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critical description of valuable routes including processing
methods when necessary.
2.1. Potential Applications of NOS. Before any treat-

ment, shells are generally decontaminated of organic
substances and salts by radiation, thermal treatment, brushing
or oxidation with soaking solutions (NaOH, NaOCl, H2O2, . .
.). In most cases, shells are roughly crushed to reduce storage
and transport volumes. Milling gives a uniform and easy-to-use
powder, allowing to increase the roughness and the available
specific surface area for chemical and physical transforma-
tions.13 The mother of pearl (the inner layer of Pteriidae
shells) is highly prized especially for body art and fashion
purposes. In this case, the animal is specifically farmed for its
shell and pearl, it only requires a surface treatment followed by
shaping.
2.1.1. Food and Cosmetic Industries. NOS powder is a

relevant source of calcium, offering real value for food,
nutraceutical, or cosmetic purposes. Traditional Chinese
medicine praises the health benefits of what is commonly
known as Concha ostrea in Latin (Mu-li in Mandarin). The
recent edition of the Chinese Pharmacopeia lists NOS powders
of different species; C. gigas is the major source of this material,
and CaCO3 the major effective constituent.14,15 Another
review summarizing cosmetics in Roman antiquity referred
to oyster shell powder as an ingredient for smoothing skin due
to the potential local burning effect of lime.16

NOS powder is a potential natural and organic alternative
for synthetic phosphate in pork-based products and has
attracted substantial interest.17,18 With a clean label, this
calcium source acts as a real additive for food and health
products19,20 or animal feeding.21−24 Different oyster shell
powders are commercially available for their benefit effects
against bone-related deficiencies. For the development of such
products, the granulometry of the oyster shell powder and its
association with other elements have a direct influence on the
bioavailability and solubility of calcium as was observed on
ovariectomized and albino rats by oral administration.25,26 The
oral uptake of Mg-, Fe-, Cu-, and Zn-rich mollusk shell powder
carries health benefits, however, the high bioaccumulation
ability of oyster shell, higher than that of eggshells, suggests
that traces of toxic heavy metals may often be present or can
lead to adverse effect by oral or dermal route.27 Therefore,
caution and safety-oriented approaches are recommended for
food, animal feeding or other human uses. To protect humans

from exposure and consumption, different organizations have
specified allowable levels of heavy metals. An evaluation of
NOS powders of P. margaritifera from French Polynesia
revealed that calcium constitutes 40% of the total weight of the
shell. If we consider a human intake of 2.5 g per day, the levels
of hazardous metals such as Cd, As, Hg, and Pb are lower than
the maximum levels authorized by food committees.28

2.1.2. Medical Uses. Nacre produced by the Pinctada genus,
have been considered as a prime candidate for bone tissue
bioengineering applications, as this biomaterial is compatible
with bone tissues and has high mechanical properties.29 Based
on in vitro and in vivo studies, nacre is described as a natural,
biocompatible, and biodegradable biomaterial with osteoin-
ductive, osteointegrative, and osteoconductive properties and
is therefore extensively studied for its bone substitution
capacity. One of the first historical instances of the use of
nacre in bone tissue bioengineering was observed in 1931 in
the lower jawbone of a Mayan individual (Figure 2).30

Later, major breakthroughs have been made by the group of
Prof. Lopez in the field of bone graft substitution by nacre of
Pinctada spp. shells, as highlighted by Westbroek and Marin.32

This work includes in vivo and in vitro studies with various
nacre preparations, such as nacre powder mixed with blood,
nacre chips, and nacre prostheses;29 alginate hydrogels
including nacre powder have also been investigated.33 In
contrast, only one study has focused on the osteogenic capacity

Figure 1. Phylogeny of oyster species.

