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On the first moments

Introduction

Uncertainty can be viewed as an aspect of randomness or ambiguity in real life phenomena. Thereby, one needs a measure on fuzzy events (fuzzy measure) to analyze questions and problems dealing with such uncertainty. After Zadeh's work [START_REF] Zadeh | Fuzzy set as a basis of theory of possibility[END_REF] introducing possibility and necessity measures, a vast literature appeared on fuzzy theory and fuzzy logic based on the aforementioned measures. Twenty years later, Liu [START_REF] Liu | Expected value of fuzzy variable and fuzzy expected value models[END_REF] introduced credibility measure as the arithmetic mean of the two first measures. This measure has been used to address other questions dealing with uncertainty (see Liu [START_REF] Liu | Expected value operator of random fuzzy variable and random fuzzy expected models[END_REF], Li et al. [START_REF] Li | Mean-variance-skewness model for portfolio selection with fuzzy returns[END_REF], Huang et al. [START_REF] Huang | Mean-semivariance models for fuzzy portfolio selection[END_REF], Sadefo et al. [START_REF] Sadefo | Moments and semimoments for fuzzy portfolio selection[END_REF] and Tassak et al. [START_REF] Tassak | Characterization of order dominances on fuzzy variables for portfolio selection with fuzzy returns[END_REF]). More recently, Yang and Iwamura [START_REF] Yang | Fuzzy Chance-Constrained Programming with Linear Combination of Possibility Measure and Necessity measure[END_REF] introduced a new measure, denoted m λ , as a convex linear combination of possibility and necessity measures (the weight λ of the possibility measure in the combination is a real parameter in the interval [0; 1]) and they determined some of its axioms. This new measure generalized the three previous ones and has been used in fuzzy chance-constrained programming (Yang and Kakuzo [START_REF] Yang | Fuzzy Chance-Constrained Programming with Linear Combination of Possibility Measure and Necessity measure[END_REF], Dai et al. [START_REF] Dai | Optimal strategies for carbon capture, utilization and storage based on an inexact m λ -measure fuzzy chance-constrained programming[END_REF]) as a more generalized approach compared with credibility constrained programming ones to find optimal strategies for carbon capture. We used it in our recent conference paper to determine Expected value and Variance of a fuzzy variable (Dzuche et al. [START_REF] Dzuché | Expected value and variance of a fuzzy variable based on a new fuzzy measure[END_REF]). This paper focuses on the recent measure for two major findings that might be useful. First, the weight λ can be considered as the the decision maker confidence on the fuzzy event degree of realization such that degree 1 means a complete confidence and degree 0 means no confidence. The m λ -measure can become either possibility measure,or necessity measure or credibility measure respectively for the decision marker who is self confident, unconfident and neutral (the weight is equal to 1 2 ). It is a comprise of the two first measures and this finding is similar to the idea of Hurwicz decision criteria in Microeconomics which is a compromise of maximax and maximin criteria. On the other hand, due to the fact that the new measure generalizes the three previous ones in technical point of view, many theoretical results already solved with one of the three first measures can be generalized with the new measure. In addition, some specific results will be outlined.

The modest contribution of this paper is to study, by means of m λ , fuzzy variables characteristics and to implement obtained results for portfolio optimization models with fuzzy returns. More specifically, in the continuation of our recent work (Dzuche et al. [START_REF] Dzuché | Expected value and variance of a fuzzy variable based on a new fuzzy measure[END_REF]), we propose some new axioms of m λ , and we introduce fuzzy variables characteristics w.r.t. to this measure. We determine four first moments (expected value, variance, skewness and kurtosis) and two first semi-moments (semi-variance and semi-kurtosis)of trapezoidal and triangular fuzzy variables. We establish some properties of these characteristics and the obtained theoretical results are applied in portfolio selection with fuzzy returns.

The paper is organized as follows. Section 2 recalls useful notions on fuzzy sets, on four previous usual fuzzy measures. We display some new axioms of the more recent one. In Section 3, we introduce and study fuzzy variables characteristics. More precisely, we focus on the determination of four first moments and two first semi-moments of trapezoidal and triangular fuzzy variables and we establish some properties of these characteristics. Section 4 displays an application of these characteristics in optimal portfolios selection where assets returns proposed by Huang [START_REF] Huang | Mean-semivariance models for fuzzy portfolio selection[END_REF] are described by triangular fuzzy variables. We also apply these characteristics to find optimal portfolios by using Tokyo stock exchange data provided by Hasuike et al. [START_REF] Hasuike | Portfolio selection problems with random fuzzy variable return[END_REF]. Appendix contains proofs of some results.

Preliminaries

Throughout this paper, X is a nonempty set, namely, the universal set. A fuzzy subset A of X is defined by its membership function:

µ A : X → [0, 1] such that, to each x ∈ X, is associated µ A (x) representing the membership grade of x to A. A is denoted by {(x, µ A (x)), x ∈ X}. If ∀x ∈ A, µ A (x) ∈ {0, 1}, then A becomes a crisp subset of X.
Let ξ be a mapping from X to R described by its membership function µ interpreted as: for any x ∈ R, µ(x) represents the degree that ξ takes value x. ξ is said to be a fuzzy variable if ξ is measurable. A fuzzy variable ξ is normal if ∃x 0 ∈ R, µ(x 0 ) = 1. For ξ and η be two fuzzy variables and α a real number, their sum ξ + η is a fuzzy variable defined by: ∀x ∈ R, (ξ + η)(x) = ξ(x) + η(x) and αξ is a fuzzy variable defined by: ∀x ∈ R, (αξ)(x) = αξ(x). A fuzzy number ξ is a fuzzy variable that satisfies: 

