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ABSTRACT 11 

Nickel is a major element in the Earth. Due to its siderophile nature, 93 % of Ni is hosted in the core and the Ni 12 

isotope composition of the bulk silicate Earth might inform on the conditions of terrestrial core formation. 13 

Whether Earth’s mantle is fractionated relative to the chondritic reservoir, and by inference to the core, is a 14 

matter of debate that largely arises from the uncertain Ni isotope composition of the mantle. We address this 15 

issue through high-precision Ni isotope measurements of fertile- to melt-depleted peridotites and compare 16 

these data to chondritic meteorites. Terrestrial peridotites that are free from metasomatic overprint display a 17 

limited range in δ60/58Ni (deviation of 60Ni/58Ni relative to NIST SRM 986) and no systematic variation with 18 

degree of melt depletion. The latter is consistent with olivine and orthopyroxene buffering the Ni budget and 19 

isotope composition of the refractory peridotites. As such, the average Ni isotope composition of these 20 

peridotites (δ60/58Ni = 0.115 ± 0.011 ‰) provides a robust estimate of the δ60/58Ni of the bulk silicate Earth. 21 

Peridotites with evidence for melt metasomatism range to heavier Ni isotope compositions where the 22 

introduction of clinopyroxene appears to drive an increase in δ60/58Ni. This requires a process where melts do 23 

not reach isotopic equilibrium with buffering olivine and orthopyroxene, but its exact nature remains obscure. 24 

Chondritic meteorites have variability in δ60/58Ni due to heterogeneity at the sampling scale. In particular, CI1 25 

chondrites are displaced to isotopically lighter values due to sorption of Ni onto ferrihydrite during parent body 26 

alteration. Chondrites less extensively altered than the CI1 chondrites show no systematic differences in 27 

δ60/58Ni between classes and yield average δ60/58Ni = 0.212 ± 0.013 ‰, which is isotopically heavier than our 28 

estimate of the bulk silicate Earth. The notable isotopic difference between the bulk silicate Earth and 29 

chondrites likely results from the segregation of the terrestrial core. Our observations potentially provide a 30 

novel constraint on the conditions of terrestrial core formation but requires further experimental calibration.  31 

 32 

Keywords: Ni mass-dependent isotope variations; bulk silicate Earth; peridotites; chondrites; core formation 33 

 34 

 35 

1. Introduction 36 

 37 
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The segregation into a metallic core and silicate mantle is the largest differentiation event in Earth’s history, yet 38 

the exact conditions under which metal-silicate segregation took place remain incompletely understood, 39 

despite a long history of elemental partitioning studies (cf., Wade and Wood, 2005; Siebert et al., 2013). Mass-40 

dependent (“stable”) isotope fractionation provides an alternative approach to investigate core formation (e.g., 41 

Schoenberg and von Blanckenburg, 2006; Georg et al., 2007; Fitoussi et al., 2009; Polyakov, 2009). Establishing 42 

the relative isotopic compositions of the core and the bulk silicate Earth (BSE) is the first step in this approach. 43 

As the core is inaccessible for direct sampling, its isotopic composition cannot be determined directly. For 44 

refractory elements that are not isotopically fractionated during planetary accretion, however, the composition 45 

of the core can be estimated through a mass balance between the BSE and chondritic meteorites that are 46 

inferred to be representative of the bulk Earth. 47 

The mass-dependent isotope systematics of a range of elements has been investigated to find a core 48 

formation signature, but results have so far been inconsistent and subject to multiple interpretations (see 49 

Bourdon et al., 2018 for a recent review). Nickel is the fifth most abundant element in the Earth and holds 50 

considerable promise as an isotopic tracer of core formation yet has received comparatively little attention to 51 

date. Its elemental distribution between the mantle and core has been pivotal in demonstrating high-pressure 52 

core formation on Earth (e.g., Li and Agee, 1996) and is optimal for its use as a core formation proxy. Nickel is 53 

sufficiently siderophile to yield a large potential isotopic difference between the BSE and chondrites but not to 54 

the extent that its mantle budget is significantly overprinted by a late-veneer component (<5 % of mantle Ni 55 

derives from a late veneer addition corresponding to 0.6 % of the mass of the Earth). Compared to Fe, which 56 

has a similar core-mantle partition coefficient, Ni has the distinct advantage that it occurs in a single valence 57 

state in the mantle. This eliminates a significant layer of complexity compared to Fe, whose two valence states 58 

can induce significant isotope fractionation during mantle processes such as the disproportionation of Fe2+ by 59 

bridgmanite (Williams et al., 2012) and partial melting (Weyer et al., 2005; Dauphas et al., 2009).  60 

To use Ni isotopes as a tracer of core formation requires a comparison of well-constrained isotopic 61 

compositions of the BSE and chondritic meteorites. Clear deductions from published Ni data are obfuscated by 62 

much scatter but a recent compilation hints at an isotopically light BSE (Elliott and Steele, 2017). Whereas 63 

previous studies have reported relatively consistent Ni isotope compositions for chondrites and iron meteorites 64 

(Cook et al., 2007; Moynier et al., 2007; Cameron et al., 2009; Chernonozhkin et al., 2016; Gall et al., 2017), the 65 

Ni isotope composition of the BSE is more contentious (Cameron et al., 2009; Gueguen et al., 2013; Gall et al., 66 

2017). Much of the uncertainty in estimates of the composition of the BSE can arise from the inclusion of 67 

basalts and komatiites, which might be isotopically fractionated relative to their mantle source by the presently 68 

unconstrained olivine-melt fractionation factor. A detailed study of Ni isotope variation in fertile, non-69 

metasomatised peridotites, which provide the best approximation of the BSE (Carlson and Ionov, 2019), is 70 

currently lacking. 71 

In this contribution, we re-evaluate the Ni isotope composition of the BSE through high-precision isotope 72 

measurements of four carefully selected suites of mantle peridotites. These samples cover a wide range in 73 

degrees of melt depletion and are minimally affected by metasomatic overprint. For five of these 74 

unmetasomatised peridotites, we have also measured the Ni isotope composition of pristine olivine separates. 75 
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In addition, five peridotite samples with evidence for modal or cryptic metasomatism were included to 76 

specifically investigate the effects of melt-rock reactions in the mantle. We complement the peridotite dataset 77 

with measurements of chondritic meteorites to compare mantle- and chondrite Ni isotope compositions 78 

obtained using the same methodology.  79 

 80 

 81 

2. Peridotite and meteorite samples 82 

 83 

2.1. Peridotite samples 84 

We focus on well-characterised orogenic peridotites from the Horoman (Japan) and Zabargad (Red Sea) massifs 85 

and Central-Asian off-cratonic peridotite xenoliths (Vitim and Tariat) to investigate Ni isotope variations in the 86 

mantle and obtain an improved estimate of the Ni isotope composition of the BSE. Many of these samples have 87 

been used previously to constrain the mass-dependent isotope composition of the BSE for e.g., Li, Mg, Ca, V, Cr 88 

and Fe (Weyer and Ionov, 2007; Pogge von Strandmann et al., 2011; Hin et al., 2017; Kang et al., 2017; Xia et 89 

al., 2017; Qi et al., 2019). There are several important reasons behind our choice of these sample sets. As 90 

weathering of peridotites has been shown to drive fractionation of Ni isotopes (e.g., Ratié et al., 2015; Spivak-91 

Birndorf et al., 2018), freshness of the samples was a first prerequisite.  92 

The second criterion was to minimise the effect of metasomatic overprints by selecting peridotites 93 

without petrographic evidence for metasomatism such as the introduction of secondary clinopyroxene, garnet 94 

or other phases. The lack of metasomatic perturbance of the selected samples is supported by chemical and 95 

radiogenic isotope evidence (e.g., Saal et al., 2001; Ionov et al., 2005; Carlson and Ionov, 2019). For example, 96 

fertile to moderately melt-depleted samples have primitive mantle-normalised (PM; Palme and O'Neill, 2014) 97 

flat to light rare earth element (LREE) depleted trace element patterns (Figure 1) and superchondritic 98 
143Nd/144Nd. The most refractory (highest MgO content) samples show variable fluid-mobile element 99 

enrichment (e.g., Takazawa et al., 2000), indicative of minor cryptic metasomatism, yet still have La/SmPM ≤1 100 

and are not overprinted to the extent seen in cratonic xenoliths (supplementary Figure S1).  101 

