

B. Shipley, M. J. Lechowicz, I. Wright, and P. B. Reich, Fundamental trade-offs generating the 731 worldwide leaf economics spectrum, Ecology, vol.87, pp.535-541, 2006.

D. D. Smith, J. S. Sperry, and F. R. Adler, Convergence in leaf size versus twig leaf area scaling: 733 do plants optimize leaf area partitioning, Ann Bot, vol.119, pp.447-456, 2017.

S. Jun, F. Ruirui, N. Karl, J. Zhong-quanlin, Y. Fuchun et al., , p.735

S. Mengke and C. Dongliang, Diminishing returns" in the scaling of leaf 736 area vs. dry mass in Wuyi Mountain bamboos, Southeast China, Am J Bot, vol.104, p.993, 2017.

M. T. Tyree and F. W. Ewers, The hydraulic architecture of trees and other woody plants, New 739 Phytol, vol.119, pp.345-360, 1991.

M. T. Tyree and M. H. Zimmermann, Xylem structure and the ascent of sap, 2002.

. Springer-verlag,

D. I. Warton, I. J. Wright, D. S. Falster, and M. Westoby, Bivariate line-fitting methods for 743 allometry, Biol Rev, vol.81, pp.259-291, 2006.

G. B. West, J. H. Brown, and B. J. Enquist, A general model for the structure and allometry of 745 plant vascular systems, Nature, vol.400, pp.664-667, 1999.

M. Westoby, D. S. Falster, A. T. Moles, P. A. Vesk, W. et al., , 2002.

, Plant ecological strategies: some leading dimensions of variation between species

, Annu Rev Ecol Syst, vol.33, pp.125-159

, , 2020.

P. S. White, Corner"s Rules in Eastern deciduous trees: allometry and its implications 750 for the adaptive architecture of trees, Bull Torrey Bot Club, vol.110, pp.203-212, 1983.

P. S. White, Evidance that temperate east north american evergreen woody plants 752 follow Corner"s rule, New Phytol, vol.95, pp.139-145, 1983.

G. B. Williamson and M. C. Wiemann, Measuring wood specific gravity?Correctly, Am J 754 Bot, vol.97, pp.519-524, 2010.

I. J. Wright, N. Dong, M. V. Prentice, I. C. Westoby, M. Díaz et al., , p.756

R. Kooyman, E. A. Law, M. R. Leishman, Ü. Niinemets, P. B. Reich et al., , p.757

H. Wang and P. Wilf, Global climatic drivers of leaf size, Science, vol.357, pp.917-921, 2017.

I. J. Wright, P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch et al., , p.759

T. Chapin, J. Cornelissen, M. Diemer, J. Flexas, E. Garnier et al., , p.760

K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk et al.,

Ü. , O. J. Osada, N. Poorter, H. Poot, P. Prior et al., The worldwide leaf economics 763 spectrum, Nature, vol.428, pp.821-827, 2004.

D. Yang, K. J. Niklas, S. Xiang, and S. Sun, Size-dependent leaf area ratio in plant twigs: 765 implication for leaf size optimization, Ann Bot, vol.105, p.71, 2010.

, , 2020.

, Habits, morphological and petiole-anatomical aspects of C. obtusa (Urticaceae). (a), p.769

, (c) Petiole cross-sectional anatomy of C. obtusa in 770 the middle part of the petiole. (d) Close-up of petiole constitutive tissues: pith (Pith), 771 sclerenchyma (Scle), interfascicular parenchyma (Pint), primary xylem (XI), secondary xylem 772 (XII), total phloem (Phlo), primary phloem (Phl), secondary phloem (PhII), cortical 773 parenchyma (Pcor), collenchyma (Coll) and epidermis (Epi). (e) Tissues and corresponding 774 layer masks studied

, Arrows represent laticiferous canals. (g) Cambial discontinuities, island-like vascular bundles 776 and a bicyclic array of vascular bundles

, , 2020.

, , 2020.

, cross-sectional area. (b) Lamina dry mass according to petiole cross-sectional area

, Lamina dry mass according to petiole dry mass. (d) Lamina area according to leaf dry mass

, All relationships are plotted on a log-scale. b: scaling exponent

, , 2020.

, Scaling of petiole anatomy with leaf size. (a) Pith cross-sectional fraction according to 801 lamina area. (b) Number of vessels according to lamina area plotted on a log-scale

, Conductive area according to lamina area, plotted on a log-scale. (d) Xylem area according to 803 lamina area

, , 2020.