∃a, b, c, d ∈ R with a ≤ b ≤ c ≤ d such that (i) µ is upper semi-continuous, (ii) ∀r ̸ ∈ [a, d], µ(r) = 0, (iii) µ is increasing on [a
: ∀x ∈ R, µ(x) =        x-a b-a if a ≤ x ≤ b 1, if b ≤ x ≤ c x-d c-d if c ≤ x ≤ d 0 elsewhere . If b = c, then ξ = (a, b, d) is a triangular fuzzy number.
Figure 1 displays a trapezoidal fuzzy variable and a triangular one. In the following, we recall classical fuzzy measures proposed in the literature to deal with imprecision. Let B ⊂ X and ξ : X → R be a fuzzy variable whose membership function µ, that means, each element x of X is associated to a real number ξ(x) by means of ξ with the membership grade µ(ξ(x)). We have the following classical and well-known measures: the Possibility measure defined by P os(B) = sup x∈B µ(ξ(x)) (Zadeh [START_REF] Zadeh | Fuzzy set as a basis of theory of possibility[END_REF]); the Necessity measure defined by N ec(B) = 1 -P os(B c ) = inf x∈B µ(ξ(x)) (Zadeh [START_REF] Zadeh | Fuzzy set as a basis of theory of possibility[END_REF]) and the Credibility measure defined by Cred(B) = 1 2 [P os(B) + N ec(B)] (Liu [START_REF] Liu | Expected value of fuzzy variable and fuzzy expected value models[END_REF]). Yang and Iwamura [START_REF] Yang | Fuzzy Chance-Constrained Programming with Linear Combination of Possibility Measure and Necessity measure[END_REF] introduced a measure, denoted m λ and defined by for λ ∈ [0, 1],

m λ (B) = λ sup x∈X µ B (x)) + (1 -λ) inf x∈X µ B (x)) (1) 
or equivalently, we have:

m λ ({ξ ∈ B}) = λP os({ξ ∈ B}) + (1 -λ)N ec({ξ ∈ B}).
In particular, we have: For λ = 0 (resp. λ = 1, resp. λ = 1 2 ) m λ = N ec (resp. m λ = P os, resp. m λ = Cr). They established some axioms of m λ such as universality, subadditivity for λ ≥ 1 2 and monotonicity. Notice that if P(X) is the power set of X, then the triplet (X, P(X), m λ ) is called a λ-fuzzy space. In addition, we have the following two new axioms of m λ .

1.   λm λ (B) + (1 -λ)m λ (B c ) = λ or (1 -λ)m λ (B) + λm λ (B c ) = λ   (2) 2. m λ (∪ i∈I B i ) = sup i∈I m λ (B i ) if sup i∈I m λ (B i ) ≤ λ where (B i
) i∈I is a countable family of subsets of X and I ⊂ N.

When λ = 1 2 , the Axiom defined by (2) becomes the duality axiom of credibility measure defined by Liu [START_REF] Liu | Expected value of fuzzy variable and fuzzy expected value models[END_REF] as Cr(B) + Cr(B c ) = 1.

Let us end this Section by evaluating the measure of events ξ ≥ t and ξ ≤ t for t ∈ R when ξ is a trapezoidal fuzzy variable.

Example 1. m λ {ξ ≥ t} = λ sup r≥t µ(r) + (1 -λ)(1 -sup r<t µ(r)) and m λ {ξ ≤ t} = λ sup r≤t µ(r) + (1 -λ)(1 -sup r>t µ(r)).
We obtain:

m λ {ξ ≥ t} =                  0 if d ≤ t, λ(d -t) d -c if c ≤ t ≤ d, λ if b ≤ t < c, λ(t -a) + b -t b -a if a ≤ t < b, 1 if t < a m λ {ξ ≤ t} =                  1 if d ≤ t, λ(d -t) + t -c d -c if c ≤ t ≤ d, λ if b ≤ t < c, λ(t -a) b -a if a ≤ t < b, 0 if t < a.
Throughout this paper, ξ is a normal fuzzy variable.

In the following Section, we introduce four main characteristics of a fuzzy variable by means of m λ -measure. We compute them for trapezoidal and triangular fuzzy variables and determine some of their properties.

Characteristics of a fuzzy variable with respect

to the m λ -measure

In the following Subsection, we introduce and study the expected value and the variance of a fuzzy variable with respect to m λ -measure. Results of our recent conference paper (Dzuché et al. [START_REF] Dzuché | Expected value and variance of a fuzzy variable based on a new fuzzy measure[END_REF]) are a part of the findings of the Subsection.

Expected value and Variance

Definition 1. Let ξ be a fuzzy variable and λ ∈ [0, 1]. The expected value of ξ is defined by:

E λ [ξ] = ∫ 0 -∞ [m λ {ξ ≥ r} -1]dr + ∫ +∞ 0 m λ {ξ ≥ r}dr (3)
with the condition that, at least one of the two integrals is finite.

