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Abstract: Cancer cells generally rely on aerobic glycolysis as a major source of energy. Methylglyoxal
(MG), a dicarbonyl compound that is produced as a side product during glycolysis, is highly
reactive and induces the formation of advanced glycation end-products that are implicated in several
pathologies including cancer. All mammalian cells have an enzymatic defense against MG composed
by glyoxalases GLO1 and GLO2 that converts MG to D-lactate. Colorectal cancer (CRC) is one of
the most frequently occurring cancers with high morbidity and mortality. In this study, we used
immunohistochemistry to examine the level of MG protein adducts, in a series of 102 CRC human
tumors divided into four clinical stages. We consistently detected a high level of MG adducts and
low GLO1 activity in high stage tumors compared to low stage ones suggesting a pro-tumor role
for dicarbonyl stress. Accordingly, GLO1 depletion in CRC cells promoted tumor growth in vivo
that was efficiently reversed using carnosine, a potent MG scavenger. Our study represents the
first demonstration that MG adducts accumulation is a consistent feature of high stage CRC tumors.
Our data point to MG production and detoxification levels as an important molecular link between
exacerbated glycolytic activity and CRC progression.

Keywords: methylglyoxal; colorectal cancer; MG-adducts; glyoxalase 1; 18F-Fluorodeoxyglucose
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1. Introduction

Colorectal cancer (CRC) is the third most common cancer in the world and the fourth most
common cause of cancer-related deaths [1,2]. Genomic instability and genetic alterations in tumor
suppressor genes, including adenomatous polyposis coli (APC) and p53, and oncogenes like K-Ras,
trigger the carcinogenesis process and consequently tumor progression [3–5]. Alterations in cellular
metabolism are common events in cancer and specifically in colorectal cancer [6,7]. Indeed, cancer
cells predominantly produce energy through glycolysis even in presence of oxygen, following the
so-called Warburg effect [8–10]. Mutations in tumor-promoting and suppressor genes such as
Ras, c-Myc and p53 influence cell metabolism by notably inducing the overexpression of glucose
transporters and glycolytic enzymes, thus leading to a phenotype which supports tumor growth and
proliferation [11]. The increased glycolytic rate in tumor cells, make them accumulate high levels of
reactive dicarbonyl compounds. Among those, methylglyoxal (MG), a highly reactive α-oxoaldehyde,
is mainly generated in cells through the spontaneous degradation of triose phosphate intermediates of
glycolysis, dihydroxyacetone phosphate and glyceraldehyde 3-phosphate [12]. Other minor sources
of MG formation are the ketone body metabolism and the catabolism of threonine [13,14]. MG is a
potent glycating agent, more reactive than glucose in glycation processes and able to modify proteins,
lipids and nucleotides, generating dicarbonyl stress and cellular damage [15]. In all mammalian cells,
MG is detoxified by the glyoxalase system, an enzymatic pathway consisting of two enzymes called
glyoxalase 1 (GLO1) and glyoxalase 2 (GLO2) which catalyze the conversion of MG to D-lactate [16,17].
High GLO1 expression and activity levels have been described in many types of cancer including
colon [18], prostate [19,20], lung [21], melanoma [22] and breast [23]. GLO1 amplification and
overexpression have been correlated with cancer progression and drug resistance [24–30].

Increased glycolytic flux in cancer cells resulted in the development of 18F-FDG Positron emission
tomography (PET) imaging of cancers to detect glucose uptake and assess tumor metabolism [31].
18F-FDG, a glucose analog, is transported into the cell via glucose transporters but cannot proceed along
the glycolytic pathway and is trapped within the cell. In CRC patients, imaging with 18F-FDG PET is
considered as a useful tool to establish tumor stage before surgery and to detect tumor recurrence and
metastases [32].

MG modifies arginine, lysine and cysteine residues in proteins and reacts with nucleic acids,
thus generating advanced glycation end products (AGEs) among which hydroimidazolone (MG-H1)
and argpyrimidine adducts are the more abundant [33]. Dicarbonyl stress has been well investigated
in the context of diabetes where high levels of MG are linked with the pathogenesis of diabetic
complications [34–36]. For example, arginine residues of arginine-glycine-aspartic acid (RGD) and
glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) domains of collagen
IV are hot spots for MG glycation leading to decreased binding affinity and anoikis of endothelial
cells [37]. Post-translational modification of voltage-gated sodium channel Nav1.8 by MG increased
electrical excitability and facilitated firing of nociceptive neurons associated with hyperalgesia [38].
In summary, increased MG has been linked to nephropathy, retinopathy and neuropathy associated
with diabetes [39,40].

