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Abstract

Background: Usher syndrome is an autosomal recessive disease that associates sensorineural hearing loss, retinitis
pigmentosa and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous. To date, 10
genes have been associated with the disease, making its molecular diagnosis based on Sanger sequencing, expensive
and time-consuming. Consequently, the aim of the present study was to develop a molecular diagnostics method for
Usher syndrome, based on targeted next generation sequencing.

Methods: A custom HaloPlex panel for Illumina platforms was designed to capture all exons of the 10 known causative
Usher syndrome genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31 and CLRN1), the two Usher
syndrome-related genes (HARS and PDZD7) and the two candidate genes VEZT and MYO15A. A cohort of 44 patients
suffering from Usher syndrome was selected for this study. This cohort was divided into two groups: a test group of
11 patients with known mutations and another group of 33 patients with unknown mutations.

Results: Forty USH patients were successfully sequenced, 8 USH patients from the test group and 32 patients from the
group composed of USH patients without genetic diagnosis. We were able to detect biallelic mutations in one USH
gene in 22 out of 32 USH patients (68.75%) and to identify 79.7% of the expected mutated alleles. Fifty-three different
mutations were detected. These mutations included 21 missense, 8 nonsense, 9 frameshifts, 9 intronic mutations and
6 large rearrangements.

Conclusions: Targeted next generation sequencing allowed us to detect both point mutations and large rearrangements
in a single experiment, minimizing the economic cost of the study, increasing the detection ratio of the genetic cause of
the disease and improving the genetic diagnosis of Usher syndrome patients.

Keywords: Usher syndrome, Molecular diagnosis, Next generation sequencing, Point mutations, Large rearrangements
Background
Usher syndrome (USH) is an autosomal recessive disease
characterized by the association of sensorineural hearing
loss, retinitis pigmentosa (RP) and, in some cases, ves-
tibular dysfunction. Its prevalence ranges from 3 to 6.2
per 100,000 [1-3] and it is the most common form of
hereditary syndromes combining hearing loss and retin-
itis pigmentosa.
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USH has a remarkable clinical and genetic heterogen-
eity. According to the severity and progression of the
disease, three clinical types are distinguished. Type I
(USH1) is defined by profound congenital hearing loss,
onset of RP usually within the first decade of life and an
absence of vestibular function. Usher syndrome type II
(USH2) patients display congenital moderate-severe hear-
ing loss, onset of RP around or after puberty and normal
vestibular function. Usher syndrome type III (USH3) is
characterized by postlingual progressive hearing loss, RP
with a variable age of onset and variable vestibular re-
sponse [4]). However, in some patients the disease does
not fit into any of these three subtypes, and they are classi-
fied as ‘atypical Usher syndrome’.
Ltd. This is an Open Access article distributed under the terms of the Creative
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To date, 10 genes and three additional loci have been
associated with the disease. For USH1 six genes have
been identified: MYO7A (USH1B), USH1C (USH1C),
CDH23 (USH1D), PCDH15 (USH1F), USH1G (USH1G)
and CIB2 (USH1J); and two additional loci have been
described: USH1E [5] and USH1H [6]. Three genes have
been found to cause USH2: USH2A (USH2A), GPR98
(USH2C) and DFNB31 (USH2D). For USH3 only muta-
tions in CLRN1 have been described, and a second locus
was proposed, USH3B. Furthermore, most of these genes
are also responsible for non-syndromic hearing loss or
isolated RP [4,7].
In addition to these 10 genes, three other genes have

been associated with USH. PDZD7 was proposed as a
contributor of digenic inheritance with GPR98, and as a
retinal disease modifier in USH2A patients [8]. Recently,
a novel biallelic missense variant in HARS was identified
in two patients with a phenotype compatible with USH3.
This gene encoding an aminoacyl tRNA synthetase was
proposed as a novel gene causative of USH3 [9]. More
recently, CEP250 has been associated with atypical Usher
syndrome [10].
Proteins encoded by Usher genes belong to different

classes: actin-based motor protein, scaffolding proteins,
cell-adhesion molecules or transmembrane proteins, some
of them with very large extracellular domains. These
proteins through their protein-protein interacting do-
mains are integrated in a network known as “Usher-
interactome”. The main sites of colocalization of Usher
proteins are the stereocilia or hair bundle of the inner ear
hair cells, and the synaptic and periciliary areas of the pho-
toreceptors [4,11].
In the stereocilia, two different USH protein networks

are known to be involved in the development and main-
tenance of the inner ear hair cells. One of them is com-
posed of the USH2 proteins, myosin VIIA (encoded by
MYO7A), Vezatin and PDZD7 [12,13]. Vezatin is encoded
by VEZT and it is required for the sound resilience of
cochlear hair cells. In addition, it has been proposed that
it is involved in the maturation steps of these cells or in
the maintenance of junction integrity between hair cells
and supporting cells in the inner ear [14]. The second ste-
reocilia interactome is composed of the USH1 proteins
[15]. In this network, several unconventional myosins,
as myosin XVa, have also been found [16-18]. Mutations
in MYO15A, the gene encoding Myosin XVa, are respon-
sible for non-syndromic autosomal recessive hearing
loss DFNB3 [19]. In addition, Myosin XVa interacts with
whirlin in stereocilia, considered a key event in hair-
bundle morphogenesis [20], and this direct interaction
at the stereocilia tip is likely to control the elongation of
stereocilia [21].
In the retina, two similar molecular networks composed

of USH2 and USH1 proteins have also been described.
The USH2 protein network, localized at the periciliary
ridge complex region, contributes to the trafficking of
cargos moving from the inner segment to the outer
segment of the photoreceptor cells through the connect-
ing cilium. The USH1 interactome has been reported to
localize at the membrane-membrane connection site be-
tween the outer segment of the photoreceptor cells and
the calyceal processes in primates. This USH1 protein
complex is thought to form an adhesion belt and would
contribute to the daily renewal of photoreceptors outer
segments [22-24].
Traditionally, the molecular diagnosis of Usher syn-

