G. Brown, Glucose transporters: Structure, function and consequences of deficiency, J Inherit Metab Dis, vol.23, pp.237-246, 2000.

E. Wright, B. Hirayama, and D. Loo, Active sugar transport in health and disease, J Intern Med, vol.261, pp.32-43, 2007.

V. Vallon, SGLT2 mediates glucose reabsorption in the early proximal tubule, J Am Soc Nephrol, vol.22, 2011.

Y. Kanai, W. Lee, G. You, D. Brown, and M. Hediger, The human kidney low affinity Na + /glucose cotransporter SGLT2: Delineation of the major renal reabsorptive mechanism for D-glucose, J Clin Invest, vol.93, pp.397-404, 1994.

R. Wells, T. Mohandas, and M. Hediger, Localization of the Na + /glucose cotransporter gene SGLT2 to human chromosome 16 close to the centromere, Genomics, vol.17, pp.787-789, 1993.

J. Calado, Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-wasting, Kidney Int, vol.69, pp.852-855, 2006.

J. Calado, Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion, Nephrol Dial Transplant, vol.23, pp.3874-3879, 2008.

R. Santer and J. Calado, Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target, Clin J Am Soc Nephrol, vol.5, pp.133-141, 2010.

L. Yu, J. Lv, X. Zhou, L. Zhu, P. Hou et al., Abnormal expression and dysfunction of novel SGLT2 mutations identified in familial renal glucosuria patients, Hum Genet, vol.129, pp.335-344, 2011.

J. Calado, K. Soto, C. Clemente, P. Correia, and J. Rueff, Novel compound heterozygous mutations in SLC5A2 are responsible for autosomal recessive renal glucosuria, Hum Genet, vol.114, pp.314-316, 2004.

H. L. Van-den, K. Assink, M. Willemsen, and L. Monnens, Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2), Hum Genet, vol.111, pp.544-547, 2002.

R. Santer, Molecular analysis of the SGLT2 gene in patients with renal glucosuria, J Am Soc Nephrol, vol.14, pp.2873-2882, 2003.

R. Kleta, C. Stuart, F. Gill, and W. Gahl, Renal glucosuria due to SGLT2 mutations, Mol Genet Metab, vol.82, pp.56-58, 2004.

J. Francis, J. Zhang, A. Farhi, H. Carey, and D. Geller, A novel SGLT2 mutation in a patient with autosomal recessive renal glucosuria, Nephrol Dial Transplant, vol.19, pp.2893-2895, 2004.

D. Magen, E. Sprecher, I. Zelikovic, and K. Skorecki, A novel missense mutation in SLC5A2 encoding SGLT2 underlies autosomalrecessive renal glucosuria and aminoaciduria, Kidney Int, vol.67, pp.34-41, 2005.

H. Lee, Familial renal glucosuria: a clinicogenetic study of 23 additional cases, Pediatr Nephrol, vol.27, pp.1091-1095, 2012.

Y. W. Lee, Clinical and genetic analysis in a patient with primary renal glucosuria: Identification of a novel mutation in the SLC5A2 gene, Exp Ther Med, vol.6, pp.1532-1534, 2013.

L. Yu, Q. Xu, P. Hou, and H. Zhang, Decreased expression and function of sodium-glucose co-transporter 2 from a novel C-terminal mutation: a case report, BMC Nephrol, vol.21, p.31, 2016.

L. Yu, P. Hou, J. Lv, G. Liu, and H. Zhang, Novel SLC5A2 variants contribute to renal glucosuria in Chinese families: abnormal expression and dysfunction of variant SLC5A2, Hum Mutat, vol.36, pp.79-86, 2015.

X. Wang, Two Novel HOGA1 Splicing Mutations Identified in a Chinese Patient with Primary Hyperoxaluria Type 3, Am J Nephrol, vol.42, pp.78-84, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02436458

M. Panayotova-heiermann, D. Loo, C. Kong, J. Lever, and E. Wright, Sugar binding to Na + /glucose cotransporters is determined by the carboxyl-terminal half of the protein, J Biol Chem, vol.271, pp.10029-10034, 1996.

I. Bottillo, Functional analysis of splicing mutations in exon 7 of NF1 gene, BMC Med Genet, vol.8, p.4, 2007.