Remark 1. 1) When λ = 1 2 , we obtain the expected value defined by Liu [START_REF] Liu | Expected value of fuzzy variable and fuzzy expected value models[END_REF] by means of the credibility measure as follows:

E 1 2 [ξ] = ∫ +∞ 0 Cr{ξ ≥ r}dr - ∫ 0 -∞ Cr{ξ ≤ r}dr
provided that, at least one of the two integrals is finite. 2) Liu [START_REF] Liu | Expected value of fuzzy variable and fuzzy expected value models[END_REF] introduced for a normalized fuzzy variable, the upper expected value of ξ and the lower expected value of ξ respectively denoted E[ξ] and E[ξ] and defined by:

E[ξ] = ∫ +∞ 0 P os{ξ ≥ r}dr - ∫ 0 -∞ N ec{ξ ≤ r}]dr (4) 
and

E[ξ] = ∫ +∞ 0 N ec{ξ ≥ r}dr - ∫ 0 -∞ P os{ξ ≤ r}]dr. ( 5 
)
We have:

E λ [ξ] = λE[ξ] + (1 -λ)E[ξ] (6) 
We now compute the expected values of trapezoidal and triangular fuzzy variables.

Example 2. -The expected value of a trapezoidal fuzzy variable ξ = (a, b, c, d)

based on the m λ -measure is defined by:

E λ [ξ] = (1 -λ) a + b 2 + λ c + d 2 .
-We deduce that the expected value of a triangular fuzzy variable ξ = (a, b, c) is given by:

E λ [ξ] = (1 -λ) a 2 + λ c 2 + b 2 . -If λ = 1 2
, we obtain expected values of Liu [START_REF] Liu | Expected value of fuzzy variable and fuzzy expected value models[END_REF] respectively for trapezoidal and triangular fuzzy variables, that is,

E 1 2 [ξ] = a+b+c+d 4 and E 1 2 [ξ] = a+2b+c 4 .
The following result establishes that the expected value of a trapezoidal fuzzy variable is increasing with respect to λ.

Proposition 1. Let ξ = (a, b, c, d) be a trapezoidal fuzzy variable, λ 1 , λ 2 ∈ [0, 1]. If λ 1 ≤ λ 2 then E λ 1 [ξ] ≤ E λ 2 [ξ].
Proof : Let ξ = (a, b, c, d) be a trapezoidal fuzzy variable and let us set:

f (λ) = (1 -λ) a+b 2 + λ c+d 2 . We have: f ′ (λ) = c-a 2 + d-b 2 ≥ 0 since c ≥ a and d ≥ b. So f = E λ [ξ] is increasing with respect to λ.
We end this Subsection by introducing the Variance of a fuzzy variable and we compute it in some cases.

Definition 2. Let ξ be a fuzzy variable such that E

[ξ] = e λ and λ ∈ [0, 1] .
The variance of ξ is defined by:

V λ [ξ] = E[(ξ -e λ ) 2 ] = ∫ +∞ 0 m λ {(ξ -e λ ) 2 ≥ r}dr. ( 7 
)
In the following Example, we compute the variance of a trapezoidal fuzzy variable and a triangular one.

Example 3.

1. ξ = (a, b, c, d) is a trapezoidal fuzzy variable with expected value e λ .

We set:

α = b -a, γ = c -b, β = d -c, t = β(e λ -a) -α(d -e λ )
β -α and without loss of generality, we assume that: b < e λ < c, γ < α < β, c -e λ < e λ -a < d -e λ and c -e λ < t < e λ -a. We obtain:

V λ [ξ] = λ(c -e λ ) 2 + λ α [(e λ -a)(t 2 -(c -e λ ) 2 ) -2 3 (t 3 -(c -e λ ) 3 )] + λ β [(d -e λ )((e λ -a) 2 -t 2 ) -2 3 ((e λ -a) 3 -t 3 )] + λ β [ 1 3 (d -e λ ) 3 ) + 2 3 (e λ -a) 3 -(e λ -a) 2 (d -e λ )]. 2. ξ = (a, b, c) is a triangular fuzzy variable with expected value e λ . We set: α = b -a, β = c -b, t = β(e λ -a) -α(c -e λ )
β -α and without loss of generality, we assume that: b > e λ and α > β. We obtain:

V λ [ξ] = (b -e λ ) 2 -1-λ α [(b -e λ ) 2 (e λ -a) + 2 3 (b -e λ ) 3 ] + λ β [(c -e λ )(t 2 -(b -e λ ) 2 ) -2 3 (t 3 -(b -e λ ) 3 )] + λ α [(e λ -a)((c -e λ ) 2 - t 2 ) -2 3 ((c -e λ ) 3 -t 3 )] + λ α [ 1 3 (e λ -a) 3 + 2 3 (c -e λ ) 3 -(c -e λ ) 2 (e λ -a)].
The following result establishes useful properties (linearity and homogeneity) of the expected value and the variance respectively with respect to the m λ -measure.

Proposition 2. Let ξ and η be two fuzzy variables such that

E λ [ξ] < ∞ and E λ [η] < ∞, µ a nonnegative real number, ν a real number and λ ∈ [0, 1].

Skewness and Kurtosis

1.

{ E λ [ξ + η] = E λ [ξ] + E λ [η] E λ [µξ] = µE λ [ξ] . 2. V λ [µξ + ν] = µ 2 V λ [ξ].
Proof: 1) The proof of the linearity is given in the Section Appendix. 2) Since αξ + β is a fuzzy variable; on the other hand, by Definition 2 and the first Proposition 2 , we have:

V λ [µξ + ν] = E λ [(µξ + ν -E λ [µξ + ν]) 2 ] = E λ [(µξ + ν -µE λ [ξ] -ν) 2 ]. Thus, we have: V λ [µξ + ν] = E λ [(µξ -µE λ [ξ]) 2 ] = E λ [µ 2 (ξ -E λ [ξ]) 2 ]
. Finally, by the first result of Proposition 2, we have:

V λ [µξ + ν] = µ 2 E λ [(ξ -E λ [ξ]) 2 ] = µ 2 V λ [ξ].
Throughout this paper, we introduce new concepts and establish new results.

