X. Fu, L. A. Clark, Q. Yang, and M. A. Anderson, Enhanced photocatalytic performance of titania-based binary metal oxides: TiO 2 /SiO 2 and TiO 2 /ZrO 2, Environ. Sci. Technol, vol.30, pp.647-653, 1996.

F. Quignard, R. Valentin, and F. Di-renzo, Aerogel materials from marine polysaccharides, New J. Chem, vol.32, pp.1300-1310, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00311053

R. Horga, F. Di-renzo, and F. Quignard, Ionotropic alginate aerogels as precursors of dispersed oxide phases, Appl. Catal. A, vol.325, pp.251-255, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00153806

P. Agulhon, M. Robitzer, L. David, and F. Quignard, Structural regime identification in ionotropic alginate gels: Influence of the cation nature and alginate structure, Biomacromolecules, vol.13, pp.215-220, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00687472

Y. Monakhova, P. Agulhon, F. Quignard, N. Tanchoux, and D. Tichit, New mixed lanthanum-and alkaline-earth cation-containing basic catalysts obtained by an alginate route, Catal. Today, vol.189, pp.28-34, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00721628

S. Behar, P. Gonzalez, P. Agulhon, F. Quignard, and D. Swierczynski, New synthesis of nanosized Cu-Mn spinels as efficient oxidation catalysts, Catal. Today, vol.189, p.4706, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00746029

P. Agulhon, S. Constant, B. Chiche, L. Lartigue, J. Larionova et al., Controlled synthesis from alginate gels of cobalt-manganese mixed oxide nanocrystals with peculiar magnetic properties, Catal. Today, vol.189, pp.49-54, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00694354

E. Wan, A. Travert, F. Quignard, D. Tichit, N. Tanchoux et al., Modulating properties of pure ZrO 2 for structure-activity relationships in acid-base catalysis: Contribution of the alginate preparation route, vol.9, pp.2358-2365, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01632701

C. Michel, J. Zaffran, A. M. Ruppert, J. Matras-michalska, M. Jedrzejczyk et al., Role of water in metal catalyst performance for ketone hydrogenation: A joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone, Chem. Commun, vol.50, pp.12450-12453, 2014.

M. G. Al-shaal, W. R. Wright, and R. Palkovits, Exploring the ruthenium catalysed synthesis of ?-valerolactone in alcohols and utilisation of mild solvent-free reaction conditions, Green Chem, vol.14, pp.1260-1263, 2012.

J. Tan, J. Cui, T. Deng, X. Cui, G. Ding et al., Water-promoted hydrogenation of levulinic acid to ?-valerolactone on supported ruthenium catalyst, ChemCatChem, vol.7, pp.508-512, 2015.

A. Piskun, J. M. Winkelman, Z. Tang, and H. J. Heeres, Support screening studies on the hydrogenation of levulinic acid to ?-valerolactone in water using Ru catalysts, Catalysts, vol.6, 2016.

A. M. Ruppert, J. Grams, M. Jedrzejczyk, J. Matras-michalska, N. Keller et al., Titania-supported catalysts for levulinic acid hydrogenation: Influence of support and its impact on ?-valerolactone yield, ChemSusChem, vol.8, pp.1538-1547, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01234596

J. Ftouni, A. Muñoz-murillo, A. Goryachev, J. P. Hofmann, E. J. Hensen et al., ZrO 2 is preferred over TiO 2 as support for the Ru-catalyzed hydrogenation of levulinic acid to ?-valerolactone, ACS Catal, vol.6, pp.5462-5472, 2016.

H. C. Genuino, P. C. Bruijnincx, and B. M. Weckhuysen, Influence of sulfuric acid on the performance of Ruthenium-based catalysts in the liquid-phase hydrogenation of levulinic acid to ?-valerolactone, vol.10, pp.2891-2896, 2017.

A. M. Ruppert, J. Grams, J. Matras-michalska, M. Che?micka, and P. Przybysz, ToF-SIMS study of the surface of catalysts used in biomass valorization, Surf. Interface Anal, vol.46, pp.726-730, 2014.

M. Wacha?a, J. Grams, W. Kwapi?ski, and A. M. Ruppert, Influence of ZrO 2 on catalytic performance of Ru catalyst in hydrolytic hydrogenation of cellulose towards ?-valerolactone, Int. J. Hydrogen Energ, vol.41, pp.8688-8695, 2016.