Furthermore, the majority of the peridotites have been previously measured for their Li isotope 102 

composition (Brooker et al., 2004; Pogge von Strandmann et al., 2011; Lai et al., 2015) so that we can explicitly 103 

avoid samples affected by kinetic fractionation resulting from diffusional disturbance during xenolith 104 

entrainment or as a result of melt percolation, which might possibly affect Ni isotope systematics in a similar 105 

manner to Mg (Pogge von Strandmann et al., 2011; see Figure 1). 106 

Our set of peridotite samples includes garnet-, spinel- and plagioclase peridotites that record a wide range 107 

in degree of melt depletion (e.g., 37-49 wt.% MgO; Figure 1). This allows us to investigate the possible influence 108 

of melt depletion on the Ni isotope composition of refractory peridotites. Nevertheless, our collection still 109 

includes a large number of fertile samples, not well represented in previous Ni isotope studies, that provide the 110 

readiest estimate for the BSE. 111 

Although the focus of this study is on non-metasomatised peridotites, we have included five samples with 112 

obvious evidence for melt metasomatism as indicated by the introduction of clinopyroxene or La/SmPM >1 113 
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(Figure 1), to assess the influence of melt-rock reactions on Ni isotope systematics. The metasomatised samples 114 

include a Zabargad lherzolite with modal clinopyroxene enrichment and high δ7Li (BZ-230). In addition, LREE 115 

enrichment in four Tariat xenoliths points to a more cryptic metasomatic overprint, and phlogopite is also 116 

present in one of these samples. A more detailed description of the peridotite samples is provided in the online 117 

supplementary material. 118 

 119 

2.2. Chondritic meteorites 120 

A diverse set of 25 chondritic meteorites of different petrological grades was measured for their Ni isotope 121 

composition. This sample set includes seven ordinary chondrites (LL3.6-LL6, L3.7-L4 and H4), eight enstatite 122 

chondrites (EH3-EH5 and EL6) and ten carbonaceous chondrites (CI1, CM2, CR2, CO3, CV3 and CK4). Small 123 

samples of the chondritic meteorites, weighing between 4 and 100 mg, where provided by the Natural History 124 

Museum (NHM; London); see Table 2 for identification numbers and dissolved weights. Larger pieces of three 125 

additional ordinary chondrites (Chelyabinsk, Kilabo and Buzzard Coulee) and a sample of carbonaceous 126 

chondrite Allende were obtained from meteorite dealers. Small chips from the interior of these meteorites 127 

were lightly crushed in an agate pestle and mortar before further processing.  128 

The majority of the chondrites used in this study are observed falls, thus limiting the extent of terrestrial 129 

weathering and contamination. The four exceptions are Barratta (H4), Yilmia (EL6), Atlanta (EL6) and Kota-Kota 130 

(EH3). Of these meteorite finds, Barratta was recovered approximately 12 years after falling on Earth and is 131 

fresh with a well-preserved fusion crust (Mason and Wiik, 1966). Yilmia, another Australian find, is locally 132 

extensively weathered but retains fresh sections in the centre (Buseck and Holdsworth, 1972). The specimen in 133 

the NHM collection is derived from the centre and essentially unweathered. For Kota-Kota and Atlanta, we did 134 

not process bulk samples but microdrilled mounts of these meteorites to explicitly target the most pristine 135 

parts of the meteorite samples (recovery of ~5-10 mg sample material; Table 2). We have, however, specifically 136 

avoided meteorite finds with a long terrestrial residence time, such as finds from the Sahara and Arabian 137 

deserts or Antarctica. 138 

As heterogeneous objects, Jarosewich (1990) recommends that a minimum of 10 g of chondrite material 139 

should be used for a representative chemical analysis. Due to the precious nature of meteoritic material, this is 140 

not practically possible and we have performed measurements on significantly smaller aliquots, as common in 141 

many studies. In order to assess the effect of a sampling bias on our Ni isotope measurements, we have 142 

measured two separate samples of CI1 chondrite Orgueil (both provided by the NHM). In addition, we have 143 

measured both a bulk sample (46.7 mg) of L3.7 chondrite Ceniceros and four subsamples microdrilled from two 144 

polished mounts (5-10 mg material; see Luu et al., 2019 and Table 2 for more details). 145 

 146 

 147 

3. Analytical techniques 148 

 149 

3.1. Digestion and Ni purification 150 
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The majority of the meteorite Ni isotope measurements were carried out on aliquots from larger sample 151 

dissolutions that were measured for Mg isotope composition by Hin et al. (2017) and Luu et al. (2019). 152 

Peridotite and additional meteorite samples were digested in HF-HNO3 at 200 °C and high-pressure in PTFE 153 

bombs. Initially, several peridotite samples were digested at low pressure and 140 °C but this proved 154 

insufficient to break down spinel in spinel-rich samples. When residual spinel was present (e.g., in DTS-1), a 155 

new sample aliquot was digested at high pressure. Several Horoman peridotites did dissolve completely at low 156 

pressure and Ni data for low- and high-pressure digestions of DTS-1 (with and without residual spinel) yield 157 

indistinguishable results (Figure 2). 158 

After digestion, an aliquot of each sample solution was equilibrated with a 61Ni–62Ni double spike prior to 159 

further processing. The double spike was calibrated as described in Klaver and Coath (2019). Nickel was 160 

separated from the matrix using a two-step ion-exchange procedure. A brief outline of the purification 161 

procedure is presented below; additional information is provided in the online supplementary material. The 162 

first step employs high-aspect ratio columns with 2.5 mL AG50W-X12 resin used for Mg separation (Pogge von 163 

Strandmann et al., 2011). Nickel and Mg are co-eluted from this column in 2.00 M HNO3 whereas most other 164 

major cations are effectively separated; Ti, Al and Fe are eluted with 0.5 M HF and Ca and Cr remain on the 165 

column. The Mg-Ni fraction only contains Mn, Co and K. Subsequent Ni purification was achieved using cationic 166 

resin with a mixed HCl-acetone eluent and dimethylglyoxime as a Ni-specific chelating agent (Wahlgren et al., 167 

1970; Victor, 1986).  168 

The use of dimethylglyoxime has been successfully used in other protocols for separating Ni (e.g., 169 

Regelous et al., 2008; Chernonozhkin et al., 2015) but quantitative break-down of the organic Ni complex is 170 

potentially problematic and can affect the magnitude of instrumental mass fractionation during measurement 171 

(Klaver and Coath, 2019). Hence, we minimise the amount of dimethylglyoxime by using it only in a final small-172 

volume (200 µL; 4.5 by 13 mm) column filled with AG50W-X4 resin. The Ni-Mg fraction from the first column 173 

was dissolved in 50 µL 10 M HCl to which 950 µL Romil SpS quality acetone was added while columns were 174 

conditioned with 1 mL 0.5 M HCl-95 % acetone. After loading, Mn, Co and any residual Fe were eluted with 600 175 

µL 0.5 M HCl-95 % acetone. Nickel was collected with 1.5 mL 0.5 M HCl-95 % acetone-0.1 M dimethylglyoxime 176 

and 0.5-1.0 mL 0.5 M HCl-95 % acetone; Mg and any other remaining matrix elements were rinsed off the 177 

column with 6 M HCl. The Ni fractions were collected in PFA beakers to which ~5 mL 18.2 MΩcm water was 178 

added to prevent the formation of volatile tetracarbonylnickel (Victor, 1986). Acetone was evaporated at 75 °C 179 

after which ~300 µL concentrated HNO3 was added and the solutions were evaporated to dryness. Repeated 180 

treatment with concentrated HNO3 and 30 % H2O2 largely eliminated the organic residue until only a clear 181 

green speck of Ni nitrate was left. The samples were then re-dissolved in 0.3 M HNO3 for measurement. 182 