In the following Subsection, we introduce and study the Skewness and Kurtosis of a fuzzy variable with respect to the m λ -measure.

Skewness and Kurtosis

Definition 3. Let ξ be a fuzzy variable such that E λ [ξ] = e λ and λ ∈ [0, 1] . 1)
The skewness of ξ is defined by:

SK λ [ξ] = E λ [(ξ-e λ ) 3 ] = ∫ 0 -∞ [m λ {(ξ-e λ ) 3 ≤ r}-1]dr+ ∫ +∞ 0 m λ {(ξ-e λ ) 3 ≥ r}dr (8)
2) The kurtosis of ξ is defined by:

K λ [ξ] = E λ [(ξ -e λ ) 4 ] = ∫ +∞ 0 m λ {(ξ -e λ ) 4 ≥ r}dr. ( 9 
)
We now compute skewness and kurtosis of a trapezoidal fuzzy variable and a triangular one with expected value e λ .

Example 4.

1. For a trapezoidal fuzzy variable ξ = (a, b, c, d). The Skewness SK λ [ξ] of ξ is given by:

SK λ [ξ] = 1 4(b -a) [(1-λ)(b-e λ ) 4 -λ(a-e λ ) 4 ]+ λ 4(d -c) [(d-e λ ) 4 -(c-e λ ) 4 ].

For a triangular fuzzy variable ξ = (a, b, c).

The Skewness SK λ [ξ] of ξ is given by:

SK λ [ξ] = 1 4(b -a) [(1-λ)(b-e λ ) 4 -λ(a-e λ ) 4 ]+ λ 4(c -b) [(c-e λ ) 4 -(b-e λ ) 4 ]. If λ = 1 2
, we obtain Li et al.'s result on Skewness ( [START_REF] Li | Mean-variance-skewness model for portfolio selection with fuzzy returns[END_REF]).

In the following Example, we compute kurtosis of a trapezoidal fuzzy variable and a triangular one.

Example 5.

1. ξ = (a, b, c, d) is a trapezoidal fuzzy variable with expected value e λ .

We set:

α = b -a, γ = c -b, β = d -c, t = β(e λ -a) -α(d -e λ )
β -α and without loss of generality, we assume that: b < e λ < c, γ < α < β, c -e λ < e λ -a < d -e λ and c -e λ < t < e λ -a. We obtain:

K λ [ξ] = λ(c -e λ ) 4 + λ α [(e λ -a)(t 4 -(c -e λ ) 4 ) -4 5 (t 5 -(c -e λ ) 5 )] + λ β [(d -e λ )((e λ -a) 4 -t 4 ) -4 5 ((e λ -a) 5 -t 5 )] + λ β [ 1 5 (d -e λ ) 5 ) + 4 5 (e λ -a) 5 -(e λ -a) 4 (d -e λ )].
2. ξ = (a, b, c) is a triangular fuzzy variable with expected value e λ .

We set:

α = b -a, β = c -b, t = β(e λ -a) -α(c -e λ )
β -α and without loss of generality, we assume that: b > e λ and α > β. We obtain:

K λ [ξ] = (b -e λ ) 4 -1-λ α [(b -e λ ) 4 (e λ -a) + 4 5 (b -e λ ) 5 ] + λ β [(c -e λ )(t 4 -(b -e λ ) 4 ) -4 5 (t 5 -(b -e λ ) 5 )] + λ α [(e λ -a)((c -e λ ) 4 - t 4 ) -4 5 ((c -e λ ) 5 -t 5 )] + λ α [ 1 5 (e λ -a) 5 + 4 5 (c -e λ ) 5 -(c -e λ ) 4 (e λ -a)].
We end this Subsection by establishing some of their properties.

Proposition 3. Let ξ be a fuzzy variable, µ and ν two real numbers such that µ ≥ 0 and λ ∈ [0, 1]. We have:

1) S λ [µξ + ν] = µ 3 S λ [ξ]. 2) K λ [µξ + ν] = µ 4 K λ [ξ].
Proof : The proof of this Proposition is similar to the proof of the second result of Proposition 2.

In the following Subsection, we introduce semi-variance and semi-kurtosis of a fuzzy variable ξ such that E λ [ξ] = e λ and λ ∈ [0, 1].

Semi-variance and semi-kurtosis

Definition 4. 1) The semi-variance of ξ is defined by:

V S λ [ξ] = E λ [[(ξ -e λ ) -] 2 ] = ∫ +∞ 0 m λ {[(ξ -e λ ) -] 2 ≥ r}dr. ( 10 
)
2) The semi-kurtosis of ξ is defined by:

K S λ [ξ] = E λ [[(ξ -e λ ) -] 4 ] = ∫ +∞ 0 m λ {[(ξ -e λ ) -] 4 ≥ r}dr. ( 11 
)
Example 6.

1. For a trapezoidal fuzzy variable ξ = (a, b, c, d), we obtain: a) d -c) .

V S λ [ξ] = λ (e λ -a) 3 3(b -a) -λ max[0; (e λ -b) 3 ] 3(b -a) + (1 -λ) max[0; (e λ -c) 3 ] 3(
If λ = 1 2
, we obtain Huang's result on semi-variance [START_REF] Huang | Mean-semivariance models for fuzzy portfolio selection[END_REF].

b) d -c) .

K S λ [ξ] = λ (e λ -a) 5 5(b -a) -λ max[0; (e λ -b) 5 ] 5(b -a) + (1 -λ) max[0; (e λ -c) 5 ] 5(
If λ = 1 2
, we obtain Sadefo et al.'s result on semi-kurtosis [START_REF] Sadefo | Moments and semimoments for fuzzy portfolio selection[END_REF].

