J. R. Riordan, J. M. Rommens, B. Kerem, N. Alon, R. Rozmahel et al., Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science, Erratum in, vol.245, p.1437, 1989.

T. Casals, M. D. Ramos, J. Giménez, S. Larriba, V. Nunes et al., High heterogeneity for cystic fibrosis in Spanish families: 75 mutations account for 90% of chromosomes, Hum Genet, vol.101, issue.3, pp.365-70, 1997.

L. C. Tsui, The spectrum of cystic fibrosis mutations, Trends Genet, vol.8, issue.11, pp.392-400, 1992.

M. J. Welsh and A. E. Smith, Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis, Cell, vol.73, issue.7, pp.1251-1255, 1993.

E. Quintana-gallego, I. Delgado-pecellín, C. Acuña, and C. , CFTR protein repair therapy in cystic fibrosis, Arch Bronconeumol, vol.50, issue.4, pp.146-50, 2014.

C. Castellani, H. Cuppens, M. Macek, J. J. Cassiman, E. Kerem et al., Consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice, J Cyst Fibros, vol.7, issue.3, pp.179-96, 2008.

E. Dequeker, M. Stuhrmann, M. A. Morris, T. Casals, C. Castellani et al., Best practice guidelines for molecular genetic diagnosis of cystic fibrosis and CFTR-related disorders

, Eur J Hum Genet, vol.17, issue.1, pp.51-65, 2009.

, The molecular genetic epidemiology of cystic fibrosis

D. Abeliovich, I. P. Lavon, I. Lerer, T. Cohen, C. Springer et al., Screening for five mutations detects 97% of cystic fibrosis (CF) chromosomes and predicts a

M. Chillón, T. Dörk, T. Casals, J. Giménez, N. Fonknechten et al., A novel donor splice site in intron 11 of the CFTR gene, created by mutation 1811+1.6kbA-->G, produces a new exon: high frequency in Spanish cystic fibrosis chromosomes and association with severe phenotype, Am J Hum Genet, vol.56, issue.3, pp.623-632, 1995.

L. Costantino, L. Claut, V. Paracchini, D. A. Coviello, C. Colombo et al., A novel donor splice site characterized by CFTR mRNA analysis induces a new pseudo-exon in CF patients, J Cyst Fibros, vol.9, issue.6, pp.411-419, 2010.

V. Faà, F. Incani, A. Meloni, D. Corda, M. Masala et al., Characterization of a disease-associated mutation affecting a putative splicing regulatory element in intron 6b of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, J Biol Chem, vol.284, issue.44, pp.30024-30055, 2009.

C. Bareil, C. Guittard, J. P. Altieri, C. Templin, M. Claustres et al., Comprehensive and rapid genotyping of mutations and haplotypes in congenital bilateral absence of the vas deferens and other cystic fibrosis transmembrane conductance regulator-related disorders, J Mol Diagn, vol.9, issue.5, pp.582-590, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00185153

L. Costantino, D. Rusconi, L. Claut, C. Colombo, F. Novara et al., A wide methodological approach to identify a large duplication in CFTR gene in a CF patient uncharacterised by sequencing analysis, J Cyst Fibros, vol.10, issue.6, pp.412-419, 2011.

M. L. Metzker, Sequencing technologies-the next generation, Nat Rev Genet, vol.11, pp.31-46, 2010.

K. Bodi, A. G. Perera, P. S. Adams, D. Bintzler, K. Dewar et al., Comparison of commercially available target enrichment methods for next-generation sequencing, J Biomol Tech, vol.24, issue.2, pp.73-86, 2013.

C. S. Chilamakuri, S. Lorenz, M. A. Madoui, D. Vodák, J. Sun et al., Performance comparison of four exome capture systems for deep sequencing, BMC Genomics, vol.15, p.449, 2009.