Column yields are >90 %; total procedural blanks are 0.4-0.8 ng and thus negligible compared to the ~5 µg Ni 183 

used in the measurements.  184 

 185 

3.2. Mass spectrometry and data reduction 186 

Nickel isotope measurements were carried out using a Thermo Scientific Neptune multi-collector inductively-187 

coupled plasma mass spectrometer (MC-ICP-MS; s/n 1020). Samples were introduced in 0.3 M HNO3 with a 50 188 
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µL/min capillary, PFA nebuliser and CETAC Aridus desolvating nebuliser (typical gas flows are ~5.5 L/min Ar and 189 

~5 mL/min N2). The Neptune was operated in medium resolution (m/Δm ≥6000, 5-95 % peak height definition) 190 

in order to resolve isobaric interferences, notably 40Ar18O on 58Ni and minor oxide and argide complexes on 191 

other Ni isotopes (see online supplementary material). Interference of 58Fe on 58Ni could not be resolved but 192 

was corrected by monitoring 56Fe and 57Fe. This correction was found to be robust at least up to 56Fe/60Ni = 0.6 193 

while samples always had 56Fe/60Ni <0.15 (supplementary Figure S7). 194 

Samples were measured at a concentration of 1 µg/mL Ni, which yielded a total Ni beam intensity (sample 195 

plus double spike) of 50-85 V on default 1011 Ω amplifiers with an on-peak background of <20 mV. A single 196 

measurement comprises 50 cycles of 4.2 s integration time, consuming ~400 ng Ni, preceded by an on-peak 197 

blank measurement of 15 cycles. Samples were bracketed with measurements of spiked reference material 198 

NIST SRM 986 as to allow a second-order correction of non-exponential instrumental mass fractionation. Data 199 

processing was carried out in an offline spreadsheet. After correction for the isobaric interference of Fe, an 200 

outlier test was applied to exclude measurements outside 4 interquartile ranges of the median caused by 201 

memory effects in the Aridus. A blank subtraction was not applied as it was found to have a detrimental effect 202 

on the precision; blank corrected and uncorrected data proved identical within uncertainty with the latter 203 

being more precise. The double spike inversion yielded the 60Ni/58Ni of the sample that was expressed relative 204 

to the two adjacent SRM 986 measurements as δ60/58NiSRM 986 (hereafter written as δ60/58Ni, following Coplen, 205 

2011): 206 

 207 

𝛿 𝑁𝑖𝑆𝑅𝑀 986
60/58 =

[
 
 
 𝑁𝑖/ 𝑁𝑖5860

𝑠𝑎𝑚𝑝𝑙𝑒

√ 𝑁𝑖/ 𝑁𝑖5860
𝑆𝑅𝑀 986
#1 × 𝑁𝑖/ 𝑁𝑖5860

𝑆𝑅𝑀 986
#2

]
 
 
 
− 1 208 

 209 

Each sample was measured at least six times. We report the average δ60/58Ni and quote a 2sx̄ precision that is 210 

the standard error of the mean for the repeat measurements assuming homoscedasticity for each 211 

measurement session. No measurements were excluded at this stage. The reproducibility of the analytical 212 

protocol was evaluated through the repeated measurement of reference materials. Our in-house Bristol 213 

Isotope Group Ni solution (BIG-Ni) was measured both directly and after processing through the ion-exchange 214 

separation procedure, which yield indistinguishable means and an intermediate precision of δ60/58Ni = 0.078 ± 215 

0.014 ‰ (2s, n = 29) over the course of this study (Figure 2a). Additionally, repeated measurements of 216 

reference materials JP-1 (dunite) and NIST SRM 361 (low alloy steel) yield δ60/58Ni = 0.124 ± 0.011 ‰ (2s, n = 12) 217 

and -0.070 ± 0.016 ‰ (2s, n = 9), respectively (Figure 2a). The pooled intermediate precision for BIG-Ni, JP-1 218 

and SRM 361 is 0.014 ‰, which we use as the best estimate of the uncertainty in our measurements. 219 

Indistinguishable values for processed and unprocessed BIG-Ni documents the robustness of the double spike 220 

method in correcting for any non-quantitative chemical separation yields and potential matrix effects caused 221 

by residual organic material from the dimethylglyoxime used to elute Ni (Klaver and Coath, 2019).  222 

The double spike inversion explicitly assumes that sample and reference material lie on the same 223 

exponential law fractionation line and that no mass-independent (or non-exponential law mass-dependent) 224 
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anomalies are present. For meteoritic material, this is not the case (see discussion in section 5.3.1.). Hence, 225 

chondrite δ60/58Ni data need to be corrected for the presence of nucleosynthetic anomalies relative to the 226 

Earth. We follow the approach described by Hu and Dauphas (2017) using mass-independent Ni data compiled 227 

from Regelous et al. (2008), Steele et al. (2012), Tang and Dauphas (2012), Tang and Dauphas (2014) and 228 

Render et al. (2018). Chondrites are corrected using measured data for the same meteorite or the average for a 229 

meteorite class (e.g., EH). No mass-independent Ni data are available for CK chondrites (Karoonda). The 230 

average mass-independent composition of CV chondrites is used for correction of Karoonda as the similar O 231 

isotope composition of these two chondrite classes suggests that they are derived from the same parent body 232 

(Greenwood et al., 2010). The magnitude of the correction for nucleosynthetic anomalies on δ60/58Ni is 0.002-233 

0.003 ‰ for enstatite chondrites, 0.005-0.007 ‰ for ordinary chondrites, 0.005-0.016 ‰ for carbonaceous 234 

chondrites except CR chondrites Renazzo and Al Rais (0.022 ‰; Table 2). All meteorite δ60/58Ni data reported in 235 

Tables 1 and 2, shown in the figures and discussed in the text is corrected for mass-independent anomalies. 236 

 237 

 238 

4. Results 239 

 240 

We obtain an intermediate precision of 0.014 ‰ (2s) on δ60/58Ni for BIG-Ni and reference materials JP-1 and 241 

SRM 361. This presents an improvement compared to previous double spike Ni studies that report a 2s 242 

intermediate precision of 0.045 ‰ (Gueguen et al., 2013) and 0.07 ‰ (Gall et al., 2012; Gall et al., 2017) for 243 

geological reference materials. Compared to these studies, measuring higher intensity ion beams and multiple 244 

repeats per sample results in better counting statistics but our careful identification, resolution and monitoring 245 

of small but significant isobaric interferences (see supplementary material) may also play a role in our 246 

improved intermediate precision. Our δ60/58Ni results for low alloy steel SRM 361 and peridotite reference 247 

materials JP-1, DTS-1, DTS-2 and PCC-1 are in excellent agreement with literature data (Figure 2). 248 

The δ60/58Ni data for peridotites and chondritic meteorites are listed in Tables 1 and 2, respectively, and 249 

shown in Figure 3. Terrestrial peridotites display a range in δ60/58Ni from 0.041 to 0.147 ‰ where the lower end 250 

of this distribution is formed by three peridotites with δ60/58Ni between 0.041 and 0.075 ‰. The 22 fertile to 251 

refractory peridotites yield a mean of 0.115 ± 0.011 ‰ (2sx̄). Metasomatised peridotites have on average 252 

higher δ60/58Ni (0.108 to 0.215 ‰) but only the heaviest sample, Zabargad lherzolite BZ-230, overlaps with the 253 

Ni isotope compositions for the cratonic xenoliths reported by Gall et al. (2017; see Figure 4) 254 

Chondrite δ60/58Ni results range from 0.024 to 0.278 ‰. Our enstatite chondrite measurements are most 255 

homogeneous whereas the carbonaceous chondrites display the largest variation. CI1 chondrites have 256 

significantly lower δ60/58Ni than the other chondrites and two separate samples of Orgueil yield δ60/58Ni values 257 