2. For a triangular fuzzy variable ξ = (a, b, c), we obtain: a)

V S λ [ξ] = λ (e λ -a) 3 3(b -a) -λ max[0; (e λ -b) 3 ] 3(b -a) + (1 -λ) max[0; (e λ -b) 3 ] 3(c -b) . If λ = 1 2
, we obtain Huang's result on semi-variance [START_REF] Huang | Mean-semivariance models for fuzzy portfolio selection[END_REF].

b)

K S λ [ξ] = λ (e λ -a) 5 5(b -a) -λ max[0; (e λ -b) 5 ] 5(b -a) + (1 -λ) max[0; (e λ -b) 5 ] 5(c -b) . If λ = 1 2
, we obtain Sadefo et al.'s result on semi-kurtosis [START_REF] Sadefo | Moments and semimoments for fuzzy portfolio selection[END_REF].

The following result justifies that the risk's level of a trapezoidal fuzzy variable (defined by semi-variance or semi-kurtosis) depend on the optimistic parameter and on the expected return position with respect to the support of the variable. Its proof is given in the Appendix. 

1. If a ≤ e λ ≤ b or b ≤ e λ ≤ c then V S λ [ξ] and K S λ [ξ]
increases with respect to λ.

If c ≤ e λ ≤ d then:

-

V S λ [ξ] increases with respect to λ when λ ≤ 3 4 . -K S λ [ξ]
increases with respect to λ when λ ≤ 5 6 .

Remark 2. 10

Some properties of fuzzy variables characteristics

For the cases where a ≤ e λ ≤ b or b ≤ e λ ≤ c, the trapezoidal fuzzy variable describes almost either lower expected returns or average expected returns. That is the reason why the more the investor is confident (λ increases), the more he is exposed to a high risk's level (semi-variance and semi-kurtosis are greater).

For c ≤ e λ ≤ d, the trapezoidal fuzzy variable describes almost either higher expected returns. Thus, the risk remains increasing for an optimistic maximum's level ( 3 4 for semi-variance and 5 6 for semi-kurtosis). For λ > 3 4 (resp. λ > 5 6 ), the monotonicity of the semi-variance of the trapezoidal fuzzy variable (resp. its semi-kurtosis) depends on α, β, γ = c-b. That means, the investor can feel himself secured with high values of returns. In that, risk cannot remain increasing with respect to the optimistic factor, it will necessarily depend on returns' spread (α, β, γ).

In the following, we establish some properties or relationships of characteristics of a fuzzy variable ξ such that E λ [ξ] = e λ and λ ∈ [0, 1].

Some properties of fuzzy variables characteristics

The following result justifies that variance (respectively kurtosis) is greater than semi-variance (respectively semi-kurtosis). In addition, it justifies that they are equal for symmetric fuzzy variables. Its proof is given in the Appendix.

Proposition 5. 1) We have:

0 ≤ V S λ [ξ] ≤ V λ [ξ] and 0 ≤ K S λ [ξ] ≤ K λ [ξ]. 2) Furthermore, if ξ is symmetric with respect to e λ , that is, ∀r ∈ R, µ(e λ - r) = µ(e λ + r), then { V S λ [ξ] = V λ [ξ] K S λ [ξ] = K λ [ξ]
.

The following result establishes necessary and sufficient conditions under which Variance and Kurtosis are null for some values of λ.

Proposition 6. If λ ∈ [ 1 2 , 1[, then { V λ [ξ] = 0 ⇔ m λ {ξ = e λ } = 1 K λ [ξ] = 0 ⇔ m λ {ξ = e λ } = 1 .
To prove this result, we need the following Lemma which is proved in the Appendix. 

Lemma 1. Let A ⊂ X be an event and λ

∈ [0, 1]. 1) m λ (A) = 0 ⇒ m λ (A c ) =    0 if λ = 0 λ 1-λ or 1 if λ ∈]0, 1 2 ] 1 if λ ∈] 1 2 , 1] 2) Furthermore, for λ ∈ [ 1 2 , 1[, we have: m λ (A) = 0 ⇔ m λ (A c ) = 1.
m λ {(ξ -e λ ) 2 > r} ≤ {m λ {(ξ -e λ ) 2 > 0} ≤ {m λ {(ξ -e λ ) 2 ̸ = 0} = 0. This implies that m λ {(ξ -e λ ) 2 > r} = 0, ∀r > 0. Therefore, V λ [ξ] = ∫ +∞ 0 m λ {(ξ -e λ ) 2 ≥ r}dr = 0. (⇒): Let us assume that V λ [ξ] = 0. Since m λ takes values in [0;1], ∫ +∞ 0 m λ {(ξ -e λ ) 2 ≥ r}dr = 0 implies that m λ {(ξ -e λ ) 2 ≥ r} = 0, ∀r > 0, that is m λ {(ξ -e λ ) 2 ̸ = 0} = 0.
By Lemma 1, we have: m λ {(ξ -e λ ) 2 = 0} = 1 and we deduce that m λ {ξe λ = 0} = 1, that is, m λ {ξ = e λ } = 1. In a similar way, it is easy to prove that K λ [ξ] = 0 ⇔ m λ {ξ = e λ } = 1. In the following Section, we propose two models and implement them for the determination of optimal portfolios in Finance.