J. Bonini, J. Varilh, C. Raynal, C. Thèze, E. Beyne et al., Smallscale high-throughput sequencing-based identification of new therapeutic tools in cystic fibrosis, Genet Med, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02434833

R. Tewhey, Microdroplet-based PCR enrichment for large-scale targeted sequencing, Nature Biotech, vol.27, pp.1025-1056, 2009.

Y. Guo, J. Long, J. He, C. I. Li, Q. Cai et al., Exome sequencing generates high quality data in non-target regions, BMC Genomics, vol.13, p.194, 2012.

H. Li, B. Handsaker, and A. Wysoker, The sequence alignment/map format and SAMtools, Bioinformatics, vol.25, pp.2078-2087, 2009.

A. Mckenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis et al., The genome analysis toolkit: a Map-Reduce framework for analyzing next-generation DNA sequencing data, Genome Res, vol.20, pp.1297-1303, 2010.

T. J. Treangen and S. L. Salzberg, Repetitive DNA and next-generation sequencing: computational challenges and solutions, Nat Rev Genet, vol.13, issue.1, pp.36-46, 2011.

, Genomes Project Database. Available on

, NCBI Short Genetic Variations Database. Available on

A. N. Abou-tayoun, C. D. Tunkey, T. J. Pugh, T. Ross, M. Shah et al., A comprehensive assay for CFTR mutational analysis using next-generation sequencing, Clin Chem, vol.59, issue.10, pp.1481-1489, 2013.

D. Trujillano, M. D. Ramos, J. González, C. Tornador, F. Sotillo et al., Next generation diagnostics of cystic fibrosis and CFTR-related disorders by targeted multiplex high-coverage resequencing of CFTR, J Med Genet, vol.50, issue.7, pp.455-62, 2013.

X. Guo, R. G. Pace, J. R. Stonebraker, C. W. Commander, A. T. Dang et al., Mucin variable number tandem repeat polymorphisms and severity of cystic fibrosis lung disease: significant association with MUC5AC, PLoS One, vol.6, issue.10, p.25452, 2011.

L. Guillot, J. Beucher, O. Tabary, L. Rouzic, P. Clement et al., Lung disease modifier genes in cystic fibrosis, Int J Biochem Cell Biol, vol.52, pp.83-93, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01467873

F. M. Gisler, T. Von-kanel, R. Kraemer, A. Schaller, and S. Gallati, Identification of SNPs in the cystic fibrosis interactome influencing pulmonary progression in cystic fibrosis, Eur J Hum Genet, vol.21, issue.4, pp.397-403, 2013.

G. R. Cutting, Modifier genes in Mendelian disorders: the example of cystic fibrosis

N. Ann and . Sci, , vol.1214, pp.57-69, 2010.

M. Claustres, C. Guittard, D. Bozon, F. Chevalier, C. Verlingue et al., Spectrum of CFTR mutations in cystic fibrosis and in congenital absence of the vas deferens in France, Hum Mutat, vol.16, issue.2, pp.143-56, 2000.

H. Sharma, R. S. Mavuduru, S. K. Singh, and R. Prasad, Heterogeneous spectrum of mutations in CFTR gene from Indian patients with congenital absence of the vas deferens and their association with cystic fibrosis genetic modifiers, Mol Hum Reprod, vol.20, issue.9, pp.827-862, 2014.

A. Bergougnoux, V. Viart, J. Miro, S. Bommart, N. Molinari et al., Should diffuse bronchiectasis still be considered a CFTR-related disorder?, J Cyst Fibros, issue.15, pp.54-59, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01756804

M. D. Ramos, D. Trujillano, R. Olivar, F. Sotillo, S. Ossowski et al., Extensive sequence analysis of CFTR, SCNN1A, SCNN1B, SCNN1G and SERPINA1 suggests an oligogenic basis for cystic fibrosis-like phenotypes, Clin Genet, vol.86, issue.1, pp.91-96, 2014.

N. Bakouh, T. Bienvenu, A. Thomas, J. Ehrenfeld, H. Liote et al., Sermet-Gaudelus I. Characterization of SLC26A9 in patients with CF-like lung disease, Hum Mutat, vol.34, issue.10, pp.1404-1418, 2013.