drome has been mainly based on Sanger sequencing
[25,26]. However, the large size of most USH genes (above
350 exons in total) makes this technique expensive
and time-consuming. Array-based mutation screenings
(arrayed primer extension (APEX) technology) have be-
come a rapid and efficient technique to detect previously
described mutations, and a specific APEX-microarray for
USH was developed [26]. However, most of USH muta-
tions are private, so the low detection rate of the APEX-
microarray for Usher syndrome hampers the use of this
technology [27,28]. Furthermore, Copy Number Variants
(CNVs) have been identified as an important cause of the
disease in Usher syndrome. Deletions and duplications
are screened by Multiplex Ligation-dependent Probe
Amplification (MLPA), for which commercial probemix is
only available for USH2A and PCDH15, or by array-
Comparative Genomic Hibridization (a-CGH) [29-31].
In recent years, next generation sequencing (NGS)

techniques have been developed further, permitting the
whole genome, whole exome and targeted gene sequen-
cing to be more feasible, and hence making the identifi-
cation of diseased genes and the underlying mutations
easier, rapid and cost-effective. The improvement of
NGS has been especially useful in the diagnosis of genetic-
ally heterogeneous diseases, such as hearing loss or retinal
dystrophies [32-35].
For Usher syndrome, several NGS methods have been

developed. Licastro et al. [36] used two different ap-
proaches: whole exome sequencing with the use of the
SOLiD system and long-PCR sequencing on nine USH
genes with two different platforms, Illumina (Genome
Analyzer II) and the Roche 454 (GS FLX). Recently,
Besnard et al. [37] developed a targeted NGS approach.
They included 9 USH genes, 2 candidate USH genes
(VEZT and PDZD7), seven hearing-loss genes and the
choroideremia-causative gene CHM and the sequencing
was carried out on Roche GS Junior sequencer. Yoshi-
mura et al. [38] has also applied a massively parallel DNA
sequencing methodology, but only for USH1 patients.
Recently, Rong W et al. [39] used the NGS approach to
identify three new alleles and one known mutation in
MYO7A in three Chinese families.
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We developed a molecular diagnosis of Usher syndrome
based on a targeted NGS technique, HaloPlex (Agilent)
gene target enrichment for Illumina platforms, including
the ten USH known genes and four candidate genes that
allowed us to identify not only point mutations but also
CNVs, implementing a platform for the genetic diagnosis
of this disease.

Methods
Patients
A cohort of 44 patients diagnosed with Usher syndrome
was selected for this study. Their clinical classification
into USH1, USH2, USH3 or atypical USH was performed
on the basis of their clinical history and ophthalmologic,
audiometric and vestibular tests. Patients included in
this work were divided into two groups: a test group
and a group composed by USH patients without genetic
diagnosis.
Whenever possible, samples from additional family

members were used to perform segregation analysis of
the sequence variants identified in the index patient.
All patients and relatives included in the present study

signed authorizing their written informed consent. The
study was approved by the institutional board of the
Ethics Committee of the University Hospital La Fe.

Test group
The test group was composed of 11 patients: five USH1,
four USH2, one USH3 and one atypical USH. These
patients had been screened using a combination of
Table 1 Test group: patients carrying sequence variants in US

Patient Clinical type Gene Type variant

RP-808 USH1 CDH23 Intronic

USH1G Missense

USH1G Missense

RP-1145 USH2 USH2A Frameshift duplication

USH2A Nonsense

DFNB31 Isocoding

RP-1286§ USH1 PCDH15 Frameshift insertion

RP-1374 USH1 PCDH15 Nonsense

RP-1426 USH1 MYO7A Missense

RP-1522 USH2 USH2A Frameshift deletion

CDH23 Missense

RP-1608§ USH3 USH2A Missense

RP-1614 USH1 MYO7A Frameshift deletion

RP-1637 USH2 USH2A Frameshift duplication

USH2A Large deletion

RP-1757§ Atypical MYO7A In-frame deletion

RP-1760 USH2 USH2A Missense

Samples that failed in the amplification process are marked with §.
techniques as Sanger sequencing, APEX microarray for
Usher syndrome or MLPA. Variants of different nature in
six USH genes had been previously detected and were
used as positive controls in the present study. Table 1
shows the previously identified changes in the test group.

Cohort of USH patients previously unscreened
A cohort of 33 USH patients without genetic diagnosis
was enrolled in this study. It was composed of 13 USH1
patients, 17 USH2 and 3 USH3 cases.

DNA Samples
Genomic DNA from patients and relatives was extracted
from EDTA blood using an automated DNA extractor
(Magna Pure, Roche). DNA samples were purified with
the “QIAqick PCR Purification Kit” following the manu-
facturer’s instructions. The concentration of the genomic
DNA was determined with the “Qubit dsDNA BR Assay
Kit” in the Qubit 2.0 fluorometer.