~0.09 ‰ apart. Allende (CV3) and Karoonda (CK4) have the isotopically heaviest compositions of the 258 

carbonaceous chondrites. For Ceniceros (L3.7), three out of four microdrilled subsamples (5-10 mg) have 259 

identical δ60/58Ni to the bulk chip while subsample #4 is around 0.04 ‰ lighter. The mean δ60/58Ni of the five 260 

measurements of Ceniceros, weighted by the mass of digested material, is 0.196 ± 0.006 (Table 2). Means for 261 

the three chondrite classes are indistinguishable: δ60/58Ni = 0.213 ± 0.026 ‰ for ordinary chondrites (2sx̄; n = 7), 262 
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0.208 ± 0.016 ‰ for enstatite chondrites (2sx̄; n = 8) and 0.215 ± 0.028 for carbonaceous chondrites (2sx̄; n = 7; 263 

excluding CI1 chondrites). Taken together, all chondrites excluding CI1 chondrites yield a mean δ60/58Ni of 0.212 264 

± 0.013 ‰ (2sx̄; n = 22). 265 

 266 

 267 

5. Discussion 268 

 269 

5.1. Ni isotope systematics in the mantle 270 

Nickel isotope systematics in the mantle are relatively unexplored. The only study to date to report on the Ni 271 

isotope composition of a suite of peridotites is that of Gall et al. (2017), who found notable δ60/58Ni variations 272 

of >0.1 ‰ in peridotite xenoliths from the Tanzania and Kaapvaal cratons. Based on a correlation between 273 

δ60/58Ni and modal clinopyroxene content (Figure 4), Gall et al. (2017) interpreted the range in δ60/58Ni to result 274 

from melt depletion, arguing that non-modal melting depletes the peridotite residue in isotopically heavy 275 

clinopyroxene. Given the small leverage of clinopyroxene on the Ni budget of peridotites, such a relationship is 276 

surprising. As Ni is a compatible element and therefore not likely to be sensitive to melt-rock reactions, Gall et 277 

al. (2017) did not consider the potential effects of post-melting events. Yet, their Tanzanian xenolith samples 278 

cannot be simple melting residues and show clear evidence for cryptic and modal metasomatism (Figure 1 and 279 

supplementary Figure S1; Dawson and Smith, 1973; Gibson et al., 2013). Our peridotite dataset covers a wider 280 

range from fertile to variably melt-depleted peridotites that are largely free from metasomatic overprints, 281 

complemented with five samples with different types of metasomatic overprint (Figure 1), which allows us to 282 

re-assess the influence of melt depletion and melt-rock reactions on Ni isotope systematics. 283 

 284 

5.1.1. Ni fractionation during melt extraction 285 

Fertile spinel- and garnet lherzolites from Vitim and Tariat have geochemical compositions overlapping with 286 

those inferred for the primitive mantle (Ionov et al., 2005; Ionov, 2007; Kang et al., 2017; Carlson and Ionov, 287 

2019) while harzburgites in the Horoman massif represent the pristine residues of up 25 % melt extraction 288 

(Takazawa et al., 2000). This large variation in degree of melt depletion is manifest as a range of modal 289 

clinopyroxene contents from 18 % in the fertile samples to less than 1 % in the most refractory samples. We 290 

observe no variation in δ60/58Ni as a function of modal clinopyroxene content, nor with other indices of 291 

depletion such as whole rock Al2O3 contents (Figure 4), which is in clear contrast with the conclusions reached 292 

by Gall et al. (2017). Olivine and orthopyroxene host >90% of Ni in peridotites. As both these phases are 293 

retained during melting, δ60/58Ni of the residue is expected to be buffered as long as the olivine-melt and 294 

orthopyroxene-melt isotope fractionation factors do not greatly deviate from unity.  295 

To illustrate the effects of melting on Ni isotope systematics, we have modelled the variation in δ60/58Ni of 296 

the solid residues and extracted melts (Figure 5). Mineral-olivine Ni isotope fractionation factors (αmineral-olivine) 297 

are distilled from the mineral separate data of Gall et al. (2017), mineral-olivine Ni partition constants (D) are 298 

derived from Ni contents of phases in equilibrated fertile Vitim lherzolites (Ionov et al., 2005) and we employed 299 

a variable Dmelt-olivine (8-30; Hart and Davis, 1978). The olivine-melt Ni isotope fractionation factor is the main 300 
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unknown parameter in the modelling. Hence, we have explored a range of values for αmelt-olivine and used the 301 

values that reproduce the range in Ni isotope compositions reported for natural basalts. All modelling 302 

parameters are given in supplementary Table S4. An elemental and isotopic mass balance was applied to a 303 

pMELTS equilibrium melting model using a primitive mantle starting composition (Palme and O'Neill, 2014) to 304 

yield the δ60/58Ni of melt and residue, which is compared to the observed variations in peridotites (this study; 305 

Gall et al., 2017) and basalts (Cameron et al., 2009; Gueguen et al., 2013; Chernonozhkin et al., 2015). 306 

Modelling confirms our inference that Ni isotopes do not noticeably fractionate in the mantle during melt 307 

depletion (Figure 5). The Ni isotope composition of melts is predominantly dependent on αmelt-olivine and the 308 

variation in natural basalts constrains αmelt-olivine to lie between 0.99985 and 1.00015 (Figure 5). Over this range 309 

in αmelt-olivine, the composition of residual peridotite remains constant within our level of precision (δ60/58Ni 310 

<0.015 ‰) up to very high degrees of melting. The δ60/58Ni of residual peridotite is insensitive to the value of 311 

αclinopyroxene-olivine. Gall et al. (2017) report a very isotopically heavy clinopyroxene composition in one sample 312 

(δ60/58Ni +2.8 ‰) and even using such an extreme αclinopyroxene-olivine barely affects the Ni isotope composition of 313 

the residue as that is still dominated by olivine and orthopyroxene. A significant decrease in δ60/58Ni as the 314 

result of melt extraction, as proposed by Gall et al. (2017), can only be reproduced by adopting an αmelt-olivine 315 

that is an order of magnitude higher (1.001), which would result in very heavy Ni isotope compositions of 316 

mantle melts (δ60/58Ni >1 ‰). This is clearly inconsistent with the data for natural basalts and hence we 317 

conclude that melt depletion does not fractionate Ni isotopes in the mantle and that the δ60/58Ni variations in 318 

the xenolith samples of Gall et al. (2017) results from a different process. 319 

 320 

5.1.2. The effects of metasomatism 321 

Peridotite samples derived from the subcontinental lithospheric mantle often display evidence for interaction 322 

with percolating melts and fluids, leading to enrichment in incompatible elements and (re-)introduction of 323 

phases such as clinopyroxene and hydrous minerals (e.g., Ionov et al., 2002; Grégoire et al., 2003; Simon et al., 324 

2003; Pearson et al., 2014). The xenoliths measured for δ60/58Ni by Gall et al. (2017) have La/Sm and La 325 

contents higher than the primitive mantle (Figure 1 and supplementary Figure S1), which contrasts with their 326 

melt-depleted major element composition and suggests metasomatism by LREE-enriched melts. In addition, 327 

some of these samples have unusually high garnet and/or pyroxene contents while others contain late-stage 328 

phlogopite and ilmenite (Dawson and Smith, 1973; Gibson et al., 2013). We have measured four Tariat 329 

xenoliths and one Zabargad sample with clear evidence for metasomatic enrichment to investigate its effect on 330 

Ni isotope systematics. The metasomatised Tariat xenoliths have LREE-enriched compositions, in combination 331 

with the introduction of phlogopite in sample Mo4230-16, that results from silicate- and carbonatite melt 332 

metasomatism (Kang et al., 2017; Carlson and Ionov, 2019). The hand specimen of Zabargad lherzolite BZ-230 is 333 

enriched in clinopyroxene, which occurs in clusters that contain up to 30 % clinopyroxene, and has an unusually 334 

heavy Li isotope signature, but no obvious LREE enrichment (Brooker et al., 2004). Three out of four 335 

metasomatised Tariat samples in our dataset have marginally higher δ60/58Ni than the pristine peridotites 336 

(Figure 3) but only the clinopyroxene-enriched Zabargad lherzolite has a composition (0.215 ‰) that overlaps 337 

with the cratonic xenoliths of Gall et al., (2017; see Figure 4). In combination with the correlation between 338 
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modal clinopyroxene and δ60/58Ni found by Gall et al. (2017), this suggests that Ni isotope systematics of 339 

peridotites are sensitive to the introduction of metasomatic clinopyroxene.  340 

Clinopyroxene was found to be the isotopically heaviest phase in peridotite xenoliths (δ60/58Ni up to 2.8 341 