Figure 2. Examples of nacre bone substitute. (A) Incisors of the lower
jawbone replaced by nacre.30 (B) Solid nacre (N) implanted in the
femur of sheep after 10 months.31



of Ostreida shells.34 This study is attractive since it shows the
potential use of NOS for bone tissue bioengineering, not only
restricted to nacre from Pinctada shells. With the advance of
material science, this field of research is in constant progress.
The development of functionalized and specific composites
with various shapes constitutes one of the main challenges.
Promising perspectives were recently obtained with the design
of hydroxyapatite nanoparticles coated on substrates of nacre
from P. maxima shell,35 with composite of calcium sulfate and
oyster shell36 or with scaffold composites of dried oyster shell
powder and poly(L-lactide).37 Moreover, the use of innovative
technologies for the development and production of
personalized bone-like implant, with controlled porosity and
shape starts to be used in research laboratories. A good
example is the use of fused deposition modeling technology
recently applied to design scaffolds of NOS powder dispersed
in a polycaprolactone matrix with a positive osteogenic activity
when tested in vitro on osteoblast-like cells.38

By combining new technologies with material science and
biology, these studies show the outstanding properties of NOS
for use in bone grafting. It would be interesting to evaluate the
osteogenic performances of NOS compared to others more
accessible and less expensive natural composites. Other
potential medical uses stay underexplored despite the presence
of few preliminary studies in the literature. For example, the
stimulation of skin fibroblasts by nacre powder implanted
between dermis and hypodermis in rats was observed by Lopez
et al. (2000),39 as well as the anticarcinogenic potential of C.
gigas shell powder when administered to mice with induced
tongue tumors.40

2.1.3. Pollutant Remediation. Soil Quality Improvement.
The pKb of hydrogen carbonate (6.6) has led to consider NOS
as an efficient base to neutralize the acidity of soil in different
environments, natural or polluted.41 Treatment of acidic soil
with pulverized NOS causes neutralization but also a beneficial
increase in Ca2+, Mg2+, K+, and Na+ and the stabilization of
heavy metals that are less exchangeable upon lixiviation (SI
Table S2). Surface adsorption is a possible explanation, in
addition to the formation of poorly soluble metal hydroxides or
metal carbonates. The specific sorption of metal cations by the
CaCO3 mineral phases distributed in oyster shells (aragonite
and calcite) plays an important role in surface adsorption.42

Such decontamination or stabilization is also dependent on the
pH, aerobic conditions, ion composition, and counterion but
in general, the efficiency of NOS to stabilize soil has been
established. Some studies mentioned a putative role of chitin
occurring in the organic matrix and the possible coordination
of heavy metal cations. Although not enriched in carbon, NOS
powder can be a source of carbon for plant growth; the
presence of residual NaCl is apparently not injurious in most
cases.43 Combining NOS and biochar or biopolymer improves
soil fertility, carbon sequestration, and worm activity.44,45

Given the overuse of fertilizers, especially in agriculture, and
the resulting deterioration in water quality, NOS powders were
found to be effective in phosphorus removal and are applicable
as a beneficial media in artificial wetland systems.46,47

Water Treatment. Living oysters are well-known for their
capacity to reduce eutrophication in natural water,48 as well as
metals cations, plastic particles, and other chemicals in some
cases.49−52 Although, high efficiency is not always achieved, the
list of pollutants that can be potentially removed by NOS is
summarized in SI Table S3, including anions, cations, organics
such as antibiotics,53 neurotoxins,54 and nitrogen.55

Two major phenomena can explain the ability of NOS to
remove such pollutants: first, the ionic interaction between
ions and the surface of the NOS; and second, the precipitation
on the NOS surface of insoluble salts resulting from the
presence of carbonate, calcium, and hydroxyl. Unfortunately,
many experimental parameters are not systematically reported
which limits comparability. The shell structure and its
microstructures are parameters that can drive the ability of
NOS to adsorb pollutants as it was shown for the different
adsorption behaviors between the prismatic and nacreous
layers.56 The organic matrix may also participate in the
complexation of cations and can explain why removal is more
efficient with NOS than with calcined NOS.
Thanks to its porous structure and its buffering properties,

NOS in collaboration with microorganisms is also relevant in
eco-friendly remediation of wastewater achievable in packed-
bed bioreactors.57−65 In general oyster shells served a 3-fold
purpose: as a biofilm carrier, a source of organic carbon, and as
a basifying agent.64,66,67 Research conducted in this field has
also been developed at the pilot-plant scale using oyster shells
mixed with inorganic minerals like zeolite for phosphorus and
nitrogen removal68 or for the growth of biofilms.69

NOS is efficient to remove a wide range of pollutants from
wastewater at various processing scale, it would be interesting
to evaluate its sorption capacity toward highly hazardous
pollutants. NOS could also be a relevant fixing support in
aquaculture as it is the case for the development of C. gigas
larvae in hatchery70 or wastewater treatment.