Targeted next generation sequencing design
A custom HaloPlex panel was designed using Agilent’s
SureDesign tool (www.agilent.com/genomics/suredesign)
to capture all exons and 25 bp of intronic flanking re-
gions of 14 genes. The target genes included in our work
were the 10 causative Usher syndrome genes (MYO7A,
USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98,
DFNB31 and CLRN1), two related USH genes (HARS and
PDZD7) and two candidate genes VEZT and MYO15A,
due to their involvement in the Usher interactome
H genes previously detected

Nucleotide Protein Classification

c.6059-9G > A ——— Pathogenic. UV4

c.387A > G p.Lys130Glu UV1

c.423G > A p.Glu142Lys UV2

c.10272-10274dup p.Cys3425Phefs*4 Pathogenic. UV4

c.7854G > A p.Trp2618* Pathogenic. UV4

c.117G > A p.Val39Val UV1

c.1304_1305insC p.Thr436Tyrfs*12 Pathogenic. UV4

c.7C > T p.Arg3* Pathogenic. UV4

c.6610G > C p.Ala2204Pro Pathogenic

c.2299delG p.Glu767Serfs*21 Pathogenic. UV4

c.1096G > A p.Ala366Thr UV2

c.9799 T > C p.Cys3267Arg Pathogenic. UV4

c.6025delG p.Ala2009Profs*32 Pathogenic. UV4

c.5540dupA p.Asn1848Glufs*20 Pathogenic. UV4

Del IVS4_IVS9 p.Gly262Valfs*2 Pathogenic. UV4

c.655_660del p.Ile219_His220del Pathogenic. UV4

c.2296 T > C p.Cys766Arg UV3
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[14,20,21]. The novel CEP250 [10] had not been associated
with USH at the beginning of this study, so it was not
included in our work.
The entire custom design was 481 targets with a total

size of 132.763 Kb. The exons from the different iso-
forms included in this study are summarized in Table 2.
The intronic region where the USH2A mutation c.7595-
2144A > G [37] is located, was included in the design.
The final probe design size was 296.74 Kb with a theor-
etical coverage of 99.88% for our targeted regions. The
difference in size between our entire custom design and
the final probe design was due to an intrinsic process of
the engineering of probes by Agilent’s Sure Design tool
for the HaloPlex protocol.

Sequence capture and next generation sequencing
Sequence capture was performed according to the
“HaloPlex Target Enrichment System” (Protocol Version
Table 2 Details about the exons studied in this targeted NGS
Chr Gene RefSec Coding

exons
Size (bp) Coding

Size (bp)
Amin
acids

11 MYO7A NM_000260.3
variant 1

48 7465 6648 2215

10 CDH23 NM_022124.5
variant 1

69 11134 10065 3354

10 PCDH15 NM_033056.3
variant C

32 7021 5868 1955

11 USH1C NM_153676
variant 3

27 3246 2700 899

17 USH1G NM_173477.4
variant 1

3 3565 1386 461

15 CIB2 NM_006383.2
variant 1

6 1580 564 187

1 USH2A NM_206933.2
variant 2

71 18883 15609 5202

5 GPR98 NM_032119.3
variant 1

90 19333 18921 6307

9 DFNB31 NM_015404.3
variant 1

12 4079 2724 907

3 CLRN1 NM_174878.2
variant 1

3 2359 699 232

10 PDZD7 NM_001195263.1
variant 1

17 4164 3102 1033

5 HARS NM_002109.5
variant1

13 2322 1530 509

17 MYO15A NM_016239.3 65 11876 10593 3530

12 VEZT NM_017599
variant 1

12 4580 2340 779

Total targets
D.5, Agilent Technologies Inc, CA, USA) for Illumina
Sequencing. Between 225 to 450 ng of gDNA were
digested by 16 different restriction enzymes to create a
library of gDNA restriction fragments. Four 12-reaction
runs were performed including in each of them 11 gDNA
samples and one Enrichment Control DNA sample.
These enzymatic digestions were validated by electro-
phoretic analysis in a polyacrylamide gel. The gDNA
restriction fragments were hybridized to the HaloPlex
probe capture library. In this step, the Illumina se-
quencing motifs including index sequences were in-
corporated into the targeted fragments and the target
DNA-HaloPlex probe hybrids were circularized. These
hybrid molecules were captured using streptavidin
beads. The DNA ligase was then added to close nicks
in the circularized HaloPlex probe-target DNA hy-
brids and the captured DNA libraries were eluted with
NaOH.
analysis for the 14 genes analyzed
o Alternative Ref

Sec
Additional exons and the
intronic USH2A region
included in the study

Size (bp) Number of
exons analyzed

48

NM_052836.3
variant 2

1 150 70

NM_001142773.1
variant H

1 6 38

NM_001142769.1
variant I

2 871

NM_001142771.1
variant K

2 4469

NM_005709.3
variant 1

1 75 28

3

6

NC_000001.11 c.7595-2144A > G 152 71 + 1 intronic
sequence

90

NM_001083885.2
variant 2

1 110 13

NM_052995.2
variant 4

1 20 4

NM_024895.4
variant 2

1 285 18

13

65

NR_038242.1
variant 2

1 74 13

481
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A PCR amplification of the captured target libraries
was performed following the manufacturer’s instructions
and, after its purification with the “AMPure XP beads”
(BECKMAN CULTER Inc), the validation and quantifi-
cation of the enriched target DNA in each library was
performed using the 2100 Bioanalyzer system with the
High Sensitivity DNA Kit and the 2100 Expert Software
(Agilent Technologies Inc, CA, USA). The last step of the
protocol was to pool samples for multiplexed sequen-
cing in the Illumina sequencing platform MiSeq System
(Illumina,Inc).