To date the role of MG in cancer and the effects of dicarbonyl stress in tumorigenesis are still
poorly investigated. One study reported the expression of argpyrimidine adducts in four different
types of human cancers in a limited number of patients (5 cases per tumor type) [41]. We have recently
described argpyrimidine adducts detection in a large series of human breast cancer lesions using an
immunohistochemistry approach [42]. We reported for the first time the differential accumulation of
argpyrimidine moieties among the four main breast cancer subtypes analyzed. We have shown that
triple negative breast cancer tumors accumulated less argpyrimidine adducts than ER/PR positive,
HER2 negative and HER2 positive lesions. In vitro, we demonstrated that triple negative breast cancer
cells increased their level of GLO1 expression and activity in response to MG stress while ER/PR
positive and HER2 positive cells remained stable under the same conditions. Remarkably, aggressive
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triple negative tumors were capable to exert a tight control on dicarbonyl stress by increasing their
GLO1 detoxification capacity.

In cancer cells, the glycation of HSP27 by MG has been reported to inhibit Cyt c-mediated caspase
activation. MG-modified HSP27 prevented cancer cell apoptosis in lung and gastrointestinal tumors
and is associated to chemotherapy resistance [43,44]. During the preparation of this manuscript,
a study provided evidence of the interaction between the components of the AGE-RAGE axis, GLO1
and adiponectin receptors in CRC, where these two latter proteins emerged as novel independent
prognostic biomarkers of adverse significance for patients with early disease stage [45].

The present study aimed to investigate the importance of dicarbonyl stress in the context of
CRC. Specifically we showed that high tumor MG adducts accumulation is associated with low GLO1
expression and activity levels and increased aggressiveness in colorectal cancer patients. In accordance
with these observations, in vivo experiments using GLO1-depleted HCT116 colon cancer cells showed
an increased tumor growth associated with MG adducts accumulation that can be reverted by carnosine,
a potent MG scavenger.

To our knowledge, this is the first study demonstrating a correlation between dicarbonyl stress and
CRC aggressiveness and to designate the blockade of dicarbonyl stress as a potential new therapeutic
strategy for the treatment of CRC patients.

2. Results

2.1. Argpyrimidine Adducts Are Accumulated in CRC Cancer Tissues When Compared to Normal Counterpart

Cancer cells use glycolysis as a major source of energy production. We evaluated the level of
endogenous MG, a side product of glycolysis, in CRC using an antibody specifically directed against
argpyrimidine adducts. The Western blot performed on 12 human CRC tissues and their normal
counterparts is shown in Figure 1A. MG modified proteins are consistently more accumulated in
tumor protein extracts than in the matched non tumor tissue (Figure 1B) indicating that MG-mediated
dicarbonyl stress is more elevated in colon cancer cells than in normal tissue.
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Figure 1. Argpyrimidine adducts are highly accumulated in colorectal cancer tissues when compared 
to matched non-cancer tissue. (A) Argpyrimidine adducts have been evaluated in 12 CRC tissues (T) 
and in their non-tumor counterpart (N) by Western blot analysis. HSC70 and Ponceau Red staining 
are both shown as loading control. The quantification of all visible bands corresponding to argpyrimidine 
adducts has been performed using ImageJ software (NIH Image, http://rsb.info.nih.gov/ij/, 1.42p, 
RRID:SCR_003070). Tumor to normal tissue (T/N) ratio of argpyrimidine adducts is shown for each 
patient. The most intense band of the Ponceau Red staining (boxed in red) has been used for the 
normalization; (B) Quantification of panel (A) data demonstrates a significant overall increase of 
MG-adducts in tumor tissues compared to normal counterpart. Bars represent the mean ± SEM of 12 
patients analyzed. Statistical analysis has been performed using one way Anova, Mann–Whitney test 
and * p < 0.05. 

2.2. High Stage CRC Tumors Accumulate More Argpyrimidine Adducts When Compared with Low Stage Ones 

We next examined the accumulation of argpyrimidine moieties on a collection of 102 colorectal 
cancer samples and six normal colon specimens using immunohistochemistry. Argpyrimidine 
staining was mainly localized in the cytoplasm, however in some tumor samples a nuclear staining 
was clearly detectable. In good accordance with the Western blot analysis conducted on non-tumor 
colon samples, a negative to weak argpyrimidine staining was observed in the normal colon tissue 
samples (Figure 2B). We divided the cohort of patients into four main groups, based on the 
histological features, from stage 1 to stage 4. As shown in Figures 2A,B, argpyrimidine staining was 
strongly detectable in high stage tumors and only weakly in the low stage ones suggesting a 
pro-tumor role of dicarbonyl stress in CRC. We confirmed this observation using an antibody 
directed against MG-H1 adducts (Figure 2C) on a representative number of tumors (3 of each stage). 
In good accordance with argpyrimidine immunostaining, we detected more MG-H1 adducts in the 
high stage lesions. We demonstrated a significant positive correlation (R2 = 0.74, p = 0.0003) between 
argpyrimidine and MG-H1 scores (Figure 2D) thus reinforcing the signature of MG-mediated 
dicarbonyl stress in CRC tumors. 