Dechlorination of Waste. This is certainly not the most
appealing route for recycling oyster shells, but surely a useful
and simple application. When mixed with polyvinyl chloride
(PVC), NOS neutralizes harmful HCl resulting from PVC
incineration with an efficiency similar to commercially available
calcium carbonate and with CaCl2 as byproducts.

71,72

2.1.4. Material Synthesis. Composites. Recent researches
demonstrate that NOS can be used as filler in polymers such as
polyethylene.73 Although performances are limited, the
thermal decomposition of NOS at high temperature generates
CO2 that is relevant for retarding the thermal decomposition of
the polymer. Composites made of NOS and polyethylene,
polypropylene, natural rubber, or asphalt present remarkable
mechanical and thermal stability.74−78 The granulometry of
NOS powder and the mediation of interfacial weak interactions
revealed to be crucial points for the development of such
composites. These studies show that NOS is a cheap, natural,
and easy to work substitute of common fillers in polymeric
industry.

Foaming Agent. Due to the production of CO2 resulting
from the decomposition of calcite at T > 550 °C, NOS has
been used as a foaming agent for the preparation of
vitrocrystalline foam. The best results were obtained with
91% glass bottles and 9 wt % oyster foams fired at 900 °C,
demonstrating characteristics and properties similar to (or
better than) those of analogous commercial products such as
glass and alumina foams.79

Templates in Material Science. In this field, the general
approach is the replication of natural organs leading to
materials biomimicking natural structures. Since it is easily
removed by acidic treatment, NOS is an interesting option as
sacrificial template for such morphological mimicry. Careful
attention should be paid to the shell structure selected as the
template and the targeted application. For example, the design
of folded SiO2 requires a shell substrate made of chalky and



foliated structures only occurring in Ostreidae shells.80

Another example is the pyrolysis of powdered NOS with
layered structure mixed with soft pitch to prepare porous
carbon anodes in lithium ion batteries.81 However, materials
are not performant enough to be an attractive way of recycling.
Support for Catalysts in Organic Chemistry. The use of

NOS as support of catalysts is a growing field of research with
high potential. Heterogeneous catalyst was formulated with
powders of CuBr and NOS with higher efficacy than a mixture
of CuBr and CaCO3.

82 The authors hypothesized an important
chelating role of chitin and proteins constituting the organic
matrix of NOS for [Cu]-active species. The good chemical
stability and reusability (at least eight times) of the [NOS−
CuBr] composite are among the attractive points of this
approach. Among other recent attractive data, NOS powder
has been found to be useful as a support for MgO, Al2O3,
CaCO3, and zeolite (ZSM-5) to catalyze gas produced by the
pyrolysis of waste tires.83 Despite the novelty of the approach,
the latter is limited by the necessity to avoid any contaminant
from the shell that would disturb the catalytic activity.
Relevant Original Source of Calcium, Calcium Carbonate,

and Sodium. The most general way of recycling seashell waste
is the use as aggregates for the formulation of concrete that
could easily be established in aquaculture where concrete is
used as a growing support. The important points being the
granulometry of NOS and other minerals entering in the
formulation.84,85 Despite the relative simplicity for the
implementation of this type of material, their long-term
durability is not well-known. Such applications are not
innovative but still relevant for a large-scale recycling of NOS.
The use of NOS instead of ores as source of CaCO3 can also

be innovative for the production of advanced materials such as
aragonite needles,86 high-purity calcite submicrometern
powder87 and CaSO4:2H2O powder or whiskers.88 In this
field the hydroxyapatite is the paramount example of a high-
demanded Ca2+-containing material (eq 1), and NOS was
found useful for its synthesis with different morphologies and
specific surface areas depending on the conditions of the
hydrothermal process (Figure 3).89,90
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In an innovative approach, NOS was used for the
preparation of 1D nanostructured single-crystalline
Na2Ti6O13 and Na2W4O13 with lower processing temperature
and higher yield than with chemical mixtures (Figure 4).91