Variant analysis
Data was analyzed using the platform provided by DNA-
nexus (www.dnanexus.com). Two different versions were
used: DNAnexus Classic and the DNAnexus version re-
cently implemented. Annotated variants were selected
according to the following criteria: the quality value
should be ≥250, a percentage of heterozygosity ≥30% of
the reads, their annotation in the dbSNP (http://www.
ncbi.nlm.nih.gov/SNP) and their description in the Usher
syndrome mutation database (https://grenada.lumc.nl/
LOVD2/Usher_montpellier). Variants should be observed
in both direct and reverse strands.
Variants selected and suspected to be pathogenic were

confirmed by Sanger sequencing. The DNA fragments
containing the variants were amplified by PCR with spe-
cific primers and were sequenced on both strands using
the Big Dye 3.1 Terminator Sequencing Kit. The purified
sequence products were analyzed on a 3500xl ABI instru-
ment (Applied Biosystems by Life Technologies, Thermo
Fisher Scientific, Inc).
The pathogenicity of novel missense variants was ana-

lyzed with the SIFT (http://sift.bii.a-star.edu.sg/) and
PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) al-
gorithms. Those putative variants that affect the splicing
process were studied with the NetGene2 (http://www.
cbs.dtu.dk/services/NetGene2), NNSPLICE v0.9 (http://
www.fruitfly.org/seq_tools/splice.html), Human Splicing
Finder (HSF; http://www.umd.be/HSF) and RESCUE-ESE
(http://genes.mit.edu/burgelab/rescue-ese/) programs.
Novel variants were classified based on the classifi-

cation system for Unknown Variants (UV) (https://
grenada.lumc.nl/LOVD2/Usher_montpellier) as patho-
genic (UV4), possibly pathogenic (UV3), possibly non-
pathogenic (possibly neutral, UV2) and non-pathogenic
(neutral, UV1) according to bioinformatics predictions
and segregation analysis. This classification is in line
with the guidelines published by the clinical and mo-
lecular genetics society (http://cmgdweb.shared.hosting.
zen.co.uk/BPGs/Best_Practice_Guidelines.htm).
Nomenclature of variants was performed according

to the reference sequences: MYO7A (NM_000260.3),
USH1C (NM_153676), CDH23 (NM_022124.5), PCDH15
(NM_033056.3), USH1G (NM_173477), CIB2 (NM_
006383.2), USH2A (NM_206933), GPR98 (NM_032119.3),
DFNB31 (NM_015404), CLRN1 (NM_174878), HARS
(NM_002109), PDZD7 (NM_001195263.1), VEZT (NM_
017599) and MYO15A (NM_016239).
Segregation analysis was performed in cases where

DNA samples of relatives were available.

Copy number variation analysis and validation
The coverage of every target region of the sample of
interest was normalized and compared with average
normalized data of all other samples of the same run to
obtain the ratio relative coverage. Deletions and duplica-
tions were suspected of being present if this ratio fell
below 0.7 or rose above 1.3 respectively.
Validation of rearrangements of USH2A and PCDH15

was performed by MLPA analysis. For USH2A the SALSA
MLPA probemixes P361 and P362 were used. To confirm
the PCDH15 copy number variations the SALSA MLPA
probemix P292 was employed. The MLPA reactions were
performed according to the manufacturer’s recommenda-
tions (http://www.mlpa.com).
In the cases of putative rearrangements identified in

CDH23 and GPR98, their validation was carried out by
an oligonucleotide array-CGH. The array-CGH chip in-
cluded 77,366 probes covering the genes MYO7A, CDH23,
PCDH15, USH1C, USH1G, USH2A, GPR98, DFNB31,
PDZD7 and CLRN1 and 10.000 nucleotides of 5′ and 3′
untranslated regions [30].

Results
Next generation sequencing results of the USH panel
Capture of NGS using our customized USH panel was
performed in a cohort of USH patients. High quality
results were obtained. On average, a mean coverage of
1334x was obtained per sample and target region. Differ-
ent average coverages were obtained for the fourteen
analyzed genes, ranging from 935x (VEZT) to 1817x
(CLRN1) (Figure 1).
Only one of the selected targeted regions showed

coverage lower than 40x, the defined limit for proper
validation and diagnostic procedures. This target was a
coding region of 43 bp in the large exon 2 of MYO15A.
A schematic representation of the coverage of all target
regions is showed in Figure 2.

Test group: validation of the diagnostic strategy
Eleven USH patients were included in the test group to
verify the reliability of our NGS custom panel. In these
cases, 17 mutations and polymorphism had been previ-
ously detected in different USH genes by Sanger or by
MLPA (Table 1).
During the experiment three control patients and

one studied patient failed in the capture step of the

http://www.dnanexus.com
http://www.ncbi.nlm.nih.gov/SNP
http://www.ncbi.nlm.nih.gov/SNP
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http://www.fruitfly.org/seq_tools/splice.html
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http://www.umd.be/HSF
http://genes.mit.edu/burgelab/rescue-ese/
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target DNA of the HaloPlex protocol. Due to a manual/
technical problem with the PCR strips and magnetic rack
Dynabeads, the circularized target DNA-HaloPlex probe
hybrids, containing biotin, were not captured on streptavi-
din beads and these samples were lost.
The remaining eight patients were carriers of 14 differ-

ent variants including missense, nonsense, point dele-
tions or insertions and large deletions (Table 1). Our
NGS approach allowed us to detect all previously de-
tected changes in the testing cohort, both point muta-
tions and CNVs.
The sequencing of the USH genes allowed the detec-

tion of a second pathologic allele in five patients in whom
only one mutation was previously detected. In addition,
in patient RP-1426, previously a carrier of a pathogenic
Figure 2 Mean coverage of all targeted regions included in our custo
variant in MYO7A, we were able to identify a novel splice
site mutation in CDH23. These results are summarized
in Table 3.

Cohort of USH patients previously unscreened
In our cohort of 33 USH patients studied, mutations
could be identified in the majority of analyzed cases.
One of the USH cases failed in the capture and amplifica-
tion of the library due to the same manual/technical error
explained above. If we take into account the remaining 32
USH cases analyzed, we identified in 22 patients the two
expected mutated alleles, in 5 cases only one pathogenic
variant and in one case, RP-1950, two pathogenic variants
were detected in two different USH2 genes. In four pa-
tients no mutation was found. In addition two patients
m design.