‰) by Gall et al. (2017). Equilibration between percolating melts and refractory peridotite is not expected to 342 

significantly alter the Ni isotope composition of the peridotite as olivine and orthopyroxene will dominate the 343 

Ni budget and hence buffer δ60/58Ni, analogous to the arguments against Ni fractionation during melting in the 344 

previous section. Trace element and Sr-Nd isotope evidence, however, indicates that metasomatic 345 

clinopyroxene is often not in equilibrium with the other phases in the peridotite (e.g., Grégoire et al., 2003; 346 

Simon et al., 2003; Carlson et al., 2004; Simon et al., 2007). In such a scenario, isotopically heavy clinopyroxene 347 

can crystallise from a percolating melt without reaching equilibrium with the other phases and thus elevate the 348 

bulk δ60/58Ni of the xenolith. Due to the low Ni content of metasomatic clinopyroxene (Gibson et al., 2013), 349 

however, more than 20 % of isotopically heavy clinopyroxene (2.8 ‰) has to be added to elevate δ60/58Ni of the 350 

peridotite by 0.1 ‰, which is clearly in excess of the clinopyroxene modal abundances in the Gall et al. (2017) 351 

samples (1-3 % modal clinopyroxene; Figure 4). Hence, the disequilibrium introduction of clinopyroxene drives 352 

a change in δ60/58Ni in the right direction but the variation in peridotites cannot be explained by the current 353 

data. The significant difference in δ60/58Ni of clinopyroxene separates of Gall et al. (2017), however, might point 354 

towards an even larger heterogeneity of clinopyroxene δ60/58Ni in metasomatised peridotites, which requires 355 

further study to substantiate. We conclude that the correlation between modal clinopyroxene and δ60/58Ni in 356 

metasomatised peridotites reflects a disequilibrium process where clinopyroxene is introduced without fully re-357 

equilibrating with the solid residue. Hence, δ60/58Ni in peridotites may be more susceptible to metasomatic 358 

alteration than previously thought, yet the exact nature of the processes causing Ni isotope fractionation in the 359 

mantle remain poorly constrained. 360 

 361 

5.1.3. Light Ni isotope compositions 362 

Three peridotite samples have lower δ60/58Ni than the majority of the samples (Figure 3). Dunite reference 363 

material DTS-1 is also characterised by a light Ni isotope composition (-0.082 ‰) that is distinct from its 364 

counterpart DTS-2, which also has a strikingly different Ni content (2360 versus 3780 ppm for DTS-1 and -2, 365 

respectively). Inhomogeneity and contamination of reference materials can be an issue and as we have no 366 

details on the processing of DTS-1, we exclude it from the subsequent discussion.  367 

Weathering of ultramafic lithologies drives a decrease in δ60/58Ni in the solid residue (Ratié et al., 2015; 368 

Spivak-Birndorf et al., 2018), which is consistent with an isotopically heavy riverine flux and seawater 369 

composition (Cameron and Vance, 2014). This process will modify whole rock δ60/58Ni but should not affect the 370 

composition of unaltered olivine crystals, the main host of Ni in peridotites. If the light Ni isotope composition 371 

was already acquired in the mantle and the peridotites attained isotopic equilibrium, the Ni isotope 372 

composition of olivine is expected to mirror that of the bulk sample. Hence, to distinguish weathering from 373 

high-temperature processes as the cause of the light isotope compositions, we measured pristine handpicked 374 

olivine separates from the low-δ60/58Ni samples and two samples with normal δ60/58Ni (Figure 6). 375 
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Olivine in all samples has similar δ60/58Ni to the bulk sample, which is consistent with olivine dominating 376 

the Ni budget in peridotites. The light isotope composition of the three samples is mirrored by low δ60/58Ni in 377 

olivine separates, thus clearly ruling out weathering as the processes responsible for the shift in δ60/58Ni. 378 

Instead, these peridotites appear to have equilibrated at lower bulk δ60/58Ni, which strongly points towards a 379 

high-temperature process that modified the Ni isotope composition in the mantle. There are few clues to the 380 

nature of this process as the low-δ60/58Ni samples are not distinct in any lithophile element systematics, as such 381 

effectively ruling out any form of silicate melt metasomatism. For instance, disequilibrium introduction of 382 

isotopically light orthopyroxene (Gall et al., 2017) should have been apparent from modal abundances and an 383 

elevated whole rock SiO2/MgO, neither of which is observed. 384 

The lack of any systematic variation in lithophile elements could point to a role for sulfide mobility, which 385 

can be decoupled from silicate melt metasomatism (e.g., van der Meer et al., 2017). The introduction of 386 

isotopically light sulfides (Gueguen et al., 2013; Hofmann et al., 2014) could lower δ60/58Ni while leaving 387 

lithophile elements unaffected. Tentative evidence for this process is provided by S contents that are 388 

significantly higher (~610 ppm) than expected for the degree of depletion in low-δ60/58Ni Zabargad sample BZ-389 

241 (Brooker et al., 2004). No S abundance data are available for the Horoman samples, but petrographic and 390 

Pb isotope evidence suggest that sub-seafloor hydrothermal alteration in a mid-oceanic ridge setting has 391 

introduced Ni-rich sulfides in the Horoman peridotites (Ranaweera et al., 2018). The introduction of isotopically 392 

light pentlandite can elevate S contents and lower δ60/58Ni but need not lead to a noticeable increase in the 393 

abundance of lithophile elements. Adding 0.04 % pentlandite (~35 wt.% Ni, δ60/58Ni = -1 ‰), consistent with 394 

modal sulfide abundances (Ranaweera et al., 2018), and subsequent re-equilibration with the peridotite can 395 

account for the observed decrease in δ60/58Ni of ~0.07 ‰. As such, sulfide metasomatism is the best candidate 396 

to explain a decrease in δ60/58Ni in these peridotites. 397 

 398 

5.2. Ni isotope systematics of chondrites 399 

The chondritic meteorites in this study display a significant degree of Ni isotope heterogeneity. Although there 400 

is no systematic difference between the range and average δ60/58Ni of ordinary and enstatite chondrites, 401 

carbonaceous chondrites are notably more heterogeneous (Figure 3). In particular, CI1 type chondrites have 402 

significantly lower and more variable δ60/58Ni than other chondrite groups. When CI1 chondrites are excluded 403 

(see discussion in 5.2.1.), however, the mean δ60/58Ni of carbonaceous chondrites is indistinguishable from 404 

enstatite and ordinary chondrites. Nevertheless, there is variation in δ60/58Ni outside analytical uncertainty 405 

within all chondrite classes. Previous studies have attributed Ni isotope heterogeneity in chondrites to variable 406 

proportions of isotopically heavy metal (Gall et al., 2017) or as the result of sorting of isotopically distinct 407 

silicate, metal and sulfide phases during accretion of the chondrite parent bodies (Moynier et al., 2007). We 408 

find no obvious correlation between Ni or metal content (Figure 7a) but note that metal separates from 409 

chondrites (Cook et al., 2007; Moynier et al., 2007) display a much larger variation than bulk chondrites (Figure 410 

7a). Below, we will investigate processes that may contribute to the observed Ni isotope variation in 411 

chondrites. 412 

 413 
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5.2.1. Aqueous alteration on the CI parent body 414 

Petrological type 1 carbonaceous chondrites have experienced the largest extent of low-temperature aqueous 415 

alteration on their parent bodies (e.g., Richardson, 1978; Endress and Bischoff, 1993). Isotopic exchange with 416 

fluids is widely considered to be responsible for the heavier O isotope composition of CI1 meteorites compared 417 

to other carbonaceous chondrite types (Figure 7b; Clayton and Mayeda, 1999). The Mg isotope composition of 418 

CI1 chondrites is also shifted to heavier values compared to petrological type 2-6 chondrites (Hin et al., 2017), 419 

showing an overall consistent sense of fractionation caused by aqueous alteration. Nickel is a reasonably fluid-420 

mobile element that is isotopically fractionated during weathering in the terrestrial environment where the 421 

alteration of olivine to phyllosilicates causes a decrease in δ60/58Ni (Ratié et al., 2015; Spivak-Birndorf et al., 422 