Application for portfolio selection 4.1 Optimization models

Let us consider an investor who likes to invest his capital in n securities in the proportion x 1 , x 2 ,..., x n such that ∀i ∈ {1, 2, ..., n}, x i ∈ [0, 1] and ∑ n i=1 x i = 1. It is well-known that an investment of a part x i of the capital in the i th security generates a return denoted by x i ξ i which is not currently known. Making up such investment consists on constituting a portfolio ((x i , ξ i )) 1≤i≤n where the n fuzzy variables x 1 ξ 1 , ..., x n ξ n are future returns of the n securities and the fuzzy variable ξ = ξ 1 x 1 + ξ 2 x 2 + ... + ξ n x n is the total future return or the portfolio future return. With respect to the credibility measure, Huang [START_REF] Huang | Mean-semivariance models for fuzzy portfolio selection[END_REF], Li et al. [START_REF] Li | Mean-variance-skewness model for portfolio selection with fuzzy returns[END_REF], Sadefo et al. [START_REF] Sadefo | Moments and semimoments for fuzzy portfolio selection[END_REF] assumed that ξ i is a fuzzy variable and they proposed models based on parameters (mean, variance and semi-variance for Huang; mean, variance and skewness for Li et al.; mean, variance, skewness and kurtosis for Sadefo et al.) in order to determine optimal portfolios. In this Section, we propose two models based on parameters with respect to m λ to solve the same question of determination of best portfolios. Those new models give a family of solutions which are optimal portfolios and generalize more recent models proposed by Sadefo et al. [START_REF] Sadefo | Moments and semimoments for fuzzy portfolio selection[END_REF] in the particular case where λ = 1 2 . For that, we consider the first family of seven assets returns described by the following triangular fuzzy variables proposed by Huang [START_REF] Huang | Mean-semivariance models for fuzzy portfolio selection[END_REF] and used by many authors: ξ 1 = (-0.3, 1.8, 2.3), ξ 2 = (-0.4, 2.0, 2.2), ξ 3 = (-0.5, 1.9, 2.7), ξ 4 = (-0.6, 2.2, 2.8), ξ 5 = (-0.7, 2.4, 2.7), ξ 6 = (-0.8, 2.5, 3.0) , ξ 7 = (-0.6, 1.8, 3.0) and the second family of ten assets returns described by the following trapezoidal fuzzy variables proposed by Hasuike et al. [START_REF] Hasuike | Portfolio selection problems with random fuzzy variable return[END_REF] (written as (a, b, c, d)): ξ 1 = (-0.362, -0.123, 0.005, 0.873), ξ 2 = (-0.37, -0.069, 0.069, 0.536), ξ 3 = (-0.329, -0.129, 0.025, 0.738), ξ 4 = (-0.193, 0.005, 0.177, 0.412), ξ 5 = (-0.299, -0.082, 0.114, 0.437), ξ 6 = (-0.342, -0.052, 0.108, 0.49) , ξ 7 = (-0.292, -0.056, 0.067, 0.436), ξ 8 = (-0.25, 0.060, 0.193, 0.649), ξ 9 = (-0.405, -0.093, 0.130, 0.756) , ξ 10 = (-0.554, 0.009, 0.236, 0.5). In addition, we set for each family of assets, three targets values t 1 , t 2 , t 3 considered respectively as the minimum benefit (expected value), the maximum risk (variance) and the minimum skewness that the investor can bear. The two proposed selection models for best portfolios of those assets are:

                   minimize K λ [x i 1 ξ i 1 + x i 2 ξ i 2 + ... + x i k ξ i k ] subject to E λ [x i 1 ξ i 1 + x i 2 ξ i 2 + ... + x i k ξ i k ] ≥ t 1 V λ [x i 1 ξ i 1 + x i 2 ξ i 2 + ... + x i k ξ i k ] ≤ t 2 S λ [x i 1 ξ i 1 + x i 2 ξ i 2 + ... + x i k ξ i k ] ≥ t 3 x i 1 + x i 2 + ... + x i k = 1 x i k ≥ 0, k ∈ {7; 10} (12) and                    minimize K S λ [x i 1 ξ i 1 + x i 2 ξ i 2 + ... + x i k ξ i k ] subject to E λ [x i 1 ξ i 1 + x i 2 ξ i 2 + ... + x i k ξ i k ] ≥ t 1 V λ [x i 1 ξ i 1 + x i 2 ξ i 2 + ... + x i k ξ i k ] ≤ t 2 S λ [x i 1 ξ i 1 + x i 2 ξ i 2 + ... + x i k ξ i k ] ≥ t 3 x i 1 + x i 2 + ... + x i k = 1 x i k ≥ 0, k ∈ {7; 10} (13)
In the following paragraph, we implement the two models by using Huang's data.

Implementation of the two models with Huang's data

In the following, we implement with Huang's data the two previous models for λ = 1 3 , λ = 1 2 and λ = 2 3 where the selected target values t 1 , t 2 , t 3 are given in Table 3. For that, we set: ∀i ∈ {1, ..., 7}, ξ i = (a i , b i , c i ) and the combination of those seven triangular fuzzy variables is also a triangular fuzzy variable denoted by ξ = ∑ 7

i=1 ξ i = (a, b, c) where a = ∑ 7 i=1 a i , b = ∑ 7 i=1 b i and c = ∑ 7 i=1 c i , α i = b i -a i , β i = c i -bi and α = ∑ 7 i=1 α i , β = ∑ 7 i=1 β i .
We recall that Sadefo et al. [START_REF] Sadefo | Moments and semimoments for fuzzy portfolio selection[END_REF] defined these characteristics in the particular case where λ = 1 2 . By implementing those formulas in Matlab through the previous proposed models, we obtain (i) Table 1 which presents in each line (from the second line) how the best portfolio is made up of in term of percentage of the seven securities for a given value of λ and for either K, either K S as objective function and, (ii) Table 2 gives characteristics (parameters) of best portfolios of Table 1.