2.3. Highly Glycolytic CRC Tumors Present with High Dicarbonyl Stress 

Cancer cells are different from normal tissues as they take up glucose at a high rate to sustain 
their boosted aerobic glycolysis. Accumulation of 18F-FDG in tumors is based on enhanced glucose 
metabolism and has been shown to correlate with tumor growth rate. To evaluate the potential 
relationship between 18F-FDG accumulation and dicarbonyl stress in CRC patients, we analyzed 
available PET data from 25 CRC patients which tumors were grouped according to their 
argpyrimidine immunohistochemistry (IHC) scores into low (score from 0 to 2) and high (score from 
3 to 9) dicarbonyl stress. The analysis of the metabolic activity was based on the measure of maximal 
standardized uptake value (SUVmax), mean standardized uptake value (SUVmean) and total lesion 
glycolysis (TLG) that are commonly used to assess malignant tumor metabolism. We observed that 
SUVmax was significantly higher in tumors with high dicarbonyl stress than in low dicarbonyl 
stress lesions indicating a positive association between dicarbonyl stress and high metabolic activity 
in CRC tumors (Figure 3A). SUVmean and TLG values did not correlate significantly with 
argpyrimidine staining (data not shown). As shown in Figure 3B, GLO1 activity and expression 
measured on protein CRC tumor extracts are lower in high stage tumors compared with low stage 

Figure 1. Argpyrimidine adducts are highly accumulated in colorectal cancer tissues when compared
to matched non-cancer tissue. (A) Argpyrimidine adducts have been evaluated in 12 CRC tissues (T)
and in their non-tumor counterpart (N) by Western blot analysis. HSC70 and Ponceau Red staining are
both shown as loading control. The quantification of all visible bands corresponding to argpyrimidine
adducts has been performed using ImageJ software (NIH Image, http://rsb.info.nih.gov/ij/, 1.42p,
RRID:SCR_003070). Tumor to normal tissue (T/N) ratio of argpyrimidine adducts is shown for each
patient. The most intense band of the Ponceau Red staining (boxed in red) has been used for the
normalization; (B) Quantification of panel (A) data demonstrates a significant overall increase of
MG-adducts in tumor tissues compared to normal counterpart. Bars represent the mean ± SEM
of 12 patients analyzed. Statistical analysis has been performed using one way Anova, Mann–Whitney
test and * p < 0.05.

2.2. High Stage CRC Tumors Accumulate More Argpyrimidine Adducts When Compared with Low Stage Ones

We next examined the accumulation of argpyrimidine moieties on a collection of 102 colorectal
cancer samples and six normal colon specimens using immunohistochemistry. Argpyrimidine staining
was mainly localized in the cytoplasm, however in some tumor samples a nuclear staining was clearly
detectable. In good accordance with the Western blot analysis conducted on non-tumor colon samples,
a negative to weak argpyrimidine staining was observed in the normal colon tissue samples (Figure 2B).
We divided the cohort of patients into four main groups, based on the histological features, from
stage 1 to stage 4. As shown in Figure 2A,B, argpyrimidine staining was strongly detectable in high
stage tumors and only weakly in the low stage ones suggesting a pro-tumor role of dicarbonyl stress
in CRC. We confirmed this observation using an antibody directed against MG-H1 adducts (Figure 2C)
on a representative number of tumors (3 of each stage). In good accordance with argpyrimidine
immunostaining, we detected more MG-H1 adducts in the high stage lesions. We demonstrated
a significant positive correlation (R2 = 0.74, p = 0.0003) between argpyrimidine and MG-H1 scores
(Figure 2D) thus reinforcing the signature of MG-mediated dicarbonyl stress in CRC tumors.