2.2. Potential Applications of CNOS. Calcination of
NOS leads to the so-called calcined natural oyster shell
(CNOS), a potential multiuse raw material. This is usually
performed on mixed batches of shells with unreliable
traceability and poor consideration of the composition and

structural differences among oyster species. This is a limit to
the recycling of shells, especially when targeting specific
synthesis of advanced materials. Calcination of NOS starts with
water loss and decomposition of the organic matrix at
temperatures of approximately 200−400 °C, leading to a
weight loss of 2−4%.92 In the case of aragonite-rich shells like
P. margaritifera, a thermal structural phase transition from
aragonite to calcite occurs between 280 and 500 °C.93,94 At
higher temperatures, the decomposition of calcite leads to the
eco-valuable production of calcium oxide, which is concom-
itant with the release of carbon dioxide between 550 and 800
°C (weight loss of 40−45%) but calcite can still be present up
to 900 °C (eq 2).95

→ + Δ =CaCO CaO CO DH 178kJ/mol3(s) (s) 2(g) (2)

In light of the energy required, thermal treatment of NOS
should be considered only for attractive applications. An
innovative microwave calcination treatment was recently
applied to oyster shell powder with quasi-complete decom-
position obtained at 900 W (2.45 GHz; 20 min).96

Considering the time and energy required, microwave
calcination is an attractive method. NOS powder can also be
decomposed with high-voltage electric current under a reduced
oxygen concentration at approximately 800 °C.97,98 Known as
active absorbable calcium (AACa) or oyster shell electrolysate
(OSE), this powder is mainly composed of lamellar CaO
structure.97,99 However, the description of the preparation of
AACa suffers from a lack of scientific criteria of repeatability.

2.2.1. Medical Uses. The research group of Fujita
extensively studied the effect of preparations of CNOS in the
prevention and treatment of calcium metabolism-related
diseases. Their review on osteoporosis summarizes the
contributions of AACa and active absorbable algal calcium
(AAACa).100 Compared to CaCO3, AACa is described as a
readily absorbable form of calcium,98 favorable for the
treatment of osteoporosis by oral route101,102 as well as
AAACa, which is a mixture of AACa with an extract of the
seaweed Cystophyllum fusiforme.103−105 AAACa was suggested
to be the most efficient ingredient at preventing osteopo-
rosis106 with positive analgesic effect on joint pain.107 More
surprisingly, supplementation with AAACa has been reported
to prevent light, sound, and emotional stress resulting from
neuromuscular instability.108 Among these various studies, no
adverse effects have been observed.
This substantial work displays interesting effects of CNOS

toward the prevention of osteoporosis. Combining CNOS with
other active ingredients could be an innovative approach for
the development of nutraceuticals as it was recently shown for
the treatment of inflammatory bowel disease on mice by oral
administration of zeolite-CNOS mixture.109 The development
of such products has to be evaluated in comparison with NOS-
based products given the low sustainability of NOS calcination.

Figure 3. SEM image of hydroxyapatite produced by hydrothermal
processing of NOS at 200 °C for 92 h.89

Figure 4. TEM images of Na2Ti6O13 nanorods prepared with NOS.91



2.2.2. Pollutant Remediation. Soil Quality Improvement.
Compared to NOS, CNOS is sometimes more effective for
stabilization and pH neutralization of contaminated soils (SI
Table S4).41 Further comparative researches are needed to
evaluate the relevance of CNOS compared to NOS.
Water Treatment. CNOS generally removes cationic

pollutants more effectively than NOS as described for Cd(II)
(SI Table S4).110,111 The higher the temperature of
calcination, the better is the efficiency of CNOS. This
observation is directly related to the large increase in the
specific surface area of the material upon calcination.112 This
phenomenon can also be explained by the formation of
insoluble metal hydroxides by adsorption of the metal on the
surface of CNOS. Unlike NOS, CNOS was applied to remove
and recover other chemicals such as boron,113 free fatty acids
and iodine from the bleaching process of palm kernel oil,114

and pathogen like E. coli.115

Gas Treatment. The basic character of CNOS is well-
adapted to remove pollutants such as SO2, SO3, H2S, and NOx
in dry or wet processes as well as CO2 sequestration.116−118

Obviously, this strategy is relevant only if the cyclability of the
process allows higher CO2 sequestration than CO2 generation
due to calcination.119

2.2.3. Material Synthesis. Standard Reagent. Different
studies support that NOS-derived CaO powder can be used as
a standard chemical reagent and can be classified in the
reactive class R4.120 Dissolution of CNOS leads to a Ca(OH)2
solution/suspension that is useful for the preparation of
hydroxyapatite,121 unfired fly ash bricks,122 mortar,123 or
nanomaterials like Ca(OH)2 hydoxide nanoplates (Figure
5).124 Hydroxyapatite can also be obtained by direct solvent-
free ball-milling and calcination,125,126 an interesting way to
produce chemicals with higher added value than NOS.