Asset i 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 

λ = 1 3 ( K) 0.
t 3 λ = 1 3 1.3 0.5 0 λ = 1 2 1.6 0.8 -0.6823 λ = 2 3 1.8 1.2 -2
Table 3: Selected target values depending on λ.

Table 1 gives strategies to invest in the seven assets in order to obtain best portfolios for each of the three values of the parameter. More precisely, no investment in ξ 3 and ξ 7 , greater investment in ξ 1 and ξ 4 for greater values of λ. We can observe the impact of the parameter λ variation through the following histogram. According to the results of Table 2, we can make the following observations: -The mean increases with respect to λ, it can be interpreted as follows: the more the optimistic parameter is greater (the more self confident the investor is), the greater is expected return which represents its benefit. In addition, risk measures such as variance, kurtosis, semi-variance, semikurtosis increase with respect to λ. It means that, when the investor is self confident in investment and he is looking for greater benefits, meanwhile he is exposed to greater risk.

-The skewness is decreasing with respect to λ. It means that returns' spread is more greater on left of the mean when λ increases. Thus, the investor is exposed to loss (negative returns) when he is more self confident.

-Notice that, for a given value of λ, it is not always possible to get investment proportions with some targets values. By varying λ as in Table 3, one can obtain models that converge to a unique solution with some given target values.

-For λ = 2 3 , the two proposed models coincide. For further research, it is interesting to determine different optimistic parameter's values or the minimum optimistic parameter's value such that the two models coincide. As we can observe from Tables 5 and2, optimal portfolios characteristics except the skewness (skewness neither describes benefit nor risk), vary in the same manner with respect to the parameter λ whatever data are described.

The following histogram provides for Tokyo stock exchange data, clear observations of those characteristics variations according to the model and the parameter λ. 

Concluding Remarks

In this paper, we have determined two useful axioms of the m λ -measure of fuzzy events combining possibility and necessity measures with an optimistic parameter which describes investor attitude to make a decision in uncertain situations. By means of the m λ -measure and its axioms, we have defined and determined properties of some characteristics (four first moments and two first semi-moments) of a fuzzy variable. These moments and semi-moments have been determined and analyzed for trapezoidal and triangular fuzzy variables. The obtained results generalize those obtained earlier by Liu [START_REF] Liu | Expected value of fuzzy variable and fuzzy expected value models[END_REF], Li et al. [START_REF] Li | Mean-variance-skewness model for portfolio selection with fuzzy returns[END_REF], Huang et al. [START_REF] Huang | Mean-semivariance models for fuzzy portfolio selection[END_REF] and Sadefo et al. [START_REF] Sadefo | Moments and semimoments for fuzzy portfolio selection[END_REF]. Those theoretical results have illustrated in portfolio selection with fuzzy returns in Finance.

We have proposed and implemented two models which led to a huge variety of solutions in portfolio selection according to some given target values. We have displayed the impact of the variation of the optimistic parameter on the investment's risk and the benefit: the benefit and the risk increase with respect to the optimistic parameter.

For further research, we propose to tackle some interesting questions among which: (i) the determination of k-moments and 2k-moments (for k ∈ N) of a fuzzy variable (ii) the study of dominance on fuzzy variables based on the new measure and (iii) the study of partial lower moments of a fuzzy variable based on the new measure.

Appendix

Proof of Proposition 2 (linearity of the mean): According to the expressions recalled in relations ( 4) and ( 5) and the notions of optimistic and pessimistic functions respectively given by: X sup (α) = sup{r/P os{x ∈ X/ξ(x) ≥ r} ≥ α} and X sup (α) = sup{r/P os{x ∈ X/ξ(x) ≥ r} ≥ α} with α ∈ (0, 1], Liu and Liu [START_REF] Liu | Expected value operator of random fuzzy variable and random fuzzy expected models[END_REF] proved that:

1

. E[ξ] = ∫ 1 0 X sup (α)dα and E[ξ] = ∫ 1 0 X inf (α)dα. 2. E[ξ + η] = E[ξ] + E[η] and E[ξ + η] = E[ξ] + E[η]. 3. For a ≥ 0, E[aξ] = aE[ξ] and E[aξ] = aE[ξ]. 4. For a ≤ 0, E[aξ] = aE[ξ] and E[aξ] = aE[ξ].
Furthermore, according to relation ( 6), we have:

For λ ∈ R, E λ [ξ] = λE[ξ] + (1 -λ)E[ξ] and thus: E λ [ξ + η] = λE[ξ + η] + (1 -λ)E[ξ + η], that is, E λ [ξ + η] = [λE[ξ] + (1 -λ)E[ξ]] + [λE[η] + (1 -λ)E[η]] = E λ [ξ] + E λ [η].
On the other hand, we have for a nonnegative real number α:

E λ [αξ] = λE[αξ] + (1 -λ)E[αξ]=α(λE[ξ] + (1 -λ)E[ξ]]) = αE λ [ξ].
Proof of Proposition 4: Let ξ = (a, b, c, d) be a trapezoidal fuzzy variable with expected value e λ and λ ∈ [0, 1].

• If a ≤ e λ ≤ b then V S λ [ξ] = λ (e λ -a) 3 3α
and K S λ [ξ] = λ (e λ -a) 5

5

.

