M. Dassot, A. Colin, P. Santenoise, M. Fournier, and T. Constant, Terrestrial laser scanning for measuring the solid wood volume, including branches, of adult standing trees in the forest environment, Comput. Electron. Agric, vol.89, pp.86-93, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01003344

X. Liang, V. Kankare, J. Hyyppä, Y. Wang, A. Kukko et al., Terrestrial laser scanning in forest inventories, ISPRS J. Photogramm. Remote Sens, vol.115, pp.63-77, 2016.

H. Maas, A. Bienert, S. Scheller, and E. Keane, Automatic forest inventory parameter determination from terrestrial laser scanner data, Int. J. Remote Sens, vol.29, pp.1579-1593, 2008.

I. Barbeito, M. Dassot, D. Bayer, C. Collet, L. Drössler et al., Terrestrial laser scanning reveals differences in crown structure of Fagus sylvatica in mixed vs, vol.405, pp.381-390, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01656653

D. Seidel, C. Leuschner, A. Müller, and B. Krause, Crown plasticity in mixed forests-Quantifying asymmetry as a measure of competition using terrestrial laser scanning, For. Ecol. Manag, vol.261, pp.2123-2132, 2011.

O. Martin-ducup, R. Schneider, and R. A. Fournier, Response of sugar maple (Acer saccharum, Marsh.) tree crown structure to competition in pure versus mixed stands, For. Ecol. Manag, vol.374, pp.20-32, 2016.

J. Metz, D. Seidel, P. Schall, D. Scheffer, E. Schulze et al., Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra-and interspecific competition on tree growth, For. Ecol. Manag, vol.310, pp.275-288, 2013.

F. Pimont, D. Allard, M. Soma, and J. Dupuy, Estimators and confidence intervals for plant area density at voxel scale with T-LiDAR, Remote Sens. Environ, vol.215, pp.343-370, 2018.

M. Béland, J. L. Widlowski, R. A. Fournier, J. F. Côté, and M. M. Verstraete, Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements, Agric. For. Meteorol, vol.151, pp.1252-1266, 2011.

O. Martin-ducup, R. Schneider, and R. Fournier, Analyzing the Vertical Distribution of Crown Material in Mixed Stand Composed of Two Temperate Tree Species. Forests, vol.9, p.673, 2018.

J. Côté, R. A. Fournier, G. W. Frazer, and K. O. Niemann, A fine-scale architectural model of trees to enhance LiDAR-derived measurements of forest canopy structure, Agric. For. Meteorol, vol.166, pp.72-85, 2012.

J. Hackenberg, H. Spiecker, K. Calders, M. Disney, and P. Raumonen, SimpleTree-an efficient open source tool to build tree models from TLS clouds, vol.6, pp.4245-4294, 2015.

P. Raumonen, M. Kaasalainen, M. Åkerblom, S. Kaasalainen, H. Kaartinen et al., Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sens, vol.5, pp.491-520, 2013.

J. Gonzalez-de-tanago, A. Lau, H. Bartholomeus, M. Herold, V. Avitabile et al., Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR, Methods Ecol. Evol, vol.9, pp.223-234, 2018.

S. Momo-takoudjou, P. Ploton, B. Sonké, J. Hackenberg, S. Griffon et al., Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach, Methods Ecol. Evol, vol.9, pp.905-916, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01837401

Q. Guo, F. Wu, S. Pang, X. Zhao, L. Chen et al., Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping, Sci. China Life Sci, vol.61, pp.328-339, 2018.

P. Ovando, P. Campos, R. Calama, and G. Montero, Landowner net benefit from stone pine (Pinus pinea L.) afforestation of dry-land cereal fields in Valladolid, Spain. J. For. Econ, vol.16, pp.83-100, 2010.

S. Mutke, R. Sievänen, E. Nikinmaa, J. Perttunen, and L. Gil, Crown architecture of grafted Stone pine (Pinus pinea L.): shoot growth and bud differentiation, Trees, vol.19, pp.15-25, 2005.

R. Calama, F. J. Alonso, G. M. Casanueva, S. M. Regneri, M. Conde et al., Enhanced tools for predicting annual stone pine (Pinus pinea L.) cone production at tree and forest scale in inner Spain. For

S. Mutke, R. Calama, E. Nasrallah-neaymeh, and A. Roques, Impact of the Dry Cone Syndrome on commercial kernel yield of stone pine cones, Options Méditerranéennes Sér. Sémin. Méditerranéens; CIHEAM, pp.79-84, 2017.

R. Calama, F. J. Gordo, S. Mutke, and G. Montero, An empirical ecological-type model for predicting stone pine (Pinus pinea L.) cone production in the Northern Plateau (Spain), For. Ecol. Manag, vol.255, pp.660-673, 2008.

D. Moreno-fernández, I. Cañellas, R. Calama, J. Gordo, and M. Sánchez-gonzález, Thinning increases cone production of stone pine (Pinus pinea L.) stands in the Northern Plateau (Spain), Ann. For. Sci, vol.70, pp.761-768, 2013.

V. Loewe, A. Venegas, C. Delard, and M. González, Thinning effect in two young stone pine plantations (Pinus pinea L.) in central southern Chile, Opt. Méditerranéennes, vol.105, pp.44-55, 2013.

A. Boutheina, M. H. El-aouni, and P. Balandier, Influence of stand and tree attributes and silviculture on cone and seed productions in forests of Pinus pinea L. in northern Tunisia, Opt. Méditerranéennes Sér. Sémin. Méditerranéens, vol.105, pp.9-14, 2013.