In the field of nanotechnology, nanomaterials are easily
accessible by reacting CNOS with K(MnO4) to form
nanostructured Mn/Ca mixed-oxides decorated with Mn3O4
nanoparticles that have potentially high adsorption capacities
for Pb(II) and Eu(III).127

Silicate nanofibers prepared hydrothermally with CNOS
(Figure 6) are efficient porous absorbent of metal cations, such
as Cu(II), Cr(VI),128 and anion such as phosphates.129 In the
same application field, calcium silicate wollastonite and
pseudowollastonite were obtained at 1100−1200 °C by mixing
NOS and waste float glass from building demolition. This work
represents an additional step toward the synthesis of advanced
materials made from 100% waste.130

Catalyst and Support for Catalysts. CNOS is potentially
attractive for catalysis or cocatalysis in processes that require
basic media, a typical case being the transesterification of

soybean oil.131−135 Very recently, CNOS nanoparticles were
employed as a catalyst for the preparation of 1,8-dioxo-
octahydroxanthenes via the one-pot condensation of 5,5-
dimethylcyclohexane-1,3-dione or dimedone with various
aldehydes under solvent-free conditions.136 Chemical stability
and reusability of CNOS catalyst are among parameters to be
investigated.

Filler in the Synthesis of Polymer. Applications of CNOS in
this area are limited, CNOS powder was reported as a filler in a
polypropylene polymer.137 Thermal and mechanical properties
of this material are comparable to those obtained with
commercial CaCO3, thus questioning the relevance of NOS
calcination.

2.2.4. Antibacterial Agent. The antibacterial activity of
NOS calcined under ohmic heating was evaluated against E.
coli, Salmonella, and Listeria monocytogenes inoculated on the
surface of tomatoes.138 CNOS had an efficient antimicrobial
activity, higher than that of a preparation with 200 ppm
chlorine and distilled water. The antibacterial activity is
certainly attributed to the basicity of the preparation due to
the hydration of CaO.139 This emerging application shows that
CNOS is a potential antibacterial agent of interest as a
substitute of synthetic commercial chemicals or in the polymer
industry where antibacterial polypropylene/CNOS composites
were recently investigated.140

2.3. Potential Applications of Biomolecules Extracted
from the Organic Matrix. Frequently described as a set of
macro- and low-molecular-weight biomolecules, the organic
matrix is actually an extremely complex material whose exact
composition, assembly, and mechanism of action are not fully
defined at the molecular level. The organic matrix can be
classified into sets of biomolecules based on their extraction
process and solubility, that is, the water-soluble matrix (WSM),
ethanol-soluble matrix (ESM), acid-soluble matrix (ASM),
acid-insoluble matrix (AIM), EDTA-soluble matrix (ED-
TASM), EDTA-insoluble matrix (EDTAIM), and fat-soluble
matrix (FSM).
The nature of AIM (sometimes called conchiolin) has been

shown to be proteinaceous and constitutes more than 90% of
the organic matrix.141 ASM and AIM can be obtained after

Figure 5. Ca(OH)2 nanoplates prepared from CNOS according to
Khan et al. (2018).124

Figure 6. Calcium silicate prepared with CNOS. Reproduced with
permission from Ref.128 Copyright 2015 The Physical Chemistry
Chemical Physics Owner Societies.



dissolution with acids followed by several separation
steps.141,142 Calcium-chelating agents, such as EDTA, are
also employed at neutral pH. A general protocol was proposed
by the research group of Marin which was described to
minimize the degradation of proteins and avoids the formation
of aggregates.143,144 In the nacre of P. maxima shell, the
extraction yields of ASM and AIM are 1.20 and 0.17 wt %,
respectively.145 WSM extraction from nacre was originally
applied and patented by the research group of Prof. Lopez.
The extraction method does not allow recovery of molecules
strongly bound to the mineral phase but is directly compatible
with biological purposes such as in vitro and in vivo trials. The
achievable extraction yield varies from approximately 0.2 to 5
wt %.146,147 A method was recently developed to extract and
fractionate ESM from the nacre of P. margaritifera;148 to the
best of our knowledge, the molecular characterization of ESM
has not yet been investigated. In addition, extraction yield has
not been reported.
Among these extracts, WSM is the most studied, but has