W. Li, D. Soave, M. R. Miller, K. Keenan, F. Lin et al., Unraveling the complex genetic model for cystic fibrosis: pleiotropic effects of modifier genes on early cystic fibrosis-related morbidities, Hum Genet, vol.133, issue.2, pp.151-61, 2014.

, Practice guidelines for the Interpretation and Reporting of Unclassified Variants (UVs) in Clinical Molecular Genetics, 2007.

C. Raynal, D. Baux, C. Theze, C. Bareil, M. Taulan et al., A classification model relative to splicing for variants of unknown clinical significance: application to the CFTR gene, Hum Mutat, vol.34, pp.774-874, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02441699

G. R. Abecasis, D. Altshuler, A. Auton, L. D. Brooks, R. M. Durbin et al., A map of human genome variation from population-scale sequencing, Genomes Project Consortium, vol.467, p.544, 2010.

. Nhlbi-go-exome-sequencing and . Project,

M. Claustres, O. Horaitis, M. Vanevski, and R. G. Cotton, Time for a unified system of mutation description and reporting: a review of locus-specific mutation databases, Genome Res, vol.12, pp.680-688, 2002.

R. Cotton, A. D. Auerbach, J. S. Beckmann, O. O. Blumenfeld, A. J. Brookes et al., Recommendations for locus-specific databases and their curation, Hum Mutat, vol.29, issue.1, pp.2-5, 2008.

, Available on: www.genet.sickkids.on.ca/cftr

, US CF Foundation, Clinical and Functional Translation of CFTR (CFTR2)

C. Castellani and . Team, CFTR2: how will it help care?, Paediatr Respir Rev, vol.14, issue.1, 2013.

P. R. Sosnay, K. R. Siklosi, F. Van-goor, K. Kaniecki, H. Yu et al., Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene, Nat Genet, vol.45, pp.1160-1167, 2013.

. Cftr-france,

L. He, A. A. Aleksandrov, A. W. Serohijos, T. Hegedus, L. A. Aleksandrov et al., Multiple membrane-cytoplasmic domain contacts in the cystic fibrosis transmembrane conductance regulator (CFTR) mediate regulation of channel gating, J Biol Chem, vol.283, issue.39, pp.26383-90, 2008.

J. P. Mornon, P. Lehn, and I. Callebaut, Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces, Cell Mol Life Sci, vol.65, issue.16, pp.2594-612, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00288535

I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova et al., A method and server for predicting damaging missense mutations, Nat Methods, vol.7, issue.4, pp.248-257, 2010.

P. C. Ng and S. Henikoff, SIFT: predicting amino acid changes that affect protein function, Nucleic Acids Res, vol.31, issue.13, pp.3812-3816, 2003.

S. V. Tavtigian, A. M. Deffenbaugh, L. Yin, T. Judkins, T. Scholl et al., Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral, J Med Genet, vol.43, issue.4, pp.295-305, 2006.

C. M. Yates, I. Filippis, L. A. Kelley, and M. J. Sternberg, SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features, J Mol Biol, vol.426, issue.14, pp.2692-701, 2014.

G. Align,

A. ,

D. L. Masica, P. R. Sosnay, G. R. Cutting, and R. Karchin, Phenotype-optimized sequence ensembles substantially improve prediction of disease-causing mutation in cystic fibrosis, Hum Mutat, vol.33, issue.8, pp.1267-74, 2012.

S. Hicks, D. A. Wheeler, S. E. Plon, and M. Kimmel, Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed, Hum Mutat, vol.32, pp.661-669, 2011.

L. Guédard-méreuze and S. , Mutations in splicing cis-regulatory elements: role in human genetic diseases

A. B. Spurdle, F. J. Couch, F. B. Hogervorst, P. Radice, and O. M. Sinilnikova, IARC Unclassified Genetic Variants Working Group. Prediction and assessment of splicing alterations: implications for clinical testing, Hum Mutat, vol.29, issue.11, pp.1304-1317, 2008.

M. P. Vreeswijk, J. N. Kraan, H. M. Van-der-klift, G. R. Vink, C. J. Cornelisse et al., Intronic variants in BRCA1 and BRCA2 that affect RNA splicing can be reliably selected by splice-site prediction programs. Hum Mutat, vol.30, pp.107-121, 2009.

N. Sharma, P. R. Sosnay, A. S. Ramalho, C. Douville, A. Franca et al., Experimental assessment of splicing variants using expression minigenes and comparison with in silico predictions, Hum Mutat, vol.35, issue.10, pp.1249-59, 2014.

C. Houdayer, V. Caux-moncoutier, S. Krieger, M. Barrois, F. Bonnet et al.,

H. Sobol, N. Sevenet, B. Bressac-de-paillerets, A. Hardouin, M. Tosi et al., Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants, Hum Mutat, vol.33, issue.8, pp.1228-1266, 2012.

G. Yeo and C. B. Burge, Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals, J Comput Biol, vol.11, issue.2-3, pp.377-94, 2004.

F. O. Desmet, D. Hamroun, M. Lalande, G. Collod-béroud, M. Claustres et al., Human Splicing Finder: an online bioinformatics tool to predict splicing signals, Nucleic Acids Res, vol.37, issue.9, p.67, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00396239

M. B. Shapiro and P. Senapathy, RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression, Nucleic Acids Res, vol.15, issue.17, pp.7155-74, 1987.

M. G. Reese, F. H. Eeckman, D. Kulp, and D. Haussler, Improved splice site detection in Genie, J Comput Biol, vol.4, issue.3, pp.311-334, 1997.

E. J. Mucaki, B. C. Shirley, and P. K. Rogan, Prediction of mutant mRNA splice isoforms by information theory-based exon definition, Hum Mutat, vol.34, issue.4, pp.557-65, 2013.

L. Cartegni, J. Wang, Z. Zhu, M. Q. Zhang, and A. R. Krainer, ESEfinder: a web resource to identify exonic splicing enhancers, Nucleic Acids Res, vol.31, pp.3568-71, 2003.

W. G. Fairbrother, R. F. Yeh, P. A. Sharp, and C. B. Burge, Predictive identification of exonic splicing enhancers in human genes, Science, vol.297, pp.1007-1020, 2002.

. Maxentscan,

. Human-splicing and . Finder,

. Nnsplice,

, Available on: http:// splice.uwo.ca/ (Restricted access: registration required)

. Esefinder,

, Relative enhancer and silencer classification by unanimous enrichment (RESCUE ESE)

A. Aissat, A. De-becdelievre, L. Golmard, C. Vasseur, C. Costa et al., Combined computationalexperimental analyses of CFTR exon strength uncover predictability of exon-skipping level, Hum Mutat, vol.34, pp.873-81, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00797975

T. C. Burn, T. D. Connors, K. W. Klinger, and G. M. Landes, Increased exon-trapping efficiency through modifications to the pSPL3 splicing vector, Gene, vol.161, issue.2, pp.183-190, 1995.

T. A. Cooper, Use of minigene systems to dissect alternative splicing elements. Methods, vol.37, pp.331-371, 2005.

G. Singh and T. A. Cooper, Minigene reporter for identification and analysis of cis elements and trans factors affecting pre-mRNA splicing, Biotechniques, vol.41, issue.2, pp.177-81, 2006.

E. Goina, E. Fernandez-alanis, and F. Pagani, Approaches to study CFTR pre-mRNA splicing defects, Methods Mol Biol, vol.741, pp.155-69, 2011.

A. Scott, H. M. Petrykowska, T. Hefferon, V. Gotea, and L. Elnitski, Functional analysis of synonymous substitutions predicted to affect splicing of the CFTR gene. J Cyst Fibros, vol.11, pp.511-518, 2012.

M. Taulan, C. Guittard, C. Theze, M. Claustres, and M. D. Georges, A novel double 312 deletion underscores the importance of characterizing end points of the CFTR large 313 rearrangements, Eur J Hum Genet, vol.17, issue.12, pp.1683-87, 2009.

M. Taulan, V. Viart, C. Theze, C. Guittard, J. P. Altieri et al., Identification of a novel duplication CFTRdup2 and functional impact of large rearrangements identified in the CFTR gene, Gene, vol.500, issue.2, pp.194-202, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02444117

A. A. Aleksandrov, P. Kota, L. A. Aleksandrov, L. He, T. Jensen et al., Regulatory insertion removal restores maturation, stability and function of DeltaF508 CFTR, J Mol Biol, vol.401, issue.2, pp.194-210, 2010.

A. Bergougnoux, M. Claustres, and A. De-sario, Nasal epithelial cells, a tool to study DNA methylation in airway diseases, Epigenomics, vol.7, issue.1, pp.119-145, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02121284

M. A. Van-meegen, S. W. Terheggen-lagro, K. J. Koymans, C. K. Van-der-ent, and J. M. Beekman, Apical CFTR expression in human nasal epithelium correlates with lung disease in cystic fibrosis, PLoS One, vol.8, issue.3, p.57617, 2013.

R. Hajj, T. Baranek, L. Naour, R. Lesimple, P. Puchelle et al., Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties. Stem Cells, vol.25, pp.139-187, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00141214

S. Hirtz, T. Gonska, H. H. Seydewitz, J. Thomas, P. Greiner et al., CFTR Cl-channel function in native human colon correlates with the genotype and phenotype in cystic fibrosis, Gastroenterology, vol.127, issue.4, pp.1085-95, 2004.

H. R. De-jonge, M. Ballmann, H. Veeze, I. Bronsveld, F. Stanke et al., Ex vivo CF diagnosis by intestinal current measurements (ICM) in small aperture, circulating Ussing chambers, J Cyst Fibros, vol.3, issue.2, pp.159-63, 2004.

J. F. Dekkers, C. L. Wiegerinck, H. R. De-jonge, I. Bronsveld, H. M. Janssens et al., A functional CFTR assay using primary cystic fibrosis intestinal organoids, Nat Med, vol.19, issue.7, pp.939-984, 2013.

P. M. Farrell and R. E. Koscik, Sweat chloride concentrations in infants homozygous or heterozygous for F508 cystic fibrosis, Pediatrics, vol.97, issue.4, pp.524-532, 1996.

P. B. Davis, M. D. Schluchter, and M. W. Konstan, Relation of sweat chloride concentration to severity of lung disease in cystic fibrosis, Pediatr Pulmonol, vol.38, issue.3, pp.204-213, 2004.

M. Wilschanski, A. Dupuis, L. Ellis, K. Jarvi, J. Zielenski et al., Mutations in the cystic fibrosis transmembrane regulator gene and in vivo transepithelial potentials, Am J Respir Crit Care Med, vol.174, issue.7, pp.787-94, 2006.

P. Quinton, L. Molyneux, W. Ip, A. Dupuis, J. Avolio et al., ?-adrenergic sweat secretion as a diagnostic test for cystic fibrosis, Am J Respir Crit Care Med, vol.186, issue.8, pp.732-741, 2012.

L. P. Ho, J. M. Samways, D. J. Porteous, J. R. Dorin, A. Carothers et al., Correlation between nasal potential difference measurements, genotype and clinical condition in patients with cystic fibrosis, Eur Respir J, vol.10, issue.9, pp.2018-2040, 1997.

A. Bagheri-hanson, S. Nedwed, C. Rueckes-nilges, and L. Naehrlich, Intestinal current measurement versus nasal potential difference measurements for diagnosis of cystic fibrosis: a case-control study, BMC Pulm Med, vol.14, p.156, 2014.