Table 3 Causative mutations and putative pathogenic variants identified in this study

Patient Clinical type Gene Exon Nucleotide variant Protein variant Reference Segregation analysis

Patients with two pathogenic mutations in the same gene

RP-807 USH2 MYO7A 40 c.5516 T > C p.Leu1839Pro Novel. UV3 Yes

MYO7A 27 c.3503G > A p.Arg1168Gln Novel. UV3

RP-808¶ USH1 CDH23 47 c.6059-9G > A — von Brederlow et al., (2002) [40] No

CDH23 10 c.871G > A p.Gly291Arg Novel. UV3

RP-890 USH3 USH2A 26 c.5278delG p.Asp1760Metfs*10 Garcia-Garcia et al., (2011) [41] No

USH2A 26 c.5278delG p.Asp1760Metfs*10 Garcia-Garcia et al., (2011) [41]

RP-1182 USH1 PCDH15 22_23 Duplication exons 22_23 — Novel. UV4 No

PCDH15 22_23 Duplication exons 22_23 — Novel. UV4

RP-1183 USH1 CDH23 26 c.3016G > A p.Glu1006Lys Schultz et al., (2011) [42] No

CDH23 26 c.3016G > A p.Glu1006Lys Schultz et al., (2011) [42]

RP-1234 USH1 MYO7A 43 c.5884delTTCT p.Phe1962Leufs*7 Novel. UV4 Yes

MYO7A 43 c.5884delTTCT p.Phe1962Leufs*7 Novel. UV4

RP-1237 USH1 CDH23 46 c.6049G > A p.Gly2017Ser Roux et al., (2006) [43] No

CDH23 46 c.6049G > A p.Gly2017Ser Roux et al., (2006) [43]

RP-1374¶ USH1 PCDH15 2 c.7C > T p.Arg3* Ahmed et al., (2001) [44] Yes

PCDH15 27 c.3717 + 2dupT — Jaijo et al., (2012) [45]

RP-1422 USH1 MYO7A 43 c.5944G > A p.Gly1982Arg Riazuddin et al., (2008) [46] Yes

MYO7A 43 c.5944G > A p.Gly1982Arg Riazuddin et al., (2008) [46]

RP-1522¶ USH2 USH2A 13 c.2299delG p.Glu767Serfs*21 Liu et al., (1999) [47] No

USH2A 20 Deletion exon 20 — Novel. UV4

RP-1551 USH1 PCDH15 27 c.3511delA p.Asp1172Ilefs*13 Novel. UV4 Yes

PCDH15 27 c.3511delA p.Asp1172Ilefs*13 Novel. UV4

RP-1614¶ USH1 MYO7A 44 c.6025delG p.Ala2009Profs*32 Bharadwaj et al., (2000) [48] No

MYO7A 40 c.5537C > A p.Pro1846His Novel. UV3

RP-1760¶ USH2 USH2A 55 c.10888delA p.Gly3631Valfs*43 Novel. UV4 No

USH2A 13 c.2296 T > C p.Cys766Arg Glöcke et al., (2013) [35]

RP-1781 USH2 CDH23 29 Duplication exon 29 — Novel. UV4 No

CDH23 68 c.9569C > T p.Ala3190Val Novel. UV3

RP-1791 USH1 MYO7A 20 c.2283-1G > T — Roux et al., (2006) [43] Yes

MYO7A 28 c.3594C > A p.Cys1198* Roux et al., (2011) [43]

RP-1802 USH2 USH2A 63 c.13811 + 2 T > G — Besnard et al., (2014) [37] No

USH2A 50 c.9799 T > C p.Cys3267Arg Aller et al., (2006) [49]

RP-1835 USH2 USH2A 57 c.11065C > T p.Arg3689* Le Quesne Stabej et al., 2012 [50] Yes

USH2A 22 c.4758 + 3A > G — Novel. UV3

RP-1864 USH2 MYO7A 6 c.494C > T p.Thr165Met Ouyang et al., (2005) [51] No

MYO7A 6 c.494C > T p.Thr165Met Ouyang et al., (2005) [51]

RP-1895 USH2 GPR98 79_83 Duplication exons 79_83 — Besnard et al., (2012) [52] No

GPR98 79_83 Duplication exons 79_83 — Besnard et al., (2012) [52]

RP-1904 USH2 GPR98 11 c.2145_2149delGTTTT p.Leu715Phefs*6 Novel. UV4 Yes

GPR98 14 c.2612delG p.Gly871Glufs*8 Novel. UV4

RP-1910 USH1 CDH23 60 c.8722 + 1delG — Oshima et al., (2008) [53] Yes

CDH23 60 c.8722 + 1delG — Oshima et al., (2008) [53]
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Table 3 Causative mutations and putative pathogenic variants identified in this study (Continued)

RP-1924 USH1 MYO7A 39 c.5392C > T p.Gln1798* Janecke et al., (1999) [54] Yes

MYO7A 27 c.3503G > A p.Arg1168Gln Novel. UV3

RP-1927 USH2 USH2A 21 c.4474G > T p.Glu1492* Bernal et al., (2005) [55] Yes

USH2A 2 c.269A > G p.Tyr90Cys Novel. UV3

RP-1948 USH1 MYO7A 7 C.707 T > A p.Leu236Gln Novel. UV3 No

MYO7A 42 c.5749G > T p.Glu1917* Jacobson et al., (2009) [56]

RP-1960 USH2 USH2A 25 c.5167G > C p.Gly1723Arg Novel. UV3 No

USH2A 7 c.1214delA p.Asn405Ilefs*3 Bernal et al., (2005) [55]

Patients with three pathogenic mutations in two different genes

RP-1847 USH2 USH2A 62 c.12067-2A > C — Kaiserman et al., (2007) [57] Yes

USH2A 14 Deletion exon 14 — Glöckle et al., (2013) [35]

USH1G 2 c.805C > T p.Arg269* Novel. UV4

RP-1923 USH2 USH2A 62 c.12093delC p.Tyr4031* Garcia-Garcia et al., (2011) [41] No

USH2A 44 Deletion exon 44 — Glöckle et al., (2013) [35]

DFNB31 9 c.2234G > A p.Arg745His Novel. UV3

Patients with only one pathogenic mutation

RP-1455 USH1 USH2A 28 c.5666A > G p.Asp1889Gly Novel. UV3 No

RP-1496 USH3 GPR98 19 c.3443G > A p.Gly1148Asp Novel. UV3 No

RP-1741 USH2 USH2A PE40 c.7592-2144A > G — Vaché et al., (2012) [58] No

RP-1929 USH2 GPR98 58 c.11974G > A p.Asp3992Asn Novel. UV3 No

RP-1953 USH2 USH1C 18 c.1859G > T p.Arg620Leu Ouyang et al., (2002) [59] No

Patients with pathologic mutations in different genes

RP-1426¶ USH1 MYO7A 49 c.6610G > C p.Ala2204Pro Jaijo et al., (2007) [60] Yes

CDH23 39 c.5068-2A > T — Novel. UV4

RP-1950 USH2 USH2A 70 c.2299delG p.Glu767Serfs*21 Liu et al., (1999) [47] No

GPR98 70 c.14278C > T p.Pro4760Ser Novel. UV3

Patients previously included in the test group are marked with ¶.
Novel variants are marked in bold.
PE: Pseudoexon 40.
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(RP-1847 and RP-1923) were carriers of three mutations
in USH genes (Table 3).
In this study, we were able to identify 53 different mu-

tations, of which 24 were novel. These variants included
21 missense, 8 nonsense, 9 frameshifts, 9 intronic muta-
tions and 6 large rearrangements.
The DNA nexus program showed a high number of

novel variants in each patient. These changes were selected
according to their nature, or the presence of another
pathogenic allele in the same gene in the same patient. The
variants were confirmed by Sanger sequencing and mis-
sense, isocoding or intronic variants were analyzed by dif-
ferent in silico algorithms to predict their pathogenic
effect. According to the bioinformatics predictions, 15 vari-
ants out of 25 studied variants were considered as patho-
genic (UV4) or possibly pathogenic (UV3) (Table 4).
Segregation analysis of detected alleles with the re-

spective family members was performed in 13 cases, and
cosegregation of the mutations with the disease was veri-
fied in all these cases (Table 3).

CNVs Detection
Next Generation Sequencing with the Illumina MiSeq
system allowed us to perform qualitative and quantita-
tive analysis. We could detect not only point mutations
but also CNVs.
In our cohort of patients we performed CNV analysis

in all patients where two point mutations had not been
detected. This analysis allowed us to identify six large re-
arrangements: three deletions in USH2A comprising the
exons 14, 20 and 44, and three duplications comprising
the exon 29 in CDH23, exons 22_23 in PCDH15 and
exons 79_83 in GPR98. The USH2A and the CDH23
rearrangements were detected in a heterozygous state,
whereas the PCDH15 and GPR98 duplications were identi-
fied in a homozygous state.



Table 4 Summary of putative pathogenic mutations and their bioinformatics predictions
Patient Gene Exon Nucleotide

Change
Amino Acid
Change

Classification SIFT (score) PolyPhen-2 (score) NetGene2 Human icing Finder NNSPLICE RESCUE-ESE

RP-1948 MYO7A 7 c.707T>A p.Leu236Gln UV3 deleterious (0) probably_damaging (1) Neutral tral Neutral A new ESE site
is created

RP-807
RP-1924

MYO7A 27 c.3503G>A p.Arg1168Gln UV3 deleterious (0) probably_damaging (1) Score for the main
donor site decreases

from 95 to 75

Score the main
donor decreases

fro 0 to 80

The main donor site
is not recognized

Neutral

RP-807 MYO7A 40 c.5516T>C p.Leu1839Pro UV3 deleterious (0) probably_damaging (1) Score for the main
acceptor site decreases

from 80 to 77

tral Neutral Neutral

RP-1614 MYO7A 40 c.5537C>A p.Prp1846His UV3 deleterious (0.01) possibly_damaging (0.85) Score for the main
acceptor site decreases
from 80 to 77 and
one acceptor site is
not recognized

tral Neutral Neutral

RP-808 CDH23 10 c.871G>A p.Gly291Arg UV3 deleterious (0) probably_damaging (1) Neutral tral Neutral A new ESE site
is created

RP-1426 CDH23 39 c.5068-2A>T c.5068-2A>T UV4 — — The main acceptor site
is not recognized

Score the main
accepto e decreases

fro 5 to 66

The main acceptor
site is not recognized

—

RP-1781 CDH23 68 c.9569C>T p.Ala3190Val UV3 deleterious (0) probably_damaging (1) Neutral tral Neutral Neutral

RP-1927 USH2A 2 c.269A>G p.Tyr90Cys UV3 tolerated (0.17) possibly_damaging (0.796) Score for acceptor site
decreases from 82 to 80

tral Score for acceptor
site decreases from

75 to 69

A ESE site is
not recognized

RP-1835 USH2A 22 c.4758+3A>G c.4758+3A>G UV3 — — The main donor site is
not recognized

tral The main donor
site decreases from

98 to 73

—

RP-1960 USH2A 25 c.5167G>C p.Gly1723Arg UV3 deleterious (0) probably_damaging (0.994) The main donor site is
not recognized

Score the main
donor decreases

fro 6 to 75

The main donor site
is not recognized

Neutral

RP-1455 USH2A 28 c.5666A>G p.Asp1889Gly UV3 deleterious (0) probably_damaging (0.982) The main donor and
acceptor sites decrease
from 82 to 80 and from
53 to 48 respectively
and a new acceptor

site is created

tral Neutral Two ESEs are
not recognized

RP-1496 GPR98 19 c.3443G>A p.Gly1148Asp UV3 deleterious (0) probably_damaging (0.999) Neutral tral Neutral Neutral

RP-1929 GPR98 58 c.11974G>A p.Asp3992Asn UV3 deleterious (0.01) probably_damaging (0.999) Neutral tral Neutral A ESE is not
recognized
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Table 4 Summary of putative pathogenic mutations and their bioinformatics predictions (Continued)

RP-1950 GPR98 70 c.14278C>T p.Pro4760Ser UV3 deleterious (0) probably_damaging (0.998) Neutral Neutral Neutral Neutral

RP-1923 DFNB31 9 c.2234G>A p.Arg745His UV3 deleterious(0.01) probably_damaging (0.984) Neutral Neutral The main donor
site increases from

66 to 86

Neutral

SIFT: SIFT Score ranges from 0 to 1. The amino acid substitution is predicted to be damaging if the score is < 0.05, and tolerated if the score is > 0.05.
PolyPhen stablish three classifications: “Probably damaging” (it is believed most likely to affect protein function or structure), “Possibly damaging” (it is believed to affect protein function or structure), “Benign”
(most likely lacking any phenotypic effect).
ESE: Exonic Splicing Enhancer.
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Large rearrangements in USH2A and PCDH15 were
subsequently confirmed by MLPA, whereas patients that
carried duplications affecting CDH23 and GPR98 were
analyzed by a-CGH (data not shown). In 5 patients, the
rearrangements detected by comparison of normalized
coverage data were confirmed. The a-CGH technique to
confirm the presence of the heterozygous duplication of
CDH23 (exon 29) in patient RP-1781 was not succesful
due to technical problems. Unfortunately, it was impos-
sible to get a new DNA sample for this patient to repeat
the experiment.
Three of the six rearrangements found in this study

had been previously described. The USH2A deletions
of exon 14 and exon 44 were described by Glockle
et al. [35] and the GPR98 duplication was previously
described by Besnard et al. [52]. The deletion of exon
14 in USH2A has also been detected by our group,
in one Spanish USH patient in a homozygous state
(unpublished results).
In our cohort of patients previously unscreened we could

detect 51 altered alleles, six of which corresponded to large
rearrangements, i.e. 11.76% of the detected pathogenic
alleles.
In one patient no point mutation was identified, and the

quantitative analysis could not be performed (RP-531).
The ratio between this sample and the normalized data
was altered in a high number of target regions from most
genes. In this case, the image obtained with the bioanaly-
zer in the validation and quantification of the enriched tar-
get DNA process was atypical (Figure 3).
In some cases, we could observe that the CNV analysis

displayed doubtful results in the targeted regions. The
analysis of those target regions revealed coverages lower
than 250x.

Discussion
Resolved cases
Usher syndrome displays both genetic and allelic hetero-
geneity. The number of genes related to the disease and
the large size of most of them contribute to the genetic
heterogeneity. Furthermore, mutations causing disease
include point mutations and large rearrangements, most
of them, being private. Recently, the high-throughput se-
quence analysis and next generation sequencing, has
A)

Figure 3 Images obtained in the validation and quantification of the
image obtained in most patients. B) Atypical image obtained in the patien
been proved to be very helpful to carry out genetic stud-
ies in heterogeneous diseases.
In this study we have developed a targeted method

based on NGS for the molecular diagnosis of Usher syn-
drome. We evaluated our panel in a group of patients
with known USH variants and applied it to a cohort of
USH patients previously unscreened.
In our series of study, we were able to detect biallelic

mutations in one USH gene in 22 out of 32 USH pa-
tients (68.75%) and to identify 51 out of the 64 expected
mutated alleles (a detection ratio of 79.7%).

Uncovered regions
We obtained a highly heterogeneous coverage using a cus-
tom HaloPlex Target Enrichment System (see Figure 1).
However, only one region included in the final design
showed a mean coverage lower than 40x in our samples. It
corresponded to a 43 bp sequence in the large exon 2 of
MYO15A. That fragment shows a high percentage of CGs,
77%. It has been reported that most sequencing plat-
forms, including Illumina sequencers, show a GC content-
dependent bias coverage, and protocols should be modified
to minimize these events [61].

Unresolved cases
Mutations were not detected in four patients of our co-
hort. In one USH1 case detailed clinical data could not
be obtained, whereas in the remaining cases clinical
information was revised and the USH diagnosis was
confirmed. Five additional patients were carriers of only
one pathogenic variant (Table 3), the second mutation
remaining unidentified.
In these cases, in which the second mutated allele es-

capes detection, the region that contains the mutation
may have been excluded from our study. It is possible
that the gene responsible for the disease had not yet
been identified, and therefore it could not be included in
our panel. Furthermore, deep intronic regions, promoter
regions or 5′ and 3′ untranslated regions were not sys-
tematically included in the panel design. The only in-
tronic region targeted in our panel was designed to
detect the USH2A c.7595-2144A > G mutation identified
by Vaché et al. [58] in five French patients and four
Spanish patients. Moreover, it was subsequently detected
B)

enriched target DNA with the 2100 Bioanalyzer system. A) Typical
t RP-531, in whom CNV analysis could not be performed.
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in five additional families [31]. Subsequently, Steele-
Stallard et al. [31] detected this intronic change in three
UK and European USH families.
In two patients, two mutated alleles, each one in a differ-