almost exclusively been investigated for its osteogenic activity.
The different potential applications of these extracts are
summarized in the following subsections.
2.3.1. Water-Soluble Matrix (WSM). Bone Tissue Bioen-

gineering. The osteogenic activity of WSM originally extracted
from the powdered nacre of P. maxima shell (50−150 μm) was
highlighted by the research group of Prof. Lopez.149 WSM was
revealed to be osteoinductive, enhancing in vitro bone cells
differentiation and cellular osteogenic markers. Osteogenic
activity studies of WSM were extended to P. fucata and P.
martensii nacre. As an example, this academic research has
been developed in the form of cosmetic and nutraceutical
ingredients by the French company StanSea. To the best of our
knowledge, no in vivo or in vitro studies have been published
on the osteogenic activity of WSM extracted from Pteria and
Ostreida oyster shells, whereas the presence of WSM in the
shell of C. gigas is well-known.150 Only a few studies have
described the relationship between WSM proteins of Ostreida
shells and osteogenic activity.151,152 To confirm this
assumption, in vitro trials are further required.
Other Biological Activities: Antioxidant Activity, Anti-

Inflammatory Activity, and Dermal Fibroblast Regulation.
The antioxidant activity of WSM extracted from the nacreous
layer of P. fucata shell was investigated in terms of its capacity
to scavenge free radicals (DPPH and ABTS tests), to inhibit
lipid peroxidation and to reduce damage in human
keratinocyte cells after inducing oxidative stress.153 The
authors showed that WSM can scavenge free radicals in a
dose-dependent manner, reducing the effect of oxidative stress
in human keratinocytes.
WSM was also tested in vitro for its anti-inflammatory and

antioxidant activities on mouse macrophages.154 WSM
suppresses or decreases pro-inflammatory factors linked to
pro-inflammatory cytokine inhibition and exhibits antioxidant
activity. Unfortunately, information on the oyster species used
in this study was not presented.
For a different purpose, Latire et al. (2017) described the

fact that WSM extracted from C. gigas shell can favor the
catabolic activities of human dermal fibroblasts in vitro.150

In comparison with the numerous osteo-benefits attributed
to WSM, these are the only examples found in the literature
highlighting other biological properties, and therefore the field
is still highly open.

2.3.2. Ethanol-Soluble Matrix (ESM). Brion et al. (2015)
originally described the osteogenic effect of ESM from the
nacre of P. margaritifera.155,156 This topic was further
investigated in vitro by the stimulation of mouse preosteoblasts
and human osteoarthritis osteoblasts with ionic fractions of
ESM.148 This study reveals clues about the cationic nature of
the osteogenic compounds found in the nacre of oyster shells.
Comparative osteogenic and scalability studies between ESM
and WSM are required knowing that the process by which
ESM is obtain does not require a freeze-drying step as it is the
case for WSM extraction.

2.3.3. Acid-Soluble Matrix (ASM). Prevention of Cognitive
Diseases. Recently, ASM extracted from the nacreous layer of
P. fucata shells was tested in vivo against scopolamine-induced
memory impairment in Wistar rats and ICR mice.157 In both
cases, ASM improved memory and cognitive impairments,
suggesting that ASM can affect brain function by protecting
against the dysfunction of glutamate neurotransmission. This
mechanism was supported by the examination of the known
genes associated with memory.

Free Radical Scavenging. A purple organic substance
precipitated from a solution of ASM was capable of scavenging
hydroxyl and superoxide radicals.158 With an extraction rate of
approximately 2.49 wt %, this extract could be of great
commercial interest, especially for food, nutraceutical, or
cosmetic products. Unfortunately, the article lacks sufficient
experimental details to allow easy reproduction of the protocol.

Dermal Fibroblast Regulation. Latire et al. (2017) recently
described the regulatory activities of ASM on the metabolism
of dermal fibroblasts in vitro.150 This pioneer work was
performed with ASM obtained from the shell of C. gigas.

Material Synthesis. Adding supersaturated CaCO3 solution
to ASM extracted from the nacreous layer of P. margaritifera
shell produces nanostructured CaCO3 crystals whose morphol-
ogy depends on the concentration of ASM.159 A protein
isolated from the ASM of the nacre from P. fucata shell was
employed to induce the formation of aragonite and calcite
crystals.160 Such innovative results open new pathways for the
synthesis of inorganic phases.

2.3.4. Acid-Insoluble Matrix (AIM). Natural Multifunc-
tional Biopolymer. Chitin (poly 2-acetamido-2-deoxy-β-D-
glucose) is a nontoxic, biodegradable, and biocompatible
biopolymer of considerable interest for the pharmaceutical,
cosmetic, biochemical, agricultural, and food industries. This
biopolymer was identified for the first time in the AIM of the
prismatic layer of P. fucata.161 Recently, extraction of chitin
was reported from undefined raw oyster shell species,162 but
the reported content of chitin extracted from the shell (69 wt
%) is inconsistent with all other reported mass fractions of the
organic matrix in the oyster shell.

Material Synthesis. In the design field of crystal growth, a
promising application describes the preparation of macro-
mesoporous TiO2.

163 TiO2 nanoparticles were grown onto
AIM macrotemplate by sol−gel. The resulting anatase showed
interesting photocatalytic activity, especially for samples
calcined at 450 °C. However, the chemistry by which AIM
and TiO2 nanoparticles interact is not described. This study
shows the prime importance of the shell structure for such
material synthesis.

2.3.5. EDTA-Soluble Matrix (EDTASM). The only applica-
tion found in the literature regarding the use of EDTASM
concerns material synthesis. Calcite and aragonite crystals were



selectively prepared with the help of EDTASM proteins
extracted from specific microstructures of C. gigas shells.164,165

2.3.6. EDTA-Insoluble Matrix (EDTAIM). A single article
relates the use of the proteinaceous fraction of EDTAIM to
induce aragonite crystals formation in saturated CaCO3
solution with the addition of Mg2+.166 It is important to note
that the aragonite crystals do not grow either without Mg2+ or
with individual components of the fraction.
2.3.7. Fat-Soluble Matrix (FSM). Perhaps more unexpected,

lipids are part of the shell organic matrix. The research group
of Prof. Lopez highlighted the fact that FSM extracted by
maceration of nacre with a mixture of methanol and
chloroform can promote the restoration of the stratum
corneum in vitro.167

2.3.8. Shell color related compounds. A potential
application is never mentioned in reviews on the topic: the
use of pigments and dyes extracted from the oyster shell. Shell
color generally varies from dark-red to brown, and sometimes
golden or even pink (Figure 7). In the current industrial
context, synthetic pigments and dyes tend to be substituted by
natural equivalents, especially in health products. One key
challenge to be resolved lies in the identification of compounds
at the origin of shell coloration and thus their selective
extraction. The presence of melanin extracted in black C. gigas
shell is a hypothesis but has not yet been convincingly
established.168 To date, no biomolecules have been associated
with shell coloration other than black excepted for the
presence of fluorescent porphyrins in the shells of Pinctada
and Pteria genius.169−171 This innovative recycling of oyster
shell is still at the level of fundamental research and lacks of
substantial and exhaustive works.

3. CRITICAL ANALYSIS

The economic viability of any recycling process depends on
two essential parameters: the cost and the logistic to collect the
shell on one hand, and the added-value of the product resulting
from the recycling on the other hand. The generation of
pollutants, emissions, or new waste must be minimized in an
environmentally friendly philosophy; however, this might be
acceptable if the added value of the final product can cover the
expense of the treatment in eco-friendly conditions.
So far, oyster shells collection remains to be organized since

it is actually considered as a diffuse pollution (consumers,
factories, and farms). Recently, de Alvarenga et al. (2012)
examined the LCA of oyster shell waste according two
scenarios: (i) the direct deposit of shells in a landfill or (ii) the
implementation of a simple process to produce CNOS powder
(<20 μm).174 They concluded in favor of the chalk production

process. Although this option is strongly dependent on the
distance between the source point and the shell-processing
facility. Figure 8 gives an overview of possible application fields
for the recycling of waste oyster shells.

As raw material, NOS is useful for basic applications
requiring simple and low-cost processing technologies at large-
scale such as animal feeding (SI Table S5).
In economic terms, these applications do not bring high

added-value but they allow the distribution of large quantities
of NOS with adapted performances. For the other highly
documented applications of water and soils depollution, the
use of NOS is performant and cheap, but probably requires
standardization of the manufactured product. It also raises the
question of the elimination of the resulting contaminated
NOS. An alternative remaining to be explored would be to
consider the presence of metals at the surface of NOS as a
possible catalyst. This would be similar to what has been
successfully developed by the team of C. Grison using metal-
hyperaccumulating plants to produce metal oxide catalyst.175

The use of NOS in building materials or as filler in
composites represents an interesting option with more added-
value but probably requires here again a standardization of
materials. Besides, the durability of these materials remains
limited, still relatively unknown,84 not fully studied, and hardly
documented.
Other applications with higher economic potential concern

NOS and CNOS in material and health fields. NOS as a source
of calcium in food requires simple treatments without altering
its quality, in line with consumer’s expectations. The major

Figure 7. C. gigas oyster shells with six coloration types. (A) Whole white shell, (B) whole black shell, (C) whole golden shell, (D) partially colored
shell.172 (E) Pink oyster from the French oyster farming Tarbouriech (Thau, France).173

Figure 8. Application fields of waste oyster shell described in this
review.



limit lies in human safety directly related to heavy metals and
hazardous chemicals content as a consequence of the possible
bioaccumulation of toxins in the shell. As an excipient or
source of calcium in pharmaceutical products, NOS has to be
declared and requires to be produced following GMP
guidelines. Besides, the real economic advantage of NOS
compared to other CaCO3 sources is not always obvious. The
answer may probably be driven by a significant shift in mind-
sets and ways of working. This is actually the case in the
cosmetic industry, where the naturalness of ingredients is
highly marketed. As a cosmetic ingredient, NOS powder has a
real interest, especially for its soft abrasive properties (skin soft-
peeler), making it a potential substitute for plastic microbeads
used in cosmetics. This expanding market meets a growing
demand for natural, safe, and effective ingredients. This may be
reinforced if further research demonstrates additional bio-
logical activities of NOS, especially of the organic matrix.
Among the applications with high economic value, the use of

NOS in bone grafting seems to be a promising route but
requires deeper knowledge about long-term biocompatibility
and stability.
Concerning materials chemistry, NOS is an interesting

template of advanced material or support for catalysts as
evidenced by the increasing number of publications on this
subject. However, the scalability and the repeatability of these
applications remains linked to the collection, selection and
standardization of the shell.
The unsustainability of NOS calcination in oven questions

the relevance of CNOS, especially since these applications are
frequently similar to those with NOS. Few applications
reported better performances of CNOS compared to NOS
but do not seem high enough to justify the calcination cost and
the carbon dioxide emission. Thus, calcination in oven has to
be considered only for applications where the required
performance level is not achievable with NOS. In this instance,
the development of sustainable calcination processes is needed
such as fast microwave calcination,96 or solar oven combined
with carbon dioxide sequestration.
Biomolecules of the organic matrix (SI Table S6) are

perhaps the best candidates for applications with high value,
being entirely competitive with chemical sources of calcium
carbonate. The high performance of these biomolecules
compensate for the low scalability of the extraction process.
WSM as a cosmetic and nutraceutical ingredient commercial-
ized by StanSea is a good example. This research area is still
highly open both for the identification of new biological
activities for health applications and for the synthesis of
innovative advanced materials. The future development of
these applications depends on the progress made in the
characterization of these extracts, in particular their composi-
tion and mechanisms of action. The difficulty relies on low
yields and does not solve the problem of recycling calcium
carbonate wastes, which should be handled together.

4. PERSPECTIVES AND OUTLOOK
The globalization of oyster farming generates short-term
profits for local economic actors, but the massive production
of shells starts to raise ecological questions. In this context,
several studies disclose promising recycling applications from
low to high value. The economics of recycling is dominated by
the balance between the cost of collection/decontamination/
processing and the added value of the product and its use. This
can change due to the great consideration of environmental

issues by consumers and their demand for a natural product.
From depollution of soil and water to bone tissue
reconstruction and production of nanomaterials, oyster shell
has plenty to offer for chemists. To effectively treat the
recycling and recovery of this byproduct, diverse issues need to
be addressed, especially those related to the variability of
composition and microstructures of the shell. Some other
aspects still need to be better explored, such as parts of the
shell, including pigments and the organic matrix, that still lack
detailed characterization but can lead to new valuations.
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