2018). Hence, alteration to a phyllosilicate-dominated mineralogy during aqueous alteration on the CI parent 423 

body can help explain the overall lower δ60/58Ni in CI1 chondrites 424 

Not only are the values of δ60/58Ni in CI1 chondrites low, but they are quite variable between different 425 

dissolution of the same meteorite (see Table 2, Steele et al., 2012 and Gall et al., 2017 for independent 426 

measurements of Orgueil that span 0.16 ‰). This marked isotopic variability echoes order of magnitude 427 

variation in Ni content in ~100 µm fragments of CI1 chondrites (Morlok et al., 2006). The elemental 428 

heterogeneity in Ni exceeds that of Fe and in six large fragments of Orgueil, weighing >0.6 g, a variation of 429 

more than 10 % in Ni content and >20 % in Fe/Ni was found by Barrat et al. (2012). The pronounced elemental 430 

and isotopic variability in Ni is likely related to the role of ferrihydrite, a phase that strongly adsorbs and 431 

isotopically fractionates Ni onto its surface (Eickhoff et al., 2014; Wasylenki et al., 2015). Ferrihydrite is a 432 

common fine-grained matrix phase that occurs intergrown with phyllosilicates in CI1 chondrites, although its 433 

abundance is highly variable (e.g., Tomeoka and Buseck, 1988; Bland et al., 2004; King et al., 2015). Nickel and S 434 

contents correlate with the presence of ferrihydrite as a result of surface adsorption (Tomeoka and Buseck, 435 

1988; Morlok et al., 2006). Experimental studies indicate that the adsorption of Ni onto ferrihydrite is 436 

associated with a fractionation of ~0.35 ‰ in δ60/58Ni at room temperature (Wasylenki et al., 2015; Gueguen et 437 

al., 2018). As the abundance of ferrihydrite was found to vary from 2 to 5 % in different subsamples of Orgueil 438 

(Bland et al., 2004; King et al., 2015), it is not surprising that we find both low and variable δ60/58Ni in our 439 

measurements of Orgueil. Given the highly specific role of ferrihydrite in influencing the Ni isotope composition 440 

of CI1 chondrites, we do not include them in our average composition of carbonaceous chondrites.  441 

 442 

5.2.2. Ni diffusion during parent body metamorphism 443 

Parent body metamorphism causes notable redistribution of Ni between silicate, Ni-bearing sulfide and metal 444 

phases during aqueous and thermal processing (e.g., Rubin, 1990; Huss et al., 2006). Fractionation of Ni 445 

isotopes can occur on a µm- to mm-scale during diffusive transport of Ni between phases in response to 446 

changing equilibrium conditions. For example, Ni is redistributed between kamacite and taenite grains but, due 447 

to sluggish kinetics, does not reach equilibrium as illustrated by characteristic “M-shaped” Ni concentration 448 

profiles in taenite in chondrites (e.g., Wood, 1967). Modelling predicts that these frozen-in diffusion profiles 449 

are accompanied by kinetic fractionation of Ni isotopes (Dauphas, 2007; Watson et al., 2016), which is 450 

supported by up to 0.8 ‰ variations in δ60/58Ni in microdrilled iron meteorites that display similar diffusion 451 
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profiles (Cook et al., 2007; Chernonozhkin et al., 2016). Moreover, a similar range of ~0.8 ‰ in δ60/58Ni is 452 

observed in metal grains separated from ordinary chondrites by Moynier et al. (2007), which suggests that local 453 

Ni isotope disequilibrium is indeed prevalent in metal-bearing chondrites. The effects of kinetic fractionation in 454 

meteoritic metal are an order of magnitude larger than the observed variation within bulk ordinary and 455 

enstatites chondrites (Figure 7) and could contribute to scatter on the sampling scale. Whilst redistribution, 456 

and the potential for kinetic fractionation, of Ni between different meteoritic components during thermal 457 

metamorphism is best documented for ordinary chondrites (Rubin, 1990), it is likely to be significant in creating 458 

isotopic heterogeneity within chondrites more generally. For instance, perryite, a Ni silicide phase, disappears 459 

from the matrix of enstatite chondrites and Ni is partitioned into other phases including kamacite during 460 

thermal metamorphism on the enstatite chondrite parent body (Reed, 1968; Huss et al., 2006). Imperfect 461 

sampling of such heterogeneity can increase the variability in Ni isotope measurements of chondrites. To gauge 462 

the effect of these processes on measurements of samples the size typically used in this study, we compared 463 

the composition of a bulk sample of L3.7 chondrite Ceniceros to four subsamples that were microdrilled from 464 

two polished mounts. Three out of four microdrilled subsamples have a Ni isotope composition identical to the 465 

bulk chip whereas one subsamples is 0.04 ‰ lighter (Figure 3).  466 

 467 

5.3. Ni isotope fractionation during planetary differentiation 468 

5.3.1. The Ni isotope composition of Earth’s building blocks 469 

Nucleosynthetic (mass-independent) Ni isotope anomalies have been clearly established in iron meteorites, 470 

bulk chondrites and CAIs (e.g., Regelous et al., 2008; Steele et al., 2011; Steele et al., 2012; Tang and Dauphas, 471 

2012; Render et al., 2018; Nanne et al., 2019; see Figure 8a). As these nucleosynthetic anomalies are not 472 

modified during the physicochemical processes of accretion and differentiation of the Earth, they serve as the 473 

most reliable geochemical proxy for the nature of the material accreting to from the Earth. Enstatite chondrites 474 

have a mass-independent Ni isotope composition that is the closest match to the Earth (Figure 9a). A similar 475 

picture emerges from all elements that have been investigated for nucleosynthetic anomalies (e.g., O, Cr, Ti, 476 

Mo, Ru, Nd); from an isotopic perspective, the Earth is most similar, yet not an exact match, to enstatite 477 

chondrites (Warren, 2011; Dauphas, 2017). In particular, the fact that both lithophile and (highly) siderophile 478 

elements best match with enstatite chondrites provides key evidence that the nature of accreting material did 479 

not change significantly during the formation of the Earth and is unlikely to be a fortuitous mixture between 480 

ordinary chondrites and CI chondrites (Dauphas, 2017). Recent high-precision Mo isotope measurements have 481 

been argued to allow some carbonaceous material in the later phases of accretion (Budde et al., 2019) but 482 

clearly exclude the possibility of a ~2:1 ordinary chondrite-CI chondrite mixture that might be permissible 483 

based on Ni isotope systematics alone (Figure 8a). For this reason, we take enstatite chondrites as the best 484 

proxy for the Ni isotopic composition of the building blocks of the Earth and explicitly compare the δ60/58Ni of 485 

the bulk silicate Earth to average enstatite chondrites. It must be noted that using a bulk chondrite value, 486 

excluding only the altered CI1 chondrites, makes no difference within uncertainty to any of the conclusions 487 

reached here. 488 

 489 
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5.3.2. The non-chondritic Ni isotope compositions of the BSE 490 

The Ni isotope composition of the BSE is more contentious than that of chondrites (Figure 8b). Earlier δ60/58NiBSE 491 

estimates were based on a small number of measurements of peridotitic and basaltic reference materials 492 

(Cameron et al., 2009; Steele et al., 2011; Gueguen et al., 2013; Elliott and Steele, 2017). The mantle hosts 493 

99.97 % of Ni in the BSE and hence dominates its isotopic composition. Including basalts or komatiites, which 494 

might be fractionated relative to their mantle source depending on the at present unconstrained value of αmelt-495 

olivine (Figure 5), can thus bias the estimated average δ60/58NiBSE. This is compounded by potential inhomogeneity 496 

of reference materials and analytical artefacts in the measurement of low-Ni samples, as suggested by the 497 

different δ60/58Ni values reported for USGS reference material BHVO-2 with means varying outside quoted 498 

uncertainties by ~0.2 ‰ (Cameron et al., 2009; Gall et al., 2012; Gueguen et al., 2013; Chernonozhkin et al., 499 