2.3. Highly Glycolytic CRC Tumors Present with High Dicarbonyl Stress

Cancer cells are different from normal tissues as they take up glucose at a high rate to sustain
their boosted aerobic glycolysis. Accumulation of 18F-FDG in tumors is based on enhanced glucose
metabolism and has been shown to correlate with tumor growth rate. To evaluate the potential
relationship between 18F-FDG accumulation and dicarbonyl stress in CRC patients, we analyzed
available PET data from 25 CRC patients which tumors were grouped according to their argpyrimidine
immunohistochemistry (IHC) scores into low (score from 0 to 2) and high (score from 3 to 9) dicarbonyl
stress. The analysis of the metabolic activity was based on the measure of maximal standardized
uptake value (SUVmax), mean standardized uptake value (SUVmean) and total lesion glycolysis
(TLG) that are commonly used to assess malignant tumor metabolism. We observed that SUVmax
was significantly higher in tumors with high dicarbonyl stress than in low dicarbonyl stress lesions
indicating a positive association between dicarbonyl stress and high metabolic activity in CRC tumors
(Figure 3A). SUVmean and TLG values did not correlate significantly with argpyrimidine staining
(data not shown). As shown in Figure 3B, GLO1 activity and expression measured on protein CRC
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tumor extracts are lower in high stage tumors compared with low stage ones. Moreover, GLO1 activity
and argpyrimidine staining evaluated on the same CRC tumor samples were inversely correlated
(Figure 3C). These results are in good accordance with the significant accumulation of argpyrimidine
adducts observed in invasive tumors when compared with less aggressive tumors. Finally, we
evaluated the possibility of a correlation between argpyrimidine immunostaining and lymph nodes
involvement in 92 CRC patients but we did not observe any significant relationship between the two
parameters suggesting that dicarbonyl stress is not associated with lymph nodes invasion in CRC
(data not shown).
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Figure 2. Consistent increase of argpyrimidine adducts in high stage tumors compared with low 
stage ones suggests a pro-tumor role for dicarbonyl stress. (A) Argpyrimidine adducts were 
examined in a series of 102 primary colorectal cancer patients samples grouped into four clinical stages 
(T1, T2, T3 and T4) and six normal colorectal tissues. One representative picture is shown for each stage 
analyzed (100× magnification); (B) Immunohistochemical quantification shows argpyrimidine staining 
evaluation divided into 4 groups (negative, weak, moderate and strong staining) based on the score 
values. Each dot represents one case and bars represent median. Statistical analysis has been performed 
using one-way ANOVA followed by Dunn’s Multiple Comparison Test and * p < 0.05, ** p < 0.01, *** p < 
0.001. In the right panel, the percentage of negative, weak, moderate and strong argpyrimidine staining 
is shown for normal tissue and stage 1 to stage 4 tumors; (C) An IHC using an antibody against MG-H1 
adducts has been performed on 12 CRC samples. IHC staining is shown for representative negative, 
moderate and strong staining (100× magnification). In accordance with argpyrimidine immunostaining, 
more MG-H1 adducts have been detected in the highest stage lesions; (D) Argpyrimidine and 
MG-H1 IHC detection showed a significant positive correlation (R2 = 0.74, p = 0.0003, Spearman rank 
correlation test). 
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ones suggests a pro-tumor role for dicarbonyl stress. (A) Argpyrimidine adducts were examined
in a series of 102 primary colorectal cancer patients samples grouped into four clinical stages
(T1, T2, T3 and T4) and six normal colorectal tissues. One representative picture is shown for each
stage analyzed (100×magnification); (B) Immunohistochemical quantification shows argpyrimidine
staining evaluation divided into 4 groups (negative, weak, moderate and strong staining) based on
the score values. Each dot represents one case and bars represent median. Statistical analysis has
been performed using one-way ANOVA followed by Dunn’s Multiple Comparison Test and * p < 0.05,
** p < 0.01, *** p < 0.001. In the right panel, the percentage of negative, weak, moderate and strong
argpyrimidine staining is shown for normal tissue and stage 1 to stage 4 tumors; (C) An IHC using
an antibody against MG-H1 adducts has been performed on 12 CRC samples. IHC staining is shown
for representative negative, moderate and strong staining (100×magnification). In accordance with
argpyrimidine immunostaining, more MG-H1 adducts have been detected in the highest stage lesions;
(D) Argpyrimidine and MG-H1 IHC detection showed a significant positive correlation (R2 = 0.74,
p = 0.0003, Spearman rank correlation test).
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Figure 3. 18F-FDG PET activity and argpyrimidine accumulation in CRC patients. (A) SUVmax is 
significantly higher in tumors with high dicarbonyl stress. Each dot represents one case and bars 
represent mean ± SEM. (p = 0.0105, Mann–Whitney test); (B) GLO1 activity and expression were 
evaluated in stage 1 (n = 3), stage 2 (n = 5), stage 3 (n = 4) and stage 4 (n = 5) colorectal cancer patients. 
β-Actin is used as loading control. Right panel, GLO1 activity is significantly higher in low stage 
tumors compared with high stage ones. Average of three technical replicates ± SEM is shown 
(Neuwman–Keul Tests, * p < 0.05); (C) The correlation analysis performed between argpyrimidine 
immunostaining score and GLO1 activity evaluated on 17 CRC patients demonstrated a significant 
inverse correlation between these two parameters (Spearman rank correlation test). 
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accumulation of MG-modified proteins, in particular HCT116 cells showed more adducts compared 
with the two other cell lines (Figure 4A,B). The three cell lines expressed GLO1 at protein level 
however the activity was significantly higher in HCT116 cells when compared with HT29 and 
LS174T cells (Figure 4C,D). 
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set-up a silencing strategy in HCT116 cells. We used two shRNAs specifically directed against GLO1 
as a model to stably induce high endogenous MG stress in HCT116 cells. The efficiency of GLO1 
silencing has been validated at the protein level and an increased MG-adducts level has been 
evidenced in stably depleted clones (Figure 5A,B). Next, we implanted stably GLO1 depleted 
HCT116 cells on the chick embryo chorioallantoic membrane (CAM) and evaluated tumor 
development seven days post-implantation. As shown in Figure 5C, GLO1 depleted cells showed an 
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GLO1 depleted tumors validated GLO1 expression down regulation (Figure 5D) and showed higher 
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Figure 3. 18F-FDG PET activity and argpyrimidine accumulation in CRC patients. (A) SUVmax is
significantly higher in tumors with high dicarbonyl stress. Each dot represents one case and bars
represent mean ± SEM. (p = 0.0105, Mann–Whitney test); (B) GLO1 activity and expression were
evaluated in stage 1 (n = 3), stage 2 (n = 5), stage 3 (n = 4) and stage 4 (n = 5) colorectal cancer
patients. β-Actin is used as loading control. Right panel, GLO1 activity is significantly higher in low
stage tumors compared with high stage ones. Average of three technical replicates ± SEM is shown
(Neuwman–Keul Tests, * p < 0.05); (C) The correlation analysis performed between argpyrimidine
immunostaining score and GLO1 activity evaluated on 17 CRC patients demonstrated a significant
inverse correlation between these two parameters (Spearman rank correlation test).

2.4. Evaluation of MG-Adducts, GLO1 Expression and Activity in Human CRC Cell Lines

Next, we investigated argpyrimidine and MG-H1 accumulation in HCT116, HT29 and LS174T
human CRC cell lines using Western blot analysis. In all the cell lines evaluated, we detected a basal
accumulation of MG-modified proteins, in particular HCT116 cells showed more adducts compared
with the two other cell lines (Figure 4A,B). The three cell lines expressed GLO1 at protein level however
the activity was significantly higher in HCT116 cells when compared with HT29 and LS174T cells
(Figure 4C,D).

2.5. GLO1 Depletion Favors Colorectal Cancer Cell Growth In Vivo: An Effect That Is Reversed by Carnosine

To evaluate whether the loss of GLO1 in CRC cells had an impact on tumor growth in vivo,
we set-up a silencing strategy in HCT116 cells. We used two shRNAs specifically directed against
GLO1 as a model to stably induce high endogenous MG stress in HCT116 cells. The efficiency of
GLO1 silencing has been validated at the protein level and an increased MG-adducts level has been
evidenced in stably depleted clones (Figure 5A,B). Next, we implanted stably GLO1 depleted HCT116
cells on the chick embryo chorioallantoic membrane (CAM) and evaluated tumor development seven
days post-implantation. As shown in Figure 5C, GLO1 depleted cells showed an increase in tumor
growth compared to control cells. Histologic analysis performed on sections of GLO1 depleted
tumors validated GLO1 expression down regulation (Figure 5D) and showed higher accumulation of
MG-adducts when compared with control tumors (Figure 5D).
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Figure 5. GLO1 depletion favors colorectal cancer cell growth in vivo. (A) The efficiency of GLO1
knockdown in HCT116 cells was validated by Western blot analysis; (B) Increased argpyrimidine
level has been observed in GLO1 depleted cells compared with shNT control cells using Western
blot analysis. β-Actin is shown as loading control; (C) Effect of GLO1 silencing on HCT116-derived
tumor growth in chorioallantoic membrane (CAM) tumor model. The weight (left) and volume (right)
of CAM experimental tumors collected at Day 7 is shown (at least 6 eggs/group). Data are shown
as mean values ± SEM. Representative macroscopic tumor appearance is shown for each condition
according to CAM experiment details are described in Material and Methods; (D) Representative GLO1
expression and argpyrimidine levels in CAM experimental tumors (400× magnification). IHC scoring
for each is shown in panels on the right. Each dot represents one case and bars represent median.
Statistical analysis has been performed using Bonferroni Multiple Comparison Test, * p < 0.05, ** p < 0.01,
*** p < 0.001.

Finally, to assess the direct involvement of MG stress on the growth of GLO1 depleted HCT116
cells, we treated engrafted cancer cells with carnosine (10 mM), a MG scavenger, from the day after
implantation on CAM until the end of the experiment as described under Material and Methods
section. We observed that tumor growth and volume were almost twofold decreased in shGLO1
tumors treated with carnosine compared with the non-treated ones. Interestingly, carnosine treatment
did not affect the growth of HCT116 control tumors (Figure 6A,B). IHC analysis performed on collected
CAM tumors revealed the effective reduction of argpyrimidine adducts in shGLO1 tumors treated
with carnosine (Figure 6C). A significant decrease of the proportion of Ki67 positive cells in shGLO1
tumors under carnosine treatment sustained the reduction of tumor growth (Figure 6D). Our data
indicate that the pro-tumor effect of GLO1 silencing in CRC cells is linked with MG stress and can be
blocked using a MG scavenger.
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Figure 6. Carnosine treatment of GLO1-depleted HCT116 cells inhibits tumor growth in vivo. HCT116
shGLO1#1 and #2 and shNT control cells were implanted on chorioallantoic (CAM) tumor model.
Cancer cells were treated with carnosine (10 mM) from the day after implantation on CAM until
the end of the experiment. Tumor growth has been evaluated seven days post-implantation (at least
10 eggs/group) as described under Material and Methods section. (A) Representative macroscopic
tumor appearance in each condition is shown; (B) Reduction of tumor volume (left panel) and
weight (right panel) after carnosine treatment of GLO1 depleted HCT116-derived tumors, data are
shown as mean values ± SEM. Statistical analysis has been performed using Bonferroni Multiple
Comparison Test; (C) Significant decrease of argpyrimidine level in experimental CAM tumors upon
carnosine treatment. Each dot represents one case and bars represent median. Statistical analysis has
been performed using Dunn’s Multiple Comparison Test and Mann–Whitney test; (D) Percentage
of Ki67 positive cells in experimental CAM tumors upon carnosine treatment. Statistical analysis
has been performed using Chi-square Contingency Test. * p < 0.05, ** p < 0.01, *** p < 0.001, and
ns = not significant.
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3. Discussion

One well-established metabolic abnormality in cancer cells is the Warburg effect, which
demonstrates an increased glycolysis even in the presence of oxygen. Consequently, tumor cells
inevitably accumulate MG, which will affect both their proteome and genome. Through its specific
interaction with proteins, MG notably induces the formation of argpyrimidine and MG-H1 adducts.
MG stress and the glyoxalase detoxification system have been well studied in relation with diabetes and
its complications [46]. CRC is one of the most common cancers worldwide, with the highest incidence
rates in Western countries. Hyperglycemia associated with diabetes is a well-established risk factor
of colon cancer and altered glucose metabolism has been recently associated with the development
of colorectal adenomas, the pathological precursors of CRC [47]. In this study, we showed that CRC
tumors accumulate significantly more MG adducts than normal colon, which is consistent with the
predicted higher glucose metabolic rates in cancer than in normal cells. Interestingly, we observed
that primary tumor staging positively correlated with MG adducts detection indicating for the first
time that CRC tumor aggressiveness, evaluated here in term of how deeply the primary tumor has
grown into the bowel lining, is associated with the degree of dicarbonyl stress. We found a consistent
decrease of GLO1 expression and enzymatic activity in high stage when compared with low stage
tumors which could explain, at least in part, their increased level of MG adducts.

GLO1 gene has been reported to be overexpressed and/or amplified in several types of cancer
and has been thus considered as a novel oncogene which suppression using specific inhibitors or gene
silencing strategies could abolish tumor growth via toxic MG accumulation [24–28,48]. However, others
and we recently established that GLO1 must also be considered as a tumor suppressor. In their study
aimed at functionally identifying tumor suppressor genes in liver cancer, Zender and collaborators
identified GLO1 gene which knockdown using specific shRNAs increased tumor growth in a mouse
model [49]. In our hands, the use of a stably depleted GLO1 xenograft tumor model in vivo allowed
the demonstration of the pro-tumorigenic and pro-metastatic role of endogenous MG accumulation in
breast cancer cells [50]. In line with our previous study, we show here that GLO1 depletion in colon
cancer cells induces an increased level of argpyrimidine adducts and enhanced tumor growth in vivo.
The reversion of dicarbonyl stress onset using carnosine, a well described MG scavenger [51], impeded
tumor development indicating that pro-tumorigenic effects associated with GLO1 inhibition were
dependent upon MG glycating activity.

In summary, the ambivalent role demonstrated for GLO1 as a tumor promoter or suppressor is
likely to be cancer type-dependent and it is expectable that cell lines with dissimilar backgrounds
and MG detoxification rates will respond differently to MG stress. For example, several studies have
reported that cultured cancer cells presenting with GLO1 gene amplification are more sensitive to
GLO1 inhibition, in terms of growth inhibition and/or apoptosis induction, than cancer cells with
normal GLO1 gene copy number (21,24). These data indicate that only a subset of cancer cells is highly
dependent on GLO1 activity to grow and survive under high MG stress condition. In cancer cells,
a better characterization of the main factors that control the level of dependence on GLO1 is needed
before GLO1 inhibitors could be envisaged as promising anti-cancer drugs.

In the clinic, the avidity of CRC tumor cells for glucose is used for monitoring treatment response
and the detection of recurrence using 18F-FDG PET imaging [32]. High SUVmax is associated with bad
outcome and is considered as a marker of poor prognosis in CRC [52]. On a subset of CRC tumors,
we have been able to demonstrate a significant positive association between SUVmax values and
dicarbonyl stress as assessed by argpyrimidine level in tumors. Our small-scale analysis demonstrates
the practical utility of argpyrimidine detection using IHC in CRC tumors as a read out of their elevated
glycolytic metabolism. Studies on larger series of samples are needed to conclusively document the
relationship between argpyrimidine detection and tumor metabolic status in CRC patients.
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Considering its cytotoxic effect, MG has been first proposed as an anti-cancer agent in human
leukemia [53]. However, several studies have demonstrated a pro-cancer role for MG, notably
through its glycation of heat shock protein HSP27, which supports the escape of cancer cells from
apoptosis [43,44,54]. We have recently reported in breast cancer that HSP90 is also a target of MG and
mediates its pro-cancer role [50]. We have shown that post-translational glycation of HSP90 affects
its activity and decreases the level of large tumor suppressor 1 (LATS1), a key kinase regulating the
Hippo pathway through Yes-associated protein (YAP). Under MG stress, YAP is sequestrated in the
nucleus where it positively regulates target genes known to promote cell growth and proliferation.
Using cancer cells stably depleted for GLO1 as a model of high endogenous MG, we demonstrated
in vivo the pro-tumorigenic and pro-metastatic roles of dicarbonyl stress in breast cancer.

This study adds new evidence to sustain a major role of non-enzymatic glycation in the
regulation of tumor growth. The administration of a MG scavenger in combination with conventional
chemotherapy could represent a good strategy of treatment for patients presenting with aggressive
CRC. Previous studies reported the anti-tumorigenic effect of carnosine in glioblastoma, gastric cancer
and CRC [55–57]. These reports essentially focused on carnosine effect on cell proliferation. Ongoing
studies in our laboratory will help identify specific protein targets of MG in cancer cells and explore
further the molecular mechanisms of action of carnosine as a blocker of MG-mediated dicarbonyl
stress in highly glycolytic tumors.

It is well established that type 2 diabetes and cancer have several common risk factors such as
obesity, sex, aging and diet. In addition, in diabetic patients, insulin resistance and hyperinsulinemia
are two independent risk factors for cancer development [58,59]. Diabetic patients present higher
levels of circulating MG leading to formation of MG adducts and consequently to several diabetes
clinical complications like vascular damage, nephropathy and inflammation [60]. Several in vitro and
in vivo studies reported that metformin, the drug of choice for type 2 diabetes management, inhibits
cancer cell growth [61]. Zhang and collaborators have concluded from their meta-analysis of five
observational studies that metformin appeared to be associated with reduced risk of CRC incidence
in diabetic patients in comparison with other hypoglycemic drugs [62]. In the light of our data, it is
tempting to speculate that anti-carcinogenic effects of metformin could also be attributed, at least in
part, to its potent MG scavenging activity [61]. Future studies should evaluate the extent to which
metformin interferes with dicarbonyl stress and glyoxalase system in highly glycolytic cancer cells.
Most importantly, our study reinforces the critical link between dicarbonyl stress and cancer and
designates energetic metabolism switch in CRC as a target for future innovative therapeutic strategies.

4. Materials and Methods

4.1. Clinical Tumor Samples

The immunohistochemical analysis has been performed on a total number of 102 CRC tumors
and 6 normal colon biopsies obtained from patients in whom no abnormalities of colonic mucosa
were detected during colonoscopy. Sex, age and pTNM status were retrieved from medical reports
and are summarized in Table 1. In the current study, the use of human material has been approved
by the ethical committee of the University of Liège (ethics committee approval number 2013/302).
18FDG-PET scans data (SUVmax, SUVmean and TLG values) were available for 11 CRC patients
from the University Hospital of Liège and from 14 supplementary patients from Erasme University
Hospital, Brussels, Belgium (ethics committee approval number P2009/264). Western blot analysis
was conducted on total protein extracts from an extra series of 12 colon adenocarcinoma (stage 2, 3
or 4 from University Hospital of Liège) and their matched non tumor counterpart. All human tissue
samples represent residual histological material that was obtained from the indicated hospitals in good
accordance with the institutional ethical guidelines.
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Table 1. Characteristics of CRC patients cohort (n = 102).

Characteristics n %

Age, years
Median 72
Range 25–92

Histology
pTNM

T1 22 21.6
T2 24 23.5
T3 30 29.4
T4 26 25.5

N0 56 54.9
N1 25 24.5
N2 11 10.8
Nx 10 9.8

M0 0 0
M1 6 5.9
Mx 96 94.1

pTNM indicates the post-chirurgical histopathological classification; Nx and Mx: lymph nodes and distant
metastases cannot be evaluated, respectively.

4.2. Cell Lines

Colorectal cancer cell lines HCT116 and LS174T were obtained from the American Type Culture
Collection (ATCC). HT29 cells were a kind gift from Dr. P. Close (University of Liège, Belgium). All cell
lines were cultured in DMEM (standard glucose concentration of 4.5 g/L, Lonza, Basel, Switzerland)
containing 10% fetal bovine serum and 2 mM L-glutamine.

4.3. shRNA Transfection

HCT116 cells were stably transfected with shGLO1#1 and shGLO1#2 and shNT. GLO1-shRNAs
plasmids and non-target shRNA plasmid were provided from Sigma-Aldrich, TRCN0000118627 (#1),
TRCN0000118628 (#2), SHC005 (shNT). HCT116 transfected cells were selected with puromycin
(0.5 µg/mL, Sigma-Aldrich, Saint-Louis, MO, USA).