J. Ruiz-de-la-torre, Árboles y arbustos de la España peninsular, ETS Ing. Montes Madr. Spain, 1979.

S. Mutke, R. Calama, S. C. González-martínez, G. Montero, F. Javier-gordo et al., Mediterranean Stone Pine: Botany and Horticulture, Hortic. Rev, vol.39, pp.153-201, 2012.

A. Rodrigues, G. L. Silva, M. Casquilho, J. Freire, I. Carrasquinho et al., Linear mixed modelling of cone production for Stone Pine in Portugal, Silva Lusit, vol.22, pp.1-27, 2014.

, United Nations Environment Programme (UNEP) World atlas of desertification, In World Atlas of Desertification, 1992.

V. M. Muggeo, Estimating regression models with unknown break-points, Stat. Med, vol.22, pp.3055-3071, 2003.

V. M. Muggeo, Segmented: an R package to fit regression models with broken-line relationships, vol.8, pp.20-25, 2008.

C. B. Barber, K. Habel, R. Grasman, A. Stahel, A. Stahel et al., Geometry: Mesh Generation and Surface Tesselation, 2014.

H. F. Pretzsch and . Dynamics, Growth and Yield: From Measurement to Model, 2009.

S. J. Riley, Index that quantifies topographic heterogeneity, Intermt. J. Sci, vol.5, pp.23-27, 1999.

M. F. Wilson, B. O'connell, C. Brown, J. C. Guinan, and A. J. Grehan, Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope, vol.30, pp.3-35, 2007.

P. Dartnell, Applying Remote Sensing Techniques to Map Seafloor Geology/Habitat Relationships, 2000.

P. A. Burrough, R. Mcdonnell, R. A. Mcdonnell, and C. D. Lloyd, Principles of Geographical Information Systems

J. Vanderwal, L. Falconi, S. Januchowski, L. Shoo, and C. Storlie, SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises. R Package Version, vol.1, pp.1-221, 2014.

J. R. King and D. A. Jackson, Variable selection in large environmental data sets using principal components analysis, Environmetrics, vol.10, pp.67-77, 1999.

G. G. Quinn and M. J. Keough, Experimental Design and Data Analysis for Biologists, 2002.

D. B. Hall, Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study, Biometrics, vol.56, pp.1030-1039, 2000.

D. Rizopoulos and . Glmmadaptive, Generalized Linear Mixed Models Using Adaptive Gaussian Quadrature. R Package Version 0.4-0, p.27, 2018.

D. Bates, B. Bolker, and S. Walker, Fitting linear mixed-effects models using lme4, J. Stat. Softw, vol.67, pp.1-48, 2015.

M. J. Mazerolle, AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c)

E. Wagenmakers and S. Farrell, AIC model selection using Akaike weights, Psychon. Bull. Rev, vol.11, pp.192-196, 2004.

M. N. Cañadas, Pinus pinea L. en el Sistema Central (Valles del Tiétar y del Alberche): desarrollo de un modelo de crecimiento y producción de piña, 2000.

J. P. Freire, Modelação do crescimento e da produção de pinha no pinheiro manso, 2009.

M. Piqué, P. Vericat, M. Beltran, R. Calama, and T. Cervera, Models de Gestió per a les Pinedes de pi Pinyer (Pinus pinea L.): Producció de Fusta i Pinya i Prevenció de Incendis Forestales; Centre de la Propietat Forestal. Departament d'Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural, pp.17190-2015, 2016.

C. Castellani, La produzione legnosa e del fruto e la durata economico delle pinete coetanee di pino domestico (Pinus pinea L.) in un complesso assestato a prevalente funzione produttiva in Italia, Ann. ISAFA, vol.12, pp.161-221, 1989.

R. Calama, S. Mutke, J. Tomé, J. Gordo, G. Montero et al., Modelling spatial and temporal variability in a zero-inflated variable: The case of stone pine (Pinus pinea L.) cone production, Ecol. Model, vol.222, pp.606-618, 2011.

G. Montero, R. Calama, and R. Ruiz-peinado, Selvicultura de Pinus pinea L, pp.431-470, 2008.

L. Sirois, Spatiotemporal variation in black spruce cone and seed crops along a boreal forest-tree line transect, Can. J. For. Res, vol.30, pp.900-909, 2000.

I. Verkaik and J. M. Espelta, Post-fire regeneration thinning, cone production, serotiny and regeneration age in Pinus halepensis, For. Ecol. Manag, vol.231, pp.155-163, 2006.

F. Bravo-oviedo, D. A. Maguire, and S. C. .;-gonzález-martínez, Factors affecting cone production in Pinus pinaster Ait.: lack of growth-reproduction trade-offs but significant effects of climate and tree and stand characteristics, vol.26, pp.1-13, 2017.

R. M. Lanner, An observation on apical dominance and the umbrella-crown of Italian stone pine (Pinus pinea, Pinaceae), Econ. Bot, vol.43, pp.128-130, 1989.

W. Wang, Y. Watanabe, I. Endo, S. Kitaoka, and T. Koike, Seasonal changes in the photosynthetic capacity of cones on a larch (Larix kaempferi) canopy. Photosynthetica, vol.44, pp.345-348, 2006.

S. Mutke, R. Calama, C. Guadano, D. Leon, J. Gordo et al., Efecto de la poda sobre la producción de piña en pino piñonero injertado, Proceedings of the Poster. 7o Congreso Forestal, pp.26-30, 2017.