2015; Render et al., 2018). In addition, including isotopically light dunite DTS-1 might skew the average towards 500 

lower δ60/58Ni.  501 

Gall et al. (2017) performed the first more systematic study of Ni isotopes in peridotites yet their sample 502 

set included several strongly metasomatised peridotites that may not be representative of the BSE and that 503 

biased their estimate of δ60/58NiBSE towards heavier isotope compositions (0.23 ± 0.06 ‰). By measuring a large 504 

suite of fertile and variably melt-depleted peridotites and explicitly investigating the effects of modal- and 505 

cryptic metasomatism on Ni isotope systematics, we have been able to provide a more precise and potentially 506 

more representative estimate of the Ni isotope composition of the BSE. Based on the absence of detectable 507 

fractionation as a function of degree of melt depletion, we take the average of all non-metasomatised 508 

peridotites to be representative of the BSE: δ60/58NiBSE = 0.115 ± 0.011 ‰. As we observe no systematic 509 

variation in δ60/58Ni between different tectonic settings, facies (plagioclase, spinel and garnet) and degree of 510 

depletion (Figure 4) in the non-metasomatised peridotite samples, this is assumed to be a robust estimate of 511 

the composition of the BSE. Our average is in good agreement with published data for unmetasomatised 512 

peridotites (Figure 3); the discrepancy with previous estimates of the composition of the BSE mainly lies in the 513 

exclusion of basalts, komatiites and metasomatised peridotites. 514 

Previous studies lacked the precision to resolve a difference in δ60/58Ni between the BSE and chondrites 515 

but hinted towards and isotopically light BSE (Figure 8a). By compiling all published data and optimistically 516 

using a 2sx̄ uncertainty of the different reservoirs, Elliott and Steele (2017) suggested that the BSE has lower 517 

δ60/58Ni than the chondritic reservoir. Our study substantiates their speculative inference and, for the first time, 518 

documents a notable difference in δ60/58Ni between the BSE and Earth’s building blocks (Figure 8a). Relative to 519 

enstatite chondrites, the BSE is lighter by 0.092 ± 0.027 ‰. The observed difference is statistically significant; 520 

comparing all data for chondrites (excluding CI1) and peridotites (see Figure 3) through a Mann-Whitney U test 521 

indicates that the probability that the two groups are identical is <<0.01. 522 

 523 

5.3.3. A core formation signature? 524 

The notable non-chondritic Ni isotope composition of the BSE likely results from an isotopic fractionation event 525 

on a planetary scale during the accretion and early differentiation of the Earth. Two main processes that can 526 

shape the isotopic composition of the bulk Earth and its major reservoirs (core, BSE, atmosphere) are vapour 527 
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loss during planetary accretion (e.g., Poitrasson et al., 2004; Pringle et al., 2014; Hin et al., 2017) and core-528 

mantle segregation (see Bourdon et al., 2018 for a recent review). Fractionation due to vapour loss will leave 529 

the bulk planet isotopically heavy, as for instance argued for Mg, Si and Cu (Georg et al., 2007; Savage et al., 530 

2015; Hin et al., 2017). Vapour loss during accretion can therefore not account for the isotopically light Ni 531 

composition of the BSE and any evaporative fractionation of Ni would only result in an even larger difference in 532 

δ60/58Ni between the BSE and the core. The magnitude of evaporative fractionation of Ni, however, is believed 533 

to be very small as modelling by Hin et al. (2017) predicts <0.01 ‰/u fractionation for Fe, which has a similar 534 

50 % condensation temperature (Lodders, 2003). Ruling out evaporative fractionation leaves core formation as 535 

the main candidate to have fractionated Ni on a planetary scale. 536 

An isotopically enstatite chondrite bulk Earth with a mass distribution where 93 % of the Ni is hosted in 537 

the core (McDonough, 2014) gives a difference in δ60/58Ni between the BSE and core, denoted as Δ60/58NiCORE-BSE, 538 

of 0.099 ± 0.029 ‰. Whether equilibrium isotope fractionation between the metallic core and silicate mantle 539 

can account for the observed difference is not clear due to the absence of comprehensive constraints from 540 

natural samples or experimental studies. A study of Ni isotopes in stony-iron meteorites yielded opposing signs 541 

for metal-silicate fractionation in mesosiderites and pallasites, suggesting that kinetic fractionation dominate 542 

over equilibrium effects (Chernonozhkin et al., 2016). The slow cooling of such samples allows subsolidus 543 

diffusion of Ni and associated non-equilibrium fractionation, making stony-iron meteorites inappropriate 544 

materials to study equilibrium metal-silicate fractionation. 545 

Lazar et al. (2012) performed subsolidus experiments to determine the Ni isotope fractionation factor 546 

between Ni metal and Ni-talc. Although these experiments are clearly not representative of the conditions of 547 

terrestrial core formation, they provide the only available experimental constraint on Ni fractionation between 548 

metal and silicate. The Lazar et al. (2012) experiments suggests that the metal phase preferentially hosts the 549 

heavier isotopes of Ni, which is thus consistent with our observation of an isotopically light BSE, yet the 550 

magnitude of fractionation is significantly smaller than the observed Δ60/58NiCORE-BSE (Figure 9). At reasonable 551 

temperatures for terrestrial core formation (in excess of 2500 °C; e.g., Wade and Wood, 2005; Siebert et al., 552 

2013; Fischer et al., 2015), the experimental calibration of Lazar et al. (2012) suggests negligible (<0.02 ‰) 553 

fractionation of Ni isotopes. Given how far removed from natural conditions the Lazar et al. (2012) experiments 554 

are, it is difficult to judge the significance of the discrepancy between the experimental constraints and 555 

observed Δ60/58NiCORE-BSE. Superliquidus metal-silicate equilibrium experiments are required to gain a better 556 

understanding of metal-silicate fractionation of Ni as subtle compositional effects might influence its 557 

magnitude. A dependence of metal-silicate isotopic fractionation factors on the presence of minor alloying 558 

elements in the metal phase has been proposed for Fe (Shahar et al., 2015; Elardo and Shahar, 2017), although 559 

these results are controversial (cf., Poitrasson et al., 2009; Hin et al., 2012; Liu et al., 2017). Similar 560 

compositional effects might influence the isotopic fractionation of Ni, making this a potentially interesting 561 

avenue to explore through experimental studies. In any case, our demonstration of a notably non-chondritic Ni 562 

isotope composition of the BSE provides an interesting new constraint on the conditions of terrestrial core 563 

formation, but significantly more experimental work is required to exploit this observation. 564 

 565 
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 566 

7. Conclusions 567 

We present a high-precision Ni isotope dataset for terrestrial peridotites and chondritic meteorites. The main 568 

findings of this work can be summarised as follows: 569 

1) Mantle peridotites have a limited range in δ60/58Ni and do not exhibit systematic variation with degree 570 

of melt depletion. This is consistent with olivine and orthopyroxene dominating the Ni budget of 571 

residual peridotite, thus buffering the isotope composition. The composition of the BSE is constrained 572 

at δ60/58Ni = 0.115 ± 0.011 ‰. 573 

2) Melt-metasomatised peridotites may show isotopically heavier compositions. Disequilibrium 574 

processes are required to increase δ60/58Ni, which is otherwise buffered by olivine and orthopyroxene. 575 

The introduction of isotopically heavy clinopyroxene can drive an increase in δ60/58Ni, but the exact 576 

nature of this process remains obscure. 577 

3) Chondritic meteorites have more variable δ60/58Ni, mainly as the result of heterogeneity at the 578 

sampling scale likely caused by parent body processes. Aqueous alteration and sorption of Ni onto 579 

ferrihydrite are responsible for the markedly isotopically light compositions of CI1 chondrites. All other 580 

chondrites have notably higher δ60/58Ni than the BSE with a mean of 0.212 ± 0.013 ‰. 581 

4) The difference in δ60/58Ni between the BSE and chondrites is of the wrong sign to be caused by vapour 582 

loss during accretion and therefore likely results from terrestrial core formation. Experimental 583 

rationalisation is required to put the observation of an isotopically light BSE into context. 584 