H. Zhang, B. Chen, J. F. Banfield, and G. A. Waychunas, Atomic structure of nanometer-sized amorphous TiO 2, Phys. Rev. B, vol.78, 2008.

I. M. Leo, M. L. Granados, J. L. Garcia-fierro, and R. Mariscal, Sorbitol hydrogenolysis to glycols by supported ruthenium catalysts. Chin, J. Catal, vol.35, pp.614-621, 2014.

H. Zou and Y. S. Lin, Structural and surface chemical properties of sol-gel derived TiO 2 -ZrO 2 oxides, Appl. Catal. A, vol.265, pp.35-42, 2004.

R. Perez-hernandez, D. Mendoza-anaya, M. E. Fernandez, and A. Gomez-cortes, Synthesis of mixed ZrO 2 -TiO 2 oxides by sol-gel: Microstructural characterization and infrared spectroscopy studies of NO x, J. Mol. Catal. A, vol.281, pp.200-206, 2008.

J. R. Sohn and S. H. Lee, Effect of TiO 2 -ZrO 2 composition on catalytic activity of supported NiSO 4 for ethylene dimerization, Appl. Catal. A, vol.321, pp.27-34, 2007.

Q. Xu and M. A. Anderson, Sol-gel route to synthesis of microporous ceramic membranes: Thermal stability of TiO 2 -ZrO 2 mixed oxides, J. Am. Ceram. Soc, vol.76, pp.2093-2097, 1993.

M. Triki, D. P. Minh, Z. Ksibi, A. Ghorbel, and M. Besson, Ruthenium catalysts supported on TiO 2 prepared by sol-gel way for p-hydroxybenzoic acid wet air oxidation, J. Sol-Gel Sci. Technol, vol.48, pp.344-349, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00475612

K. Mori, K. Miyawaki, and H. Yamashita, Ru and Ru-Ni nanoparticles on TiO 2 support as extremely active catalysts for hydrogen production from ammonia-borane, ACS Catal, vol.6, pp.3128-3135, 2016.

X. Liu, J. Zeng, W. Shi, J. Wang, T. Zhu et al., Catalytic oxidation of benzene over ruthenium-cobalt bimetallic catalysts and study of its mechanism, Catal. Sci. Technol, vol.7, pp.213-221, 2017.

D. P. Debecker, B. Farin, E. M. Gaigneaux, C. Sanchez, and C. Sassoye, Total oxidation of propane with a nano-RuO 2 /TiO 2 catalyst, Appl. Catal. A, vol.481, pp.11-18, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01289944

L. Li, L. Qu, J. Cheng, J. Li, and Z. Hao, Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts, Appl. Catal. B, vol.88, pp.224-231, 2009.

J. Bi, Y. Hong, C. Lee, C. Yeh, and C. Wang, Novel zirconia-supported catalysts for low-temperature oxidative steam reforming of ethanol, Catal. Today, vol.129, pp.322-329, 2007.

K. Hadjiivanov, J. Lavalley, J. Lamotte, F. Mauge, J. Saint-just et al., FTIR study of CO interaction with Ru/TiO 2 catalysts, J. Catal, vol.176, pp.415-425, 1998.

J. M. Gonzalez-carballo, E. Finocchio, S. Garcia, S. Rojas, M. Ojeda et al., Support effects on the structure and performance of ruthenium catalysts for the Fischer-Tropsch synthesis, Catal. Sci. Technol, vol.1, pp.1013-1023, 2011.

J. Álvarez-rodríguez, I. Rodríguez-ramos, A. Guerrero-ruiz, E. Gallegos-suarez, and A. Arcoya, Influence of the nature of support on Ru-supported catalysts for selective hydrogenation of citral, Chem. Eng. J, pp.169-178, 2012.

B. Coq, P. S. Kumbhar, C. Moreau, P. Moreau, and F. Figueras, Zirconia-supported monometallic Ru and bimetallic Ru-Sn, Ru-Fe catalysts: Role of metal support interaction in the hydrogenation of cinnamaldehyde, J. Phys. Chem, vol.98, pp.10180-10188, 1994.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI