DFT Simulation of XPS Reveals Cu/Epoxy Polymer Interfacial Bonding
Thomas Duguet, Andreas Gavrielides, Jérôme Esvan, Tzonka Mineva, Corinne Lacaze-Dufaure

To cite this version:
Thomas Duguet, Andreas Gavrielides, Jérôme Esvan, Tzonka Mineva, Corinne Lacaze-Dufaure. DFT Simulation of XPS Reveals Cu/Epoxy Polymer Interfacial Bonding. Journal of Physical Chemistry C, American Chemical Society, 2019, 123 (51), pp.30917-30925. 10.1021/acs.jpcc.9b07772. hal-02450673

HAL Id: hal-02450673
https://hal.umontpellier.fr/hal-02450673
Submitted on 27 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author’s version published in: http://oatao.univ-toulouse.fr/25314

Official URL: https://doi.org/10.1021/acs.jpcc.9b07772

To cite this version:

Any correspondence concerning this service should be sent to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr
DFT Simulation of XPS Reveals Cu/Epoxy Polymer Interfacial Bonding

Thomas Duguet, Andreas Gavrielides, Jérôme Esvan, Tzonka Mineva, and Corinne Lacaze-Dufaure

†CIRIMAT, Université de Toulouse, CNRS-INPT-UPS, 4 Allée Emile Monso, BP 44362, 31030 Toulouse, France
‡Institut Charles Gerhardt, CNRS-Université de Montpellier, 240 Avenue du Pr. Émile Jeanbrau, 34090 Montpellier, France

ABSTRACT: Experiments and computations are performed to assess the interfacial bonding between Cu and a poly epoxy surface relevant to many applications. The surface of the poly epoxy is characterized by X ray photoelectron spectroscopy (XPS) and atomic force microscopy before and after ultrahigh vacuum Cu deposition. Modifications of the XPS spectra are observed, suggesting a strong interaction between specific C and O atoms of the surface with Cu. Density functional theory (DFT) calculations are then performed to simulate XPS spectra and to better understand bonding. DFT computations are performed in the framework of the uGTS methodology, which takes initial and final state effects into account, and allows to calculate chemical shifts between the different C 1s and O 1s molecular orbitals with good accuracy, for the pristine surface. DFT calculations are then set to determine the preferential adsorption sites of Cu on different sites of the polymer surface. Finally, XPS simulation of the C 1s and O 1s spectra with Cu adsorbed at these sites matches very well with the experimental spectra, indicating that Cu atoms interact preferentially with hydroxyls to form Cu-O-C bonds, stabilized by a transfer of 0.5 electrons from Cu to O; hence, Cu is partially oxidized.

1. INTRODUCTION

Value added polymers imply tailored surfaces in many recent applications found in a variety of industrial sectors such as nanomedicine, catalysis, environment, or aerospace and transport, to name a few. Hence, developing models for polymer surfaces becomes strategic, with the parallel development of experimental polymer surface science.

In the aeronautics and space industries, epoxy based composites are widely used to substitute for metals to reduce the mass of assemblies. In specific cases, such as embarked electronics, communication components, or refrigeration tanks, a metallization layer is requested. It will, respectively, serve for electromagnetic shielding, electrical conductivity, and as a permeation barrier. In all cases, a polymer/metal interface is formed that will have to sustain drastic thermomechanical cycling conditions. Therefore, knowledge of these interfaces is a prerequisite to ensure proper adhesion and functional properties.

The mechanisms of formation of metal/polymer interfaces depend on three main features: the availability of reactive functional groups at the polymer surface, the nano and microstructure of the surface, and the valence of the metal adsorbate(s). Metals that easily form oxides, such as Al, Cr, Fe, or Ni, will form stable metal-M(O-C) covalent bonds.

In the case of Al thin films on polycarbonate, Al attacks carbonyls, and in chain C-O, to form Al-O-C. With time, the available metallic Al diffuses toward the polymer bulk to find additional reactive oxygenated sites, a diffusion that can be enhanced by Ar plasma pretreatment (less surface oxygenated sites) or reduced by O2 plasma pretreatment (more surface oxygenated sites) if plasma induced microstructure changes are ignored. When polymers exhibit both oxygenated and nitrogenized groups, the specific reactivity of metals with N and O prevails. For instance, Wagner et al. show the reactivity of Fe, Ni, Cu, and Au evaporated in UHV on 3 different N containing polymers (Nylon 6, which contains C=O and C=N functionalities, N-PE with different C=N, and CN-SAM, which only exhibits C=O nitriles). On Nylon 6, Fe forms Fe-O, Fe-N, and an amorphous carbonaceous species, whereas Cu and Ni form N bonds only. This latter observation is questionable since Cu is known to form Cu-O-C bonds on carbonyls sites. On the two other N polymers, Fe and Ni form N bonds, and Cu shows little or no reactivity. Finally, Au forms a pure metallic overlayer on the three substrates with no evidence of any interfacial bonding. Overall, the reactivity order Fe > Ni > Cu > Au follows the affinity of the metals for O and N. On a poly epoxy that is similar to the one of the present work, observations of condensation coefficients, bonding, and diffusion of Al, Cu, Ag, and Au show the same trend for reactivities: Al > Cu > Au > Ag. Al oxidizes and forms a dense layer, whereas Cu, Au, and Ag form clusters. Diffusion toward the bulk is negligible, even above the glass
transition temperature, in contrast with metal/thermoplastics interfaces.16,18–21 Finally, when the adsorption is accompanied by a degradation of the polymer chain by cissions, the most reactive metals (e.g., Cr or Ni) form carbides or phosphides.13,22 An important general observation of the above mentioned studies is that almost all metal/polymer bond creations or interactions correspond to a change in X-ray photoelectron spectroscopy (XPS) spectra. Hence, XPS is very well suited for the determination of adsorption mechanisms at metal/polymer interfaces. But, as stated by Wolany et al.10 The main problems for line analysis are the exact calibration of the binding energy scale in the absence of a well defined aliphatic C 1s line and the number of peaks to be included into the fit of the C 1s line at a given energy resolution of the spectral data.11,14 This is one of the major limitations of XPS in complex systems that contain a variety of bonds and environments. There, the support of theoretical calculations is of great value. Several codes and methods are available in the density functional theory (DFT) or Hartree–Fock frameworks.23–34 We recently proposed a decomposition of the C 1s peak of the poly epoxy formed by polyaddition of diglycidylether of bisphenol A (DGEBA) and ethylene diamine (EDA), first with rough initial state DFT calculations35 and then with a high accuracy Hartree–Fock ASCF study that accounts for both initial and final state effects and simulates relative peak intensities.36 The high accuracy decomposition of the C 1s peak includes 9 contributions instead of 3 when performed empirically. Additionally, we demonstrate that whereas some C bonds are found at discrete binding energies, others allow quite large binding energy domains. This is due to different second neighbor interactions that may add further uncertainty to experimental decomposition.36

In the present work, we further study this system and its interaction with Cu. We use a different method by simulating XPS spectra by density functional theory (DFT) in the framework of the unrestricted generalized transition state theory (uGTS). Accurate simulations of XPS spectra have to take into account both initial state and final state effects. It can be achieved (i) at the Hartree–Fock (H–F) ASCF level of theory35,37 and (ii) in the framework of the density functional theory using Slater’s Transition State theory (TS).38 The latter method is based on the Taylor series expansion of the energy in terms of the shell occupation and the idea is to remove a fraction of electron from the molecular orbital of interest. Slater’s transition state (TS) method leads to a calculation of the core electron BEs with eq 1

\[
\text{BE} = -\varepsilon_i \left(\frac{1}{2} \right)
\]

(1)

with \(\varepsilon_i\) being the energy of the molecular orbital of interest, with an occupation number of 1/2 electron.

This was generalized by Williams et al.,39 who demonstrated that the core ionization energy is more accurate with eq 2

\[
\text{BE} = -\frac{1}{4} \left[\varepsilon_i(1) + 3 \times \varepsilon_i \left(\frac{1}{3} \right) \right]
\]

(2)

with \(\varepsilon_k\) being the energy of the molecular orbital of interest, with successively an occupation of 1 and 1/3 electrons.

Chong et al.40,41 and Endo et al.42–45 later showed that the most accurate results are obtained with an occupation of 1/3 and calculations performed as unrestricted. This latter development is known as the unrestricted Generalized Transition State (uGTS) theory.

Within the uGTS framework, we reproduce and improve the simulation of the XPS spectra of the pristine epoxy polymer as compared to our previous results. Then, we use simulated XPS to assess the bonding mechanisms responsible for the first step of formation of Cu thin films on the epoxy polymer. The experimental counterpart consists in the UHV evaporation of Cu thin films, followed by XPS and atomic force microscopy (AFM).

2. EXPERIMENTAL AND COMPUTATIONAL DETAILS

2.1. Experimental Details. The poly epoxy is formed by polyaddition of diglycidylether of Bisphenol A (DGEBA) and ethylene diamine (EDA) poured on 1 × 1 cm2 Si wafer coupons. Samples are obtained by slow polymerization at ambient temperature (24 h), followed by post curing above the glass transition temperature (2 h, 140 °C) in an Ar glovebox. This protocol (published elsewhere17,35) maximizes the polymerization rate and limits the formation of surface defects to a minimum.

Samples are then transferred to a UHV chamber where pure Cu (99.999%) is evaporated in a chamber with a base pressure of 5 × 10-10 mbar with a Mantis M–E beam evaporator (293 K, 8 × 10-1 mbar, 6 min, 25 W, 23.2 nA). X-ray photoelectron spectroscopy (XPS) is performed using a Thermo Scientific K alpha apparatus (hv (Al K\textalpha) = 1486.6 eV). The pass energy is fixed at 40 eV. A Shirley background is systematically subtracted. Sputtering is achieved with Ar+ ions (500 eV, 10 mA, Raster area of 2 mm2) to remove the pollution layer formed during transfer to the XPS apparatus.

For the latter, we monitor the recovery of metallic copper by analyzing the Cu 2p peaks and the shape of the Cu LMM peaks and by measuring the modified Auger parameter (\(\alpha’ = BE_{Cu2p} + KE_{CuLMM}\)).46 After 60 s of sputtering, the Cu LMM and Cu 2p peaks are identical to our pure Cu\textsubscript{0} foil reference and the modified Auger parameters are almost equal: \(\alpha’_{Cu\textsubscript{film}} = 1851.29\) eV and \(\alpha’_{Cu\textsubscript{ref}} = 1851.35\) eV. Therefore, the O 1s signal after 60 s sputtering originates from the oxygen of the poly epoxy underneath the Cu film. The C 1s peak is also monitored: its intensity first decreases upon sputtering (for 5, 10, 15, and 20 s total sputtering time) before it increases again (for 25, 30, 60, 80, and 100 s total sputtering time). At the selected time of 60 s used in the study below, the C 1s peak then originates from the poly epoxy sample underneath. By doing so, we are able to analyze and discuss chemical bonding at the buried Cu/epoxy interface based on the fine decomposition of C 1s and O 1s peaks.

Finally, the surfaces of the Cu films are also characterized by atomic force microscopy (AFM, Agilent Technologies model 5500) in ambient conditions in Tapping mode with tips of k = 25–75 N/m (AppNano). The scanning rate is 2 μm/s. Images are processed with the software Gwyddion version 2.19.47

2.2. Computational Details. The molecular model that we use to simulate the surface properties of the epoxy polymer is composed of one DGEBA molecule connected to one EDA molecule (Figure 1). This model, called the “dimer model” in the following, is used to study the adsorption of Cu atoms on poly epoxy and to simulate the XPS spectra for the pristine surface and for the Cu covered poly epoxy surface. Carbon atoms are numbered first, from the right to the left, and then O atoms are numbered from the left to the right, as shown in Figure 1.
strongly modiﬁed environments. After Cu deposition, the O 1s peak shape is
suppressed, indicating a strong interaction of Cu atoms with the nitrogen atoms, gray for carbon atoms, and red for oxygen atoms.

2.2.1. Identiﬁcation of Cu-Adsorption Sites. The geometries of the systems were fully optimized using conjugate gradient methods with the Gaussian09 package.48 To identify the most favorable adsorption site(s) for Cu atoms, we initially positioned one Cu atom in many adsorption sites on the dimer molecule and we optimize the Cu/dimer molecule system without constraint. Two functionals were tested: the B3LYP hybrid functional50,51 and the gradient corrected PBE functional.52 The geometry optimizations were done with the 6 31G* basis set and the stationary points were characterized as minima by a vibrational analysis. This step was followed by a Mulliken population analysis to obtain the charge on each atom.

2.2.2. Simulation of XPS Spectra. The XPS spectra are simulated in the framework of the unrestricted Generalized Transition State theory (uGTS) using the PBE functional.51 To this aim, the following computational scheme is used with the deMon2k code:52 (i) we fully optimize the systems with a relativistic valence basis set, GENA2 auxiliary functions,53 and relativistic Stuttgart pseudopotentials54 for all of the atoms, except for the H atoms (DZVP); (ii) we then remove the pseudopotential on the atom of interest, i.e., C or O atoms, to calculate the energy of the 1s orbital for this atom and we apply the large AUG cc pVTZ orbital basis set55 to this atom to perform single point calculation of the energy of the neutral molecule and of the energy $-\epsilon k(1)$ of the 1s orbital for the atom of interest; and (iii) finally, we perform a single point calculation of the energy on the ionized molecule, with 0.33 electron on the 1s orbital for the atom of interest. We obtain the energy $-\epsilon k(1/3)$ of the 1s orbital; (iv) we then apply eq 2 and compose the simulated spectra with calculated binding energy shifts (ΔBE). Finally, these theoretical XPS results are compared to the experimental XPS data to estimate the ability of the limited size theoretical model to correctly capture the Cu/polymer interaction.

3. RESULTS AND DISCUSSION

3.1. Characterization of the Epoxy Polymer/Copper Thin-Film Interface by XPS and AFM. The experimental C 1s and O 1s XPS spectra of the clean epoxy surface are shown in black in Figure 2. The C 1s peak is composed of three features: the main peak centered at a binding energy (BE) of 284.6 eV, a high BE shoulder centered at 286.3 eV, and a shake up satellite centered at 291.2 eV. After Cu deposition, the shoulder is strongly diminished. The O 1s peak is centered at BE = 532.1 eV (FWHM = 1.8 eV), typical of organic environments. After Cu deposition, the O 1s peak shape is strongly modiﬁed with the occurrence of a metal oxide contribution at BE = 530.1 eV.

To decompose the spectra with a greater accuracy than by using database BEs, we use calculated BEs arising from the uGTS DFT calculations (namely from the molecular orbitals energies $\epsilon_k(1)$ and $\epsilon_k(1/3)$) detailed in Section 2. Calculation results are summarized in Table 1. The orbital ID follows the absolute positioning and spectral intensity are not normalized. Each individual contribution is identiﬁed by the orbital ID, its originating bond (an asterisk pin points the carbon atom of interest when needed). As compared to our previous simulations of the same system in the framework of Hartree–Fock ΔSCF calculations,36 the positioning of the high BE peak is better. Anyway, bonds appear with the same increasing chemical shift order as in our previous work, and the qualitative result is similar.

The experimental C 1s XPS spectrum after Cu deposition is shown in Figure 2 with the filled area. It shows a wide peak centered at BE = 284.6 eV. Discrepancies with the pristine surface are obvious with the drastic decrease of the high BE shoulder and the disappearance of the shake up satellite. Therefore, through Cu deposition, the contributions of Cph−O−C*, C−OH, and Cph−O−C are modiﬁed or suppressed, indicating a strong interaction of Cu atoms with these groups. In addition, the shake up satellite that arises from π−π* transitions in phenyls groups disappears, further indicating interactions with Cph.

We further characterize the surface of the Cu thin ﬁlm with AFM. The surface roughness, R_s, is determined by the post
processing of 500 × 500 nm² AFM images obtained in tapping mode with the Gwyddion software.° The pristine surface exhibits a low surface roughness \(R_a = 0.23 \) nm. The Cu thin film shows an \(R_a \) of 0.99 nm, i.e., greater than the initial surface, yet still limited. A 500 × 500 nm² AFM image of the Cu film is shown in Figure 3.

The morphology of the film is three dimensional and rough, with a peak to peak roughness \(R_z = 6.01 \) nm, and some darker contrast holes that might point to uncovered substrate locations. Although the majority of the substrate is covered with Cu, we make sure that C 1s XPS spectra of the substrate/film interface are still intense. With this buried interface method, we circumvent the problem of the exposure of the sample to air during its transfer from the evaporation chamber to the XPS chamber. Additionally, we determine that a 60 s mild sputtering (Ar⁺, 500 eV, 10 \(\mu \)A) is adequate to get rid of atmospheric contaminants and recover a pure Cu surface and the elements of the epoxy underneath. We thus monitor the Cu LMM shape and the C 1s and N 1s peaks' shape and intensity. We do not measure the Cu film thickness, but the large C 1s peak intensity indicates that it is well below 3 times the IMFP of electrons in Cu, i.e., \(< 5.4 \)−5.7 nm.

3.2. Identification of Cu-Adsorption Sites on Epoxy Polymer. The deposition of thin films with vapor phase deposition techniques mainly proceeds through an atom by atom mechanism (PVD) or can be simulated by an atom by atom process (CVD).° In the case of the deposition of Cu on several polymers, it is established that first atoms that adsorb on the surface undergo long distance surface diffusion (in the \(\mu \)m range sometimes!) before they stabilize. Once chemisorbed, they act as anchor points for the formation of Cu clusters, where the Cu–Cu interaction is favored at the expense of Cu–polymer surface atom interactions.° This is also well supported by the absence of interfacial adhesion in these metal/polymer assemblies in practical applications.° Therefore, a good practice in DFT calculations consists of evaluating the adsorption energies by optimizing the geometry of a molecule or a surface in close vicinity to an isolated atom. The limitations of modeling a surface with a representative molecule arise if one observes the deformation of the molecule around the metal atom. For instance, this is observed when a 4 atom cluster is used in the present work: the DGEBA–EDA molecule folds around the cluster, as a coordination complex would do (not shown). In this latter case, the molecular model is no longer relevant and should be replaced by a slab model, where the polymer “surface” is sufficiently cohesive to prevent strong deformation. Unfortunately, there is no surface model

<table>
<thead>
<tr>
<th>orbital ID</th>
<th>(\Delta BE) (uGTS) (eV)</th>
<th>functional groups</th>
<th>poly-epoxy (2 DGEBA + 1 EDA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9</td>
<td>0.00</td>
<td>(C^\text{phenyl}) C\text{quaternaire}</td>
<td>2</td>
</tr>
<tr>
<td>C15</td>
<td>0.02</td>
<td>(C^\text{phenyl}) C\text{quaternaire}</td>
<td>2</td>
</tr>
<tr>
<td>C11</td>
<td>0.08</td>
<td>(C^\text{phenyl})</td>
<td>2</td>
</tr>
<tr>
<td>C17</td>
<td>0.09</td>
<td>(C^\text{phenyl})</td>
<td>2</td>
</tr>
<tr>
<td>C16</td>
<td>0.09</td>
<td>(C^\text{phenyl})</td>
<td>2</td>
</tr>
<tr>
<td>C10</td>
<td>0.12</td>
<td>(C^\text{phenyl})</td>
<td>2</td>
</tr>
<tr>
<td>C20</td>
<td>0.14</td>
<td>(C^\text{phenyl})</td>
<td>2</td>
</tr>
<tr>
<td>C7</td>
<td>0.20</td>
<td>(C^\text{phenyl})</td>
<td>2</td>
</tr>
<tr>
<td>C19</td>
<td>0.21</td>
<td>(C^\text{phenyl})</td>
<td>2</td>
</tr>
<tr>
<td>C13</td>
<td>0.34</td>
<td>(CH_2)</td>
<td>2</td>
</tr>
<tr>
<td>C14</td>
<td>0.35</td>
<td>(CH_2)</td>
<td>2</td>
</tr>
<tr>
<td>C12</td>
<td>0.84</td>
<td>(C^\text{quaternaire})</td>
<td>2</td>
</tr>
<tr>
<td>C2</td>
<td>1.12</td>
<td>(C^\text{H}_2\text{NH})</td>
<td>2</td>
</tr>
<tr>
<td>C1</td>
<td>1.30</td>
<td>(C^\text{H}_2\text{NH}_2)</td>
<td>0</td>
</tr>
<tr>
<td>C3</td>
<td>1.36</td>
<td>(C^\text{OH}) C\text{H}_2 C\text{NHC}</td>
<td>4</td>
</tr>
<tr>
<td>C6</td>
<td>1.73</td>
<td>(C^\text{phenyl}) O CH\text{H}_2 C\text{OH}</td>
<td>2</td>
</tr>
<tr>
<td>C4</td>
<td>2.13</td>
<td>(C^\text{phenyl}) O CH\text{H}_2 C\text{epoxy}</td>
<td>2</td>
</tr>
<tr>
<td>C5</td>
<td>2.21</td>
<td>(C^\text{phenyl}) O C\text{H}_2 C\text{OH}</td>
<td>4</td>
</tr>
<tr>
<td>C21</td>
<td>2.53</td>
<td>(C^\text{phenyl}) O C\text{H}_2 C\text{epoxy}</td>
<td>0</td>
</tr>
<tr>
<td>C22</td>
<td>2.64</td>
<td>(CH_2\text{epoxy})</td>
<td>0</td>
</tr>
<tr>
<td>C23</td>
<td>2.67</td>
<td>(CH_3\text{epoxy})</td>
<td>0</td>
</tr>
</tbody>
</table>

The two columns on the right show the number of orbitals and the corresponding relative composition in the stoichiometric mixture 2 DGEBA + 1 EDA used for samples’ synthesis. Lines C1, C21, C22, and C23 show irrelevant results for bonds that do not actually exist in the fully polymerized epoxies.

Figure 3. 500 × 500 nm² AFM image of the Cu thin film.

The morphology of the film is three dimensional and rough, with a peak to peak roughness \(R_z = 6.01 \) nm, and some darker contrast holes that might point to uncovered substrate locations. Although the majority of the substrate is covered with Cu, we make sure that C 1s XPS spectra of the substrate/film interface are still intense. With this buried interface method, we circumvent the problem of the exposure of the sample to air during its transfer from the evaporation chamber to the XPS chamber. Additionally, we determine that a 60 s mild sputtering (Ar⁺, 500 eV, 10 \(\mu \)A) is adequate to get rid of atmospheric contaminants and recover a pure Cu surface and the elements of the epoxy underneath. We thus monitor the Cu LMM shape and the C 1s and N 1s peaks’ shape and intensity. We do not measure the Cu film thickness, but the large C 1s peak intensity indicates that it is well below 3 times the IMFP of electrons in Cu, i.e., \(< 5.4 \)−5.7 nm.

3.2. Identification of Cu-Adsorption Sites on Epoxy Polymer. The deposition of thin films with vapor phase deposition techniques mainly proceeds through an atom by atom mechanism (PVD) or can be simulated by an atom by atom process (CVD).° In the case of the deposition of Cu on several polymers, it is established that first atoms that adsorb on the surface undergo long distance surface diffusion (in the \(\mu \)m range sometimes!) before they stabilize. Once chemisorbed, they act as anchor points for the formation of Cu clusters, where the Cu–Cu interaction is favored at the expense of Cu–polymer surface atom interactions.° This is also well supported by the absence of interfacial adhesion in these metal/polymer assemblies in practical applications.° Therefore, a good practice in DFT calculations consists of evaluating the adsorption energies by optimizing the geometry of a molecule or a surface in close vicinity to an isolated atom. The limitations of modeling a surface with a representative molecule arise if one observes the deformation of the molecule around the metal atom. For instance, this is observed when a 4 atom cluster is used in the present work: the DGEBA–EDA molecule folds around the cluster, as a coordination complex would do (not shown). In this latter case, the molecular model is no longer relevant and should be replaced by a slab model, where the polymer “surface” is sufficiently cohesive to prevent strong deformation. Unfortunately, there is no surface model.
yet for most of the polymers in the state of the art; hence, the isolated atom in interaction with a molecular model of the surface remains the fairest option.

Before we simulate the XPS spectra for the metalized polymer, we try to identify the most favorable adsorption site(s) for Cu atoms, by calculating the adsorption energy \(E_{\text{ads}} \), following the general eq 3.

\[
E_{\text{ads}} = E_{\text{Cu/dimer}} - (E_{\text{Cu atom}} + E_{\text{dimer}})
\]

(3)

where \(E_{\text{Cu/dimer}} \) is the total energy of the system with one Cu atom adsorbed on the dimer molecule, and \(E_{\text{Cu atom}} \) and \(E_{\text{dimer}} \) are the total energies of an isolated Cu atom and of the isolated free dimer, respectively.

The interaction energy \(E_{\text{int}} \) corresponds to the adsorption energy \(E_{\text{ads}} \), except when the dissociation of the O−H bond occurs, leading to a dehydrogenated RO dimer radical (see Table 2).

Table 2. Adsorption Energies of the Cu Atom on the Native or Dehydrogenated Dimer Molecule

<table>
<thead>
<tr>
<th>adsorption site</th>
<th>(E_{\text{ads}}) with B3LYP</th>
<th>(E_{\text{ads}}) with PBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1.591 eV ((Q_{\text{Cu}} = 0.14 e))</td>
<td>2.593 eV ((Q_{\text{Cu}} = 0.13 e))</td>
</tr>
<tr>
<td>O26</td>
<td>1.022 eV ((Q_{\text{O}2} = +0.01 e))</td>
<td>2.007 eV ((Q_{\text{O}26} = +0.03 e))</td>
</tr>
<tr>
<td>phenyl ring</td>
<td>1.428 eV ((Q_{\text{O}2} = 0.09 e))</td>
<td>2.867 eV ((Q_{\text{O}26} = 0.08 e))</td>
</tr>
<tr>
<td>O27 (in O27 H case 1)</td>
<td>1.802 eV ((Q_{\text{O}27} = +0.11 e))</td>
<td>3.222 eV ((Q_{\text{O}27} = +0.13 e))</td>
</tr>
<tr>
<td>O27 (H is removed case 2a)</td>
<td>2.980 eV ((Q_{\text{O}27} = +0.46 e))</td>
<td>4.347 eV ((Q_{\text{O}27} = +0.45 e))</td>
</tr>
<tr>
<td>O27 (H is removed case 2b)</td>
<td>1.742 eV ((Q_{\text{O}27} = +0.39 e))</td>
<td>2.737 eV ((Q_{\text{O}27} = +0.34 e))</td>
</tr>
</tbody>
</table>

\(Q_{\text{Cu}} \) is the Mulliken net charge on the Cu atom in the Cu/polymer system.

The results are shown in Table 2. All sites that are tested are found to be stable for the adsorption of Cu.

The three bottom configurations that evaluate interactions with the O27 atom show the largest adsorption energies. Case 1 assumes that the Cu atom is adsorbed on the oxygen O27 and that the hydrogen atom remains. Cases 2a and 2b, in Table 2, cases 2a and 2b, respectively. In this latter case, eq 4 is used instead.

\[
E_{\text{ads}} = E_{\text{dis OH}} + \frac{1}{2} E_{\text{formation H2}} + E_{\text{int}}
\]

(4)

corresponding to the thermodynamics path S.

\[
\begin{align*}
\text{RO} + \text{Cu} & \rightarrow \text{RO} + \text{H} + \text{Cu} \\
& \rightarrow \text{RO} + \frac{1}{2} \text{H}_2 + \text{Cu}
\end{align*}
\]

(5)

\(E_{\text{dis OH}} \) equals 4.575 eV with B3LYP or 4.434 eV with PBE functionals, respectively. The H2 formation energy \(E_{\text{formation H2}} \) equals -4.760 eV with B3LYP and -4.547 eV with PBE. The interaction energy \(E_{\text{int}} \) is calculated as in 6

\[
E_{\text{int}} = E_{\text{RO-Cu}} - (E_{\text{Cu atom}} + E_{\text{RO}})
\]

(6)

where \(E_{\text{RO-Cu}} \) is the total energy of the system with one Cu atom adsorbed on the RO dehydrogenated dimer molecule, and \(E_{\text{Cu atom}} \) and \(E_{\text{RO}} \) are the total energies of an isolated Cu atom and of the isolated free RO dehydrogenated dimer radical, respectively.

The results are shown in Table 2. All sites that are tested are found to be stable for the adsorption of Cu.

The optimized geometries for cases 1, 2a, and 2b are presented in Figure 4 (PBE calculations).

The Cu−O27 distances are 1.976/1.792/1.787 Å for cases 1/2a/2b, respectively. In case 1, the Cu atom is also bound to two carbon atoms of the phenyl ring (1.901 and 1.992 Å). In case 2a, the Cu atom is in interaction with two carbon atoms (C6 and C7) of the phenyl ring (1.909 and 1.965 Å) but also slightly with the O26 atom (distance Cu−O: 2.558 Å). For the last case (2b), the Cu atom is in interaction with O26 (distance Cu−O: 1.942 Å) and with C5 and C4 atoms (distance Cu−C: 2.423 and 2.306 Å, respectively). Therefore, the most favorable adsorption site is the O27 atom, preferably with the release of the H atom. In these cases, the Cu atom has a net charge of +0.34/+0.46e, i.e., it is oxidized. Unfortunately, the experimental methodology we use (interface burying, post mortem XPS + ion etching) does not allow the proper experimental monitoring of the Cu LMM Auger and Cu 2p peaks, where Cu oxidation is usually observed. In our case, the proportion of bulk Cu within the nanometric thickness is
largely superior to the proportion of interface Cu; hence, it is
not possible to distinguish Cu−O contributions.

3.3. Cu−Polymer Surface Interactions as Evidenced
from the Combined Theoretical and Experimental XPS
Analysis. The 2a configuration corresponds to the strongest
ad sorption site for Cu. However, geometries 1, 2a, and 2b
have been tested for further simulation of the XPS spectrum of
the metalized surface to correlate with the experimental counter
part. Case 1 calculations with a partial occupancy of the C 1s
molecular orbitals do not converge or converge with unrealistic
binding energy shifts, indicating either a numerical issue or an
unstable configuration. Therefore, in the following, we present
the results for cases 2a and 2b. Table 3 shows the chemical
shifts calculated with the uGTS method in these two cases.

<table>
<thead>
<tr>
<th>BE (uGTS) (eV)</th>
<th>ΔBE (eV)</th>
<th>functional groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>C O* Cu</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>Cphase O* CH2 C(OCu)</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>Cphase Cquaternaire</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>Cphenyl Cquaternaire</td>
</tr>
<tr>
<td>0.01</td>
<td>0.00</td>
<td>Cphenyl Cquaternaire</td>
</tr>
<tr>
<td>0.01</td>
<td>0.07</td>
<td>Cphenyl Cquaternaire</td>
</tr>
<tr>
<td>0.01</td>
<td>0.00</td>
<td>Cphenyl Cquaternaire</td>
</tr>
<tr>
<td>0.08</td>
<td>0.08</td>
<td>Cphenyl Cquaternaire</td>
</tr>
<tr>
<td>0.09</td>
<td>0.11</td>
<td>Cphenyl Cquaternaire</td>
</tr>
<tr>
<td>0.14</td>
<td>0.11</td>
<td>Cphenyl Cquaternaire</td>
</tr>
<tr>
<td>0.15</td>
<td>0.15</td>
<td>Cphenyl Cquaternaire</td>
</tr>
<tr>
<td>0.21</td>
<td>0.19</td>
<td>Cphenyl Cquaternaire</td>
</tr>
<tr>
<td>0.33</td>
<td>0.19</td>
<td>Cphenyl Cquaternaire</td>
</tr>
<tr>
<td>0.35</td>
<td>0.34</td>
<td>CH3</td>
</tr>
<tr>
<td>0.38</td>
<td>0.34</td>
<td>CH3</td>
</tr>
<tr>
<td>0.48</td>
<td>0.70</td>
<td>C(OCu) C* NHC</td>
</tr>
<tr>
<td>0.57</td>
<td>0.79</td>
<td>C*H2 NH</td>
</tr>
<tr>
<td>0.82</td>
<td>0.85</td>
<td>Cquaternaire</td>
</tr>
<tr>
<td>0.91</td>
<td>1.33</td>
<td>C* O Cu</td>
</tr>
<tr>
<td>1.63</td>
<td>1.71</td>
<td>C*phenyl O CH2 C(OCu)</td>
</tr>
<tr>
<td>1.70</td>
<td>1.73</td>
<td>C*phenyl O CH2 Cquaternaire</td>
</tr>
<tr>
<td>2.02</td>
<td>1.95</td>
<td>Cphenyl O* C* C(OCu)</td>
</tr>
<tr>
<td>2.46</td>
<td>2.51</td>
<td>Cphenyl C*</td>
</tr>
</tbody>
</table>

These computed data are used to build the simulated C 1s
and O 1s spectra with the FWHM fixed at 0.9 and 1.6 eV,
respectively. The resulting XPS decompositions are shown
in Figure 5.

Black lines represent the experimental envelopes and gray
lines represent the simulated spectra. The XPS C 1s spectrum
simulated in case 2a is closer to the experimental counterpart.
The high BE shoulder is attenuated as compared to the 2b
case. Two differences explain this change of the spectrum
shape. First, the C−O−C contribution is shifted by ΔBE =
1.33 eV in 2a, whereas it is shifted by ΔBE = 0.91 eV only in 2b
with regard to the reference BE(C*ph−Cquaternaire). Second,
a new contribution denoted C3(Cu) appears in 2a because of
the strong interaction between the adsorbed Cu atom and the C
atom of the phenyl group. These two shifts of the binding
energy are responsible for the concomitant decrease of the
shoulder intensity and increase of the main peak intensity.
However, in both cases, the shoulder is much less intense than
on the pristine surface (Figure 2), where the C−OH bonds’
contribution is strong (ΔBE = 2.13 eV). This shift toward
lower binding energies from the initial C−OH contribution to
the final C−O−M (M = metal) contribution (such as 2a or
2b) has already been observed experimentally on a variety of
polymers.

The simulation of the O 1s spectrum gives similar results for
cases 2a and 2b. Two contributions to the peak are taken into
account in the model dimer, either Cu−O−C or Cph−O−C.
ΔBE are found to be close: 3.00 eV in case 2a and 2.82 eV in
case 2b, differences arising from the intensity of the interactions
with the adsorbed Cu. The simulated spectra are
then made of two distinct contributions that do not match
the central part of the experimental O 1s peak. This is likely due
to additional environments of O atoms that are not taken in
the present model.

In the present work, it is clear from DFT calculations that
hydroxyls are the preferential adsorption sites and that a
derhydrogenation of the hydroxyl group proceeds simulta
neously with the Cu oxidative adsorption. The XPS spectra are
well reproduced with the formed Cu−O−C bonds; then, it
may be the main chemical interaction at the Cu film/poly
epoxy interface. Nevertheless, after the anchoring of the first
atoms (Cu1) on hydroxyls, further Cu atoms aggregate on
Cu1. Then, the Cu−O−C bond modeled in the present work
is likely modified by the final coordination of the Cu1 atoms
that share electrons with more Cu neighbors in the film.
Hence, there is a possibility that charge transfers of Cu1 to O
and C involved in the Cu−O−C bonds are slightly different
from the one simulated with the single Cu atom DFT method,
and that chemical shifts of O 1s and C 1s may be slightly
different for the film. To test this mechanism further, we
optimize final geometries 2a and 2b with 1 additional Cu atom,
and obtain a final 2 Cu geometry. On this latter geometry, a
third atom is placed in the vicinity of a Cu−Cu bridge position,
and the geometry is optimized again to obtain the 3 Cu
geometry. Then, a Cu atom is placed in the vicinity of the
three fold Cu hollow site, and the geometry is again optimized
to obtain the 4 Cu geometry. In 2 Cu, 3 Cu, and 4 Cu
optimizations, the DGEBA−EDA atoms’ positions are fixed to
mimic a surface, and prevent the folding of the molecule
around the Cu cluster. At the end, we obtain 8 stable n Cu/
poly epoxy configurations (1 < n < 4), on which we determine
net charges of Cu atoms involved in the Cu−O−C bond. Net
charges and optimized geometries are shown in Supporting
Information. It appears that the charge on the first
chemisorbed Cu atom (QCu1) is modified, following: QCu1(1
Cu) = +0.45e, QCu1(2 Cu) = +0.38e, QCu1(3 Cu) = +0.29e, et
QCu1(4 Cu) = 0.16e. In cases 3 Cu and 4 Cu, another Cu atom
donates electrons, resulting in \(Q_{\text{Cu1}}(3 \text{ Cu}) + \sum Q_{\text{neighbor}} = +0.35e \) and \(Q_{\text{Cu1}}(4 \text{ Cu}) + \sum Q_{\text{neighbor}} = +0.46e \). Therefore, whereas there is a slight change due to neighboring Cu atoms, the total charge transfer to O27 remains similar (\(-0.15e < \Delta Q_{\text{O27}} < -0.21e \)). Therefore, chemical shifts calculated by uGTS on the 1 Cu/poly epoxy system are valid to simulate the XPS spectra of the film/poly epoxy.

4. CONCLUSIONS

These DFT uGTS calculations on the DGEBA–EDA system confirm and improve our previous XPS simulations in the framework of Hartree–Fock SCF calculations.36 Interestingly, this methodology improves the accuracy of the description of the C 1s peak by allowing a fine decomposition with 8 components, unlike the standard empirical method that may include three contributions only. The evaporation of Cu leads to the formation of a covering thin film of about 5.5 nm thickness, therefore to the formation of a buried Cu/epoxy interface that can be probed by XPS. The XPS peaks arising from the interface are strongly modified as compared to the clean surface with the disappearance of the high BE C−O shoulder on C 1s, and the appearance of a metal oxide contribution on O 1s. These are first hints indicating the preferential interaction of Cu with oxygen. DFT is then used to check this hypothesis by adsorbing a Cu atom on different sites of the dimer molecule and to calculate adsorption energies. The three most stable adsorption sites are found on the hydroxyl group, with or without the H atom removal. XPS is then simulated in these configurations. It shows that the charge transfer from the Cu atom to the atoms involved in the chemisorption shifts the initial C−OH component of the pristine surface toward a lower BE for the new C−O−Cu bond, and new components are created such as \(C_{\text{ph}}(\text{Cu}) \) that further modify the spectrum shape. For O 1s, two distinct molecular orbital energies are found: one for the organic O atoms of the \(C_{\text{ph}}−O−C \) chain fragment and one for the newly formed Cu−O−C bonds.

The metallization of polymers has been studied for quite a long time, originally driven by the microelectronic development. In these times, a lot of knowledge has been acquired concerning the formation of metal thin films, including first steps, such as adsorption, nucleation, and growth. Nevertheless, while experimental evidence seems to converge, there are a limited number of theoretical studies to support and better explain the atomistic mechanisms involved. To that purpose, the major contributions of the present work are as follows:

- a substantial improvement of the decomposition of the XPS spectra as compared to purely experimental methods, with a DFT method that takes initial and final state effects and that has never been applied on such a big molecule.
- the identification of preferential adsorption sites for the first Cu atoms impinging and diffusing on the surface. Our calculations/experimental results match with the following scenario. Cu atoms interact preferentially with C−OH sites to form Cu−O−C bonds. These bonds are stabilized by a transfer of approximately 0.5 electrons from Cu to O; hence, Cu is partially oxidized.
- a fair decomposition of the Cu/epoxy C 1s and O 1s spectra that is only rendered possible by the determination of \(\Delta \text{BEs} \) through DFT. Without calculations, bonds’ details are hidden in the broad C 1s peak with no possibility to decipher these.
- a theoretical/experimental support for a nucleation–aggregation scenario of the Cu thin film. In this assumption, first Cu atoms diffuse until they chemisorb, then additional atoms aggregate on these anchor points, and growth proceeds via a Wolmer–Weber mode.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.9b07772.
Mulliken net charges variations (ΔQX in e) for relevant atoms (most stable Cu/epoxy geometries) (Table S1); NBO net charges variations (ΔQX in e) for relevant atoms (most stable Cu/epoxy geometries (Table S2)); most stable optimized geometry for the DGEBA EDA model (Figure S1); most stable optimized geometry for the adsorption of 1 Cu atom on the DGEBA EDA model (Figure S2); most stable optimized geometry for the adsorption of 2 Cu atoms on the DGEBA EDA model (Figure S3); most stable optimized geometry for the adsorption of 3 Cu atoms on the DGEBA EDA model (Figure S4); most stable optimized geometries for the adsorption of 4 Cu atoms on the DGEBA EDA model (Figure SS) (PDF)

■ AUTHOR INFORMATION

Corresponding Author
*E mail: thomas.duguet@ensiacet.fr. Phone: +33 534 323 439.
ORCID
Thomas Duguet: 0000 0001 5432 2468
Tzonka Mineva: 0000 0002 9156 2396

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors acknowledge the Agence Nationale de la Recherche for financial support in the framework of the LabCom program COCOON, under contract no. ANR 14 LAB3 0101 and the Ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation (PhD funding A. Gavrielides). This work was performed using HPC resources from CALMIP (Grant p1526).

■ REFERENCES

(28) Teiguer, L.; Plaskhevych, O.; Pettersson, L. G. M.; Ågren, H. Separate state vs. transition state Kohn Sham calculations of X ray

Supplementary Information (SI)

DFT Simulation of XPS Reveals Cu/Epoxy Polymer Interfacial Bonding

Thomas Duguet*, Andreas Gavrielides, Jérôme Esvan, and Corinne Lacaze-Dufaure

CIRIMAT, Université de Toulouse, CNRS–INPT–UPS, 4 Allée Emile Monso, BP 44362, 31030 Toulouse, France

Tzonka Mineva

Institut Charles Gerhardt, CNRS–Université de Montpellier, 240 Avenue du Pr. Émile Jeanbrau, 34090 Montpellier, France

*Author to whom correspondence should be addressed: Email: thomas.duguet@ensiacet.fr, Phone: +33 534 323 439

Table S1. Mulliken net charges variations (ΔQx in e) for relevant atoms (most stable Cu/epoxy geometries). For numbering, see Figures S1-5. ΔQx = Qx(R-Cu) - Qx(R-O), where R-O is the DGEBA-EDA dimer with one dehydrogenated hydroxyl group.

<table>
<thead>
<tr>
<th>Atom ID / Nb Cu</th>
<th>1-Cu</th>
<th>2-Cu</th>
<th>3-Cu</th>
<th>4-Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>0.041</td>
<td>0.043</td>
<td>0.037</td>
<td>0.017</td>
</tr>
<tr>
<td>C4</td>
<td>-0.022</td>
<td>-0.016</td>
<td>0.002</td>
<td>0.008</td>
</tr>
<tr>
<td>C5</td>
<td>-0.034</td>
<td>-0.033</td>
<td>-0.036</td>
<td>-0.060</td>
</tr>
<tr>
<td>C6</td>
<td>-0.260</td>
<td>-0.238</td>
<td>-0.200</td>
<td>-0.235</td>
</tr>
<tr>
<td>C7</td>
<td>-0.170</td>
<td>-0.166</td>
<td>-0.170</td>
<td>-0.207</td>
</tr>
<tr>
<td>C8</td>
<td>0.054</td>
<td>0.105</td>
<td>0.096</td>
<td>-0.038</td>
</tr>
<tr>
<td>C9</td>
<td>0.000</td>
<td>-0.170</td>
<td>-0.063</td>
<td>-0.122</td>
</tr>
<tr>
<td>C10</td>
<td>0.014</td>
<td>-0.061</td>
<td>-0.129</td>
<td>0.065</td>
</tr>
<tr>
<td>C11</td>
<td>0.093</td>
<td>0.113</td>
<td>0.086</td>
<td>-0.048</td>
</tr>
<tr>
<td>O26</td>
<td>0.049</td>
<td>0.035</td>
<td>0.036</td>
<td>0.054</td>
</tr>
<tr>
<td>O27</td>
<td>-0.170</td>
<td>-0.146</td>
<td>-0.210</td>
<td>-0.183</td>
</tr>
<tr>
<td>Cu1</td>
<td>0.452</td>
<td>0.384</td>
<td>0.288</td>
<td>0.156</td>
</tr>
<tr>
<td>Cu2</td>
<td>/</td>
<td>-0.006</td>
<td>0.011</td>
<td>0.076</td>
</tr>
<tr>
<td>Cu3</td>
<td>/</td>
<td>/</td>
<td>0.046</td>
<td>0.074</td>
</tr>
<tr>
<td>Cu4</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.160</td>
</tr>
</tbody>
</table>
Table S2. NBO net charges variations (ΔQ_x in e) for relevant atoms (most stable Cu/epoxy geometries). For numbering, see Figures S1-5. $\Delta Q_x = Q_x(R_{-}OCu) - Q_x(R_{-}O)$, where R-O is the DGEBA-EDA dimer with one dehydrogenated hydroxyl group.

<table>
<thead>
<tr>
<th>Atom ID / Nb Cu</th>
<th>1-Cu</th>
<th>2-Cu</th>
<th>3-Cu</th>
<th>4-Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>-0.161</td>
<td>-0.009</td>
<td>-0.153</td>
<td>-0.001</td>
</tr>
<tr>
<td>C4</td>
<td>0.011</td>
<td>0.010</td>
<td>0.032</td>
<td>0.011</td>
</tr>
<tr>
<td>C5</td>
<td>-0.090</td>
<td>0.000</td>
<td>-0.082</td>
<td>0.003</td>
</tr>
<tr>
<td>C6</td>
<td>-0.035</td>
<td>-0.074</td>
<td>-0.031</td>
<td>-0.077</td>
</tr>
<tr>
<td>C7</td>
<td>-0.367</td>
<td>-0.103</td>
<td>-0.358</td>
<td>-0.088</td>
</tr>
<tr>
<td>C8</td>
<td>-0.095</td>
<td>0.016</td>
<td>-0.083</td>
<td>-0.037</td>
</tr>
<tr>
<td>C9</td>
<td>-0.025</td>
<td>-0.058</td>
<td>-0.084</td>
<td>-0.063</td>
</tr>
<tr>
<td>C10</td>
<td>-0.101</td>
<td>-0.065</td>
<td>-0.270</td>
<td>0.133</td>
</tr>
<tr>
<td>C11</td>
<td>-0.105</td>
<td>0.014</td>
<td>-0.166</td>
<td>-0.057</td>
</tr>
<tr>
<td>O26</td>
<td>-0.269</td>
<td>-0.005</td>
<td>-0.261</td>
<td>-0.002</td>
</tr>
<tr>
<td>O27</td>
<td>-0.905</td>
<td>-0.474</td>
<td>-0.970</td>
<td>-0.487</td>
</tr>
<tr>
<td>Cu1</td>
<td>0.843</td>
<td>0.445</td>
<td>0.479</td>
<td>0.247</td>
</tr>
<tr>
<td>Cu2</td>
<td>/</td>
<td>0.490</td>
<td>0.379</td>
<td>0.213</td>
</tr>
<tr>
<td>Cu3</td>
<td>/</td>
<td>/</td>
<td>0.141</td>
<td>0.156</td>
</tr>
<tr>
<td>Cu4</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.222</td>
</tr>
</tbody>
</table>

Figure S1. Most stable optimized geometry for the DGEBA-EDA model.

Figure S2. Most stable optimized geometry for the adsorption of 1 Cu atom on the DGEBA-EDA model.
Figure S3. Most stable optimized geometry for the adsorption of 2 Cu atoms on the DGEBA-EDA model.

Figure S4. Most stable optimized geometry for the adsorption of 3 Cu atoms on the DGEBA-EDA model.

Figure S5. Most stable optimized geometries for the adsorption of 4 Cu atoms on the DGEBA-EDA model.