 585 
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Table 1. δ60/58Ni data for peridotites and geological reference materials. Data sources for Ni, Al2O3 and modal 829 

clinopyroxene contents are given in supplementary Table S1. 830 

 831 

Table 2. δ60/58Ni data for chondritic meteorites. 832 

 833 

 834 

FIGURE CAPTIONS 835 

 836 

Figure 1. Compositional characterisation of the peridotite samples measured for their Ni isotope composition 837 

in this study: a) MgO versus primitive mantle-normalised La/Sm; b) δ25Mg versus δ7Li. Open symbols depict 838 

metasomatised peridotites. The major and trace element composition of the primitive mantle (PM) is from 839 

Palme and O'Neill (2014); the Li and Mg isotope compositions of the PM are taken from Pogge von Strandmann 840 

et al. (2011) and Hin et al. (2017), respectively. Also shown as dark grey squares in a) are the compositions of 841 

xenoliths measured for Ni isotope composition by Gall et al. (2017) and other cratonic xenoliths (small grey 842 

circles). Data sources for the peridotite samples and cratonic xenoliths are listed in supplementary Table S1; 843 

the field for peridotite xenoliths and Li-Mg diffusion model in b) are from Pogge von Strandmann et al. (2011). 844 

 845 

Figure 2. δ60/58Ni data relative to NIST SRM 986 for our in-house BIG-Ni solution and geological reference 846 

materials; a) intermediate precision for BIG-Ni (open symbols: BIG-Ni processed through the chemical 847 

separation procedure together with samples), dunite JP-1 and low alloy steel SRM 361. The lighter shaded bar 848 

displays the 2s and the darker shaded bar the 2sx̄ precision. Processed- and unprocessed aliquots of BIG-Ni 849 

have identical means; b) comparison of geological reference materials to published results. Our data are in 850 

excellent agreement with published values yet more precise. High- and low-pressure digestions of DTS-1, the 851 

latter with minor residual spinel, yield indistinguishable δ60/58Ni. 852 

 853 

Figure 3. δ60/58Ni data for the measured peridotites and chondritic meteorites. Open symbols for peridotites 854 

represent samples affected by clear modal- or cryptic metasomatism. The open circles below the sample 855 

groups are published data for peridotites and chondritic meteorites (Cameron et al., 2009; Steele et al., 2012; 856 

Gueguen et al., 2013; Chernonozhkin et al., 2016; Gall et al., 2017). For ordinary chondrite Ceniceros (L3.7), 857 

both a bulk sample and four microdrilled subsamples were measured (see main text); the latter are shown as 858 

smaller. Error bars are 2s intermediate precision for reference materials measured in this study; shaded fields 859 

represent the 95% confidence interval for the sample groups. For the peridotites, the metasomatised samples 860 

and DTS-1 are excluded from the mean; CI1 chondrites (stars) are excluded from the carbonaceous chondrite 861 

mean. 862 

 863 

Figure 4. δ60/58Ni versus indices of degree of melt depletion: whole rock Al2O3 content (a) and modal 864 

clinopyroxene (b) for peridotites from this study and Gall et al. (2017). Data sources are listed in the online 865 
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supplementary material. Open symbols are peridotites affected by cryptic- or modal and the shaded green bar 866 

depicts the δ60/58Ni of the BSE as determined in this study. The Al2O3 and modal clinopyroxene contents of the 867 

primitive upper mantle (PM) are from Palme and O'Neill (2014) and Walter (2014), respectively. Error bars are 868 

2s for the Gall et al. (2017) data and smaller than symbol size for peridotites from this study. 869 

 870 

Figure 5. Equilibrium melting of a primitive mantle source (Palme and O'Neill, 2014) with a δ60/58Ni of our new 871 

BSE estimate, using mineral-olivine Ni isotope fractionation factors from Gall et al. (2017) and mineral-olivine 872 

Ni partition coefficients derived from equilibrated fertile Vitim lherzolites (Ionov et al., 2005). As αmelt-olivine is 873 

not constrained, the grey fields show modelled melt and residue compositions with Dolivine-melt and αmelt-olivine 874 

varying from 8-30 and 0.99985-1.00015, respectively. All modelling parameters are given in supplementary 875 

Table S4. Modelled melt δ60/58Ni compositions are compared to literature data for basalts (Cameron et al., 876 

2009; Gueguen et al., 2013; Chernonozhkin et al., 2015). Symbols for peridotite data, excluding the 877 

metasomatised and anomalously light samples, are as in previous figures; data from Gall et al. (2017) are 878 

shown as grey squares. 879 

 880 

Figure 6. Comparison of whole rock (WR) versus olivine δ60/58Ni for five Horoman and Zabargad peridotites that 881 

include the anomalously light samples. The isotopically light compositions of these bulk peridotites is mirrored 882 

by pristine olivine separates, arguing against weathering or sample contamination as the cause of the lower 883 

δ60/58Ni. See main text for further discussion. 884 

 885 

Figure 7. Ni isotope variation in chondrites. a) lack of systematic variation of δ60/58Ni with Ni content; 886 

uncertainties are smaller than symbol size for our data. Literature data for ordinary (grey circles), enstatite 887 

(grey squares) and carbonaceous (grey diamonds) chondrites (Cameron et al., 2009; Steele et al., 2012; 888 

Chernonozhkin et al., 2016; Gall et al., 2017) are shown for comparison. Sources of Ni concentration data are 889 

listed in supplementary Table S1. The Ni isotope composition of metal separates from chondrites (Cook et al., 890 

2007; Moynier et al., 2007) is shown as open circles on the right. Moynier et al. (2007) report their data relative 891 

to an Alfa Aesar Ni solution that has not been calibrated against SRM 986 and no data for other reference 892 

materials are given. In order to estimate the bias in the Moynier et al. (2007) data, we compared their results 893 

for iron meteorites Sikhote Alin and Gibeon to published values (Cook et al., 2007; Gueguen et al., 2013; 894 

Chernonozhkin et al., 2016; Gall et al., 2017) and found a systematic offset of +0.089 ‰. We have therefore 895 

corrected their metal separate data down by 0.089 ‰, which results in a translation of all δ60/58Ni values but 896 

does not affect the magnitude of the variation found by Moynier et al. (2007); b) mass-dependent O (δ18O) 897 

versus Ni isotope composition (δ60/58Ni) of carbonaceous chondrites; grey box shows the range of enstatite (EC) 898 

and ordinary chondrite compositions (OC). Oxygen isotope data are from Clayton and Mayeda (1999). A 899 

general covariation in δ18O and δ60/58Ni with degree of parent body low-temperature aqueous alteration 900 

(petrological type is colour coded) is observed. 901 

 902 
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Figure 8. a) Nucleosynthetic (mass-independent) Ni anomalies of chondrites relative to the Earth. Data for the 903 

chondrite classes are compiled from Regelous et al. (2008), Steele et al. (2012), Tang and Dauphas (2012, 2014) 904 

and Render et al. (2018); the value for the Earth is from Steele et al. (2012) and the CAI array from Render et al. 905 

(2018). The shaded fields show the composition of carbonaceous (CC) and non-carbonaceous (NC) type iron 906 

meteorites (Steele et al., 2011; Nanne et al., 2019). The Earth is most similar to enstatite chondrites; see text 907 

for discussion; b) The δ60/58Ni composition of the bulk silicate Earth (BSE) versus that of chondritic meteorites 908 

from this study (enstatite chondrites only; black rectangle) and the literature (Cameron et al., 2009; Steele et 909 

al., 2011; Steele et al., 2012; Gall et al., 2017). This study has sufficient resolution to provide the first robust 910 

evidence that the BSE is isotopically light compared to the chondritic reservoir (top-left side of the diagram), 911 

thus corroborating the inference by Elliott and Steele (2017) that was based on a compilation of literature data. 912 

 913 

Figure 9. Experimental constraints on metal-silicate Ni isotope fractionation compared to the observed 914 

Δ60/58NiCORE-BSE. The blue diamonds are subsolidus experiments between Ni metal and talc from Lazar et al. 915 

(2012); the blue shaded field shows their regression that excludes the experiment at 950 °C. The red shaded 916 

bar at 2500-3500 °C depicts plausible temperatures of core-mantle equilibration. See text for discussion. 917 

 918 