4.4. Western Blot Analysis and Antibodies

Cell and tissue samples were extracted in RIPA buffer (150 mM NaCl, 0.5% Na-deoxycholate,
1% Triton X-100, 0.1%SDS, 50 mM Tris-HCl 1 M pH 7.5) containing protease and phosphatase inhibitors
(Roche, Mannheim, Germany). After incubation under rotation at 4 ◦C for 40 min, lysates were then
centrifugated at 14,000× g for 15 min at 4 ◦C to remove insoluble debris. Protein concentrations
were determined using the BCA assay (Pierce, Rockford, IL, USA). Twenty µg of proteins were
then separated by Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred to a PVDF membrane. After, the membranes were blocked in TBS-Tween 0.1% containing
5% nonfat dried milk (Bio-Rad, Hercules, CA, USA) and incubated with the selected primary antibodies
overnight at 4 ◦C. The membranes were probed with anti-argpyrimidine (mAb6B) monoclonal antibody
(1:6000). The specificity of the argpyrimidine antibody has been previously demonstrated using
competitive ELISA and it has been shown to not react with other MG-arginine adducts such as
5-hydro-5-methylimidazolone and tetrahydropyrimidine [63]. Other sources of antibodies were as
follows: anti-GLO1 monoclonal antibody (1:1000 dilution, cat#02-14, BioMac, Leipzig, Germany);
anti-beta-actin (1:5000 dilution, cat# A5441, Sigma, Saint-Louis, MO, USA); anti-HSC70 (1:5000,
cat# sc7298, Santa-Cruz, Dallas, TX, USA). Horseradish peroxidase-conjugated secondary antibodies
(anti-mouse, 1:6000 dilution (Dako, Carpinteria, CA, USA) or anti-rabbit 1:3000 (Invitrogen, Carlsbad,
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CA, USA) were used to visualize bound primary antibodies, with the Enhanced Chemiluminescence
(ECL) Western blotting substrate (Pierce).

4.5. Immunohistochemistry

Formalin-fixed paraffin-embedded sections of patients material and experimental CAM tumors
were deparaffinized in xylene and rehydrated. To block endogenous peroxidase activity, the slides
were treated with 3% hydrogen peroxide in methanol for 30 min and washed in PBS for 20 min.
Antigen retrieval was performed in 10 mM sodium citrate, pH 6 for 40 min at 95 ◦C. Sections
were then incubated with 1.5% normal horse serum (cat#S-2000, Vector Laboratories, Burlingame,
CA, USA) for 30 min to block the nonspecific serum-binding sites. Then, sections were incubated
overnight at 4 ◦C with anti-argpyrimidine (1:1000 dilution), anti-MG-H1 (1:50 dilution, 3D11 clone Cell
Biolabs, Inc., San Diego, CA, USA), anti-human GLO1 (1:100 dilution) and anti-Ki67 (1:100 dilution)
antibodies. Antibody binding was detected using an anti-mouse biotinylated secondary (cat#BA-2000,
Vector Laboratories) for 30 min followed by incubation with the avidin-biotin-peroxidase complex
(Vectastain ABC Kit, Vector Laboratories). Immunoreactivity was revealed using 3,3′-diaminobenzidine
tetrahydrochloride (DAB). The slides were counterstained with hematoxylin, dehydrated and mounted.

4.6. Evaluation of Immunohistochemical Staining

The immunohistochemically stained sections were analyzed and scored by an anatomopathologist
(N.B). IHC evaluation has been performed according to the intensity of the staining (0, 1+, 2+, 3+)
and the percentage of positive cancer cells (0%–25% = 0, 25%–50% = 1, 50%–75% = 2, 75%–100% = 3).
As we described previously [64], the results obtained with the 2 scales were multiplied together
yielding a single scale with steps of 0, 1+, 2+, 3+, 4+, 6+ and 9+ where 0, 1+ and 2+ scores were
considered to be negative or weak staining and 3+, 4+, 6+ and 9+ scores were considered to be medium
or strong staining.

4.7. GLO1 Activity Assay

The basal activity of GLO1 was measured in colorectal cancer cell lines and in 17 frozen CRC tissue
samples after protein extraction in RIPA buffer by measuring the S-D-lactoylglutathione formation
from the hemimercaptal obtained by preincubation of an equimolar (1 mM) mixture of MG (cat#M0252,
Sigma) and GSH (cat#G4251, Sigma) in 50 mM sodium phosphate buffer, pH 6.8, at 25 ◦C for 15 min.
Then, the reaction mixture was added to 20 µg of tumoral or cell line extracts in a final volume of 210 µL.
S-D-lactoylglutathione formation was followed spectrophotometrically by the increase in absorbance
at 240 nm at 25 ◦C. GLO1 activity is defined as arbitrary units (A.U.) of enzyme per mg of proteins.

4.8. Chicken Chorioallantoic Membrane In Vivo Tumor Assay

On Embryonic Day 11, 100 µL of a suspension of 2 × 106 of HCT116 shNT, shGLO1#1 and
shGLO1#2 cells in culture medium mixed (1:1) with Matrigel (BD Biosciences) were deposited in
the center of a plastic ring on the chorioallantoic membrane (CAM). Carnosine (cat#C9625, Sigma)
treatment at a concentration of 10 mM in saline solution was performed daily from the day after cell
implantation until the end of the experiment. Control eggs received saline solution following the
same schedule, at least 6 eggs were used per condition. Tumors were harvested on Embryonic Day 18
and were fixed in 4% paraformaldehyde solution (30 min) for histology analysis. Tumor volume was
measured using the formula V = 4/3 π × H/2 × L/2 ×W/2 where H, L, and W denote height, length,
and width of the tumor, respectively.
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4.9. Statistical Analysis

The data were statistically analyzed using either two-tailed Student t-test or with one-way ANOVA
followed by specific multiple comparison tests as indicated in figure legends. p-values less than 0.05
were considered statistically significant.
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