ent gene, were detected (Table 3). Patient RP-1426 was
carrier of a missense MYO7A variant (p.Ala2204Pro).
Using the NGS panel we could not detect a second muta-
tion in MYO7A, but a splice acceptor site mutation
(c.5068-2A > T) was found in CDH23. In the USH2 pa-
tient RP-1950, the USH2A mutation c.2299delG and a
novel missense variant (p.Pro4760Ser) in GPR98 were de-
tected. Bioinformatics algorithms predicted a pathogenic
effect for these two novel variants (Table 4). In the former
case, the two mutations were present in the same, clinic-
ally unaffected parent (data not shown), which does not
support a digenic inheritance of USH. Unfortunately, seg-
regation analysis could not be performed in the case of
patient RP-1950. Perhaps a second mutation remains un-
detected in one of these genes in the patients RP-1426 and
RP-1950. In two other patients (RP-1847 and RP-1923)
with biallelic mutations in USH2A, we were able to detect
additional mutations in USH1G and DFNB31, respect-
ively. These cases show the high decisive power of massive
parallel re-sequencing, detecting additional mutations in
patients carrying the two mutations responsible for the
disease in the same gene.
The programs used to analyze the data generated from

NGS followed different algorithms. In fact, both the
alignment and the base calling are two crucial steps in
these analyses. It is possible that some mutations could
escape detection due to the algorithms used. Their modifi-
cation will improve the quality of generated data, avoiding
false negatives and allowing detection of missed mutations
in further analysis.
Four patients carried two mutations in genes typically

responsible for another clinical subtype. Two USH2 pa-
tients carried missense mutations in MYO7A (RP-807
and RP-1864), one USH2 case in CDH23 (RP-1781) and
a USH3 patient carried a homozygous frameshift dele-
tion in USH2A (RP-890) (Table 2). The situation of USH
patients diagnosed with a given clinical subtype, who
carry mutations in a gene involved in a different subtype,
is not unprecedented, and was previously reported [25].
These findings further support the use of NGS techniques
that allow for the study of all known causative genes for
Usher syndrome in patients independent of their clinical
subtype. It facilitates the detection of mutations in genes
typically associated with other clinical types.

Copy number variation analysis
Studies performed in different populations have dem-
onstrated that large rearrangements are an important
cause of the disease in Usher syndrome. Le Guedard
et al. [62] and Aller et al. [29] demonstrated that PCDH15
rearrangements are a significant cause of USH alterations.
Large deletions involving USH2A have been reported
[22,35], and large rearrangements in other USH genes as
MYO7A, CDH23 or GPR98 have been detected [30,62].
These results indicate that the genetic analysis in USH pa-
tients should include the screening of rearrangements.
We have obtained with the MiSeq system a mean cover-

age in our USH panel of 1334x per sample and target re-
gion, allowing for CNV analysis of the selected genes. We
could then detect in our series of patients six different rear-
rangements in CDH23, PCDH15, USH2A and GPR98,
which represents 11.8% of the mutated detected alleles.
We observed that when the coverage of regions fell below
250x, the results obtained in the CNV analysis were ques-
tionable and we did not take into account those regions. In
order to perform quantitative analysis, we recommend,
therefore, coverage of targeted regions above 250x.
In one patient (RP-531) the validation of the enrich-

ment process gave an atypical image in the bioanalyzer
(Figure 3). In this case the CNV analysis could not be
performed. However, this does not affect the detection
of point mutations. In fact, in another patient with a
similar image in the validation (RP-808), two point mu-
tations were detected.

Comparison with other NGS studies of USH
Traditionally, Sanger sequencing was used to identify
the mutations responsible of the disease [25,50]. Now-
adays different methods based on NGS have been used
for Usher syndrome. Licastro et al. [36] employed two
different approaches: the whole exome sequencing and
long-PCR sequencing on nine USH genes. Whole exome
sequencing has several problems: a low coverage of the
interesting regions and the need of a correct interpret-
ation of the high number of sequence variations identi-
fied. Regarding the long-PCR method, it displayed a
better mean coverage, higher than 25x in 94% of regions.
Taking together both approaches, the detection of patho-
genic alleles was 62.5%.
Recently, Besnard et al. [37] developed a targeted NGS

panel where 9 USH genes, 2 candidate USH genes (VEZT
and PDZD7), seven hearing-loss genes and CHM were in-
cluded. The overall depth of coverage obtained was esti-
mated as 77x across the whole design ranging from 55.8x
to 106.9x, with a detection ratio of 84.6% in the studied
USH cohort.
In our series, the detection rate of mutated alleles was

79.7%. Our results are close to the Besnard et al. [37]
study and higher than to the Licastro et al. [36] ap-
proaches. However, it is difficult to obtain conclusions
due to the low number of patients included in those
studies (thirteen and twelve USH patients respectively),
whereas in our series 32 USH patients previously un-
screened were sequenced.
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Furthermore, in both previous studies, only point mu-
tations were detected. The mean coverage obtained did
not allow for the analysis of CNVs, that has been ob-
served as an important USH cause. As has been pointed
by Eisenberger et al.[63], high and extensive coverage
allows for systematic analysis for CNVs and reduces the
risk of mutations escaping detection because of their
localization in regions with low coverage.

Conclusions
Our developed targeted NGS method based on HaloPlex
gene target enrichment technology for the genetic diag-
nosis of Usher syndrome provides nearly complete cover-
age of all coding regions of the ten USH genes and four
related and candidate USH genes. Furthermore, the high
coverage obtained in our study allowed us to detect large
rearrangements. It is important to detect both point mu-
tations and large deletions or duplications with a single
technique to minimize the economic cost of these stud-
ies, increasing the detection ratio of the genetic cause of
the disease and improving the genetic diagnosis of Usher
syndrome patients.
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