We have: (

V S ) ′ λ [ξ] = (e λ -a) 3 3α +λ e ′ λ (e λ -a) 2 α ≥ 0 and (K S ) ′ λ [ξ] = (e λ -a) 5 5α + λ e ′ λ (e λ -a) 4 α ≥ 0. • If b ≤ e λ ≤ c then V S λ [ξ] = λ (e λ -a) 3 3α -λ (e λ -b) 3 3α and K S λ [ξ] = λ (e λ -a) 5 5 - λ (e λ -b) 5 5α . We have: (V S ) ′ λ [ξ] = (e λ -a) 3 3α -(e λ -b) 3 3α + λ e ′ λ (e λ -a) 2 α -λ e ′ λ (e λ -b) 2 α ≥ 0 and (K S ) ′ λ [ξ] = (e λ -a) 5 5α -(e λ -a) 5 5α + λ e ′ λ (e λ -a) 4 α -λ e ′ λ (e λ -b) 4 α ≥ 0. • If c ≤ e λ ≤ d then V S λ [ξ] = λ (e λ -a) 3 3α -λ (e λ -b) 3 3α + (1 -λ) (e λ -c) 3 3β and K S λ [ξ] = λ (e λ -a) 5 5 -λ (e λ -b) 5 5α + (1 -λ) (e λ -c) 5 5β . We have: (V S ) ′ λ [ξ] = (e λ -a) 3 3α -(e λ -b) 3 3α + λ e ′ λ (e λ -a) 2 α -λ e ′ λ (e λ -b) 2 α - 18 (e λ -c) 3 3β +(1-λ) e ′ λ (e λ -c) 2 β and (K S ) ′ λ [ξ] = (e λ -a) 5 5α -(e λ -a) 5 5α +λ e ′ λ (e λ -a) 4 α - λ e ′ λ (e λ -b) 4 α -(e λ -c) 5 5α + (1 -λ) e ′ λ (e λ -c) 4 β . We easily check that: λ ≤ 3 4 ⇒ (V S ) ′ λ [ξ] ≥ 0 and λ ≤ 5 6 ⇒ (K S ) ′ λ [ξ] ≥ 0. Proof of Proposition 5 1) Let us prove that 0 ≤ V S λ [ξ] ≤ V λ [ξ]. Let x ∈ X and r ∈ R. We have: [(ξ -e λ ) -] 2 = { (ξ -e λ ) 2 if ξ ≤ e λ 0 if ξ > e λ
. This definition leads us to two cases: i) First case: ξ(x) ≤ e λ .

We have:

[(ξ(x) -e λ ) -] 2 = (ξ(x) -e λ ) 2 . Therefore, [(ξ(x) -e λ ) -] 2 ≥ r ⇔ (ξ(x) -e λ ) 2 ≥ r. ii) Second case: ξ(x) > e λ . We have: [(ξ(x)-e λ ) -] 2 = 0 which implies that (ξ(x)-e λ ) 2 ≥ [(ξ(x)-e λ ) -] 2 . Thus, [(ξ(x) -e λ ) -] 2 ≥ r implies (ξ(x) -e λ ) 2 ≥ r. It follows that: ∀(x, r) ∈ X ×R, {x/[(ξ(x)-e λ ) -] 2 ≥ r} ⊆ {x/(ξ(x)-e λ ) 2 ≥ r}.
By the fact that m λ is monotone, we obtain: . That is, λm λ (A c ) = 0.

∀r ∈ R, m λ {[(ξ(x) -e λ ) -] 2 ≥ r} ≤ m λ {(ξ(x) -e λ ) 2 ≥ r}. Finally, V λ [ξ] = ∫ +∞ 0 m λ {(ξ -e λ ) 2 ≥ r}dr ≥ ∫ +∞ 0 m λ {[(ξ -e λ ) -] 2 ≥ r}dr = V S λ [ξ]. In the same manner, one can prove that 0 ≤ k S λ [ξ] ≤ K λ [ξ].
• If λ ∈]0, 1 2 ], then we obtain by axiom 4:

   (1 -λ)m λ (A c ) = λ or λm λ (A c ) = λ which implies that    m λ (A c ) = λ 1-λ or m λ (A c ) = 1 .
Furthermore, λ ∈]0, 1 2 ] ⇒ 0 < m λ (A c ) = λ 1-λ ≤ 1. 

• If λ ∈]

  , b] and decreasing on [c, d] and (iv) ∀r ∈ [b, c], µ(r) = 1. Thus, we denote it by ξ = (a, b, c, d). In the particular case where µ is a straight line on [a, b] and [c, d], then ξ = (a, b, c, d) is the usual and wellknown trapezoidal fuzzy number. Then, we deduce analytical expressions of the membership functions of ξ

Figure 1 :

 1 Figure 1: On right trapezoidal fuzzy variable (1, 2, 3, 4) and on left triangular fuzzy variable (1, 3.5, 4).

Proposition 4 .

 4 Let ξ = (a, b, c, d) be a trapezoidal fuzzy variable with expected value e λ and λ ∈ [0, 1].

11 We now justify the Proposition. Proof of Proposition 6 :

 116 Let ξ be a fuzzy variable withE λ [ξ] = e λ and λ ∈ [ 1 2 , 1[. Let us prove that V λ [ξ] = 0 ⇔ m λ {ξ = e λ } = 1. (⇐): Let us assume that m λ {ξ = e λ } = 1. It is obvious that m λ {ξ -e λ = 0} = 1 if and only if m λ {(ξ -e λ ) 2 } = 1.By Lemma 1, we obtain m λ {(ξ -e λ ) 2 ̸ = 0} = 0. Let r > 0, we have:

Figure 2 :

 2 Figure 2: Illustration of fuzzy variables characteristics from different models with Huang's data.

Figure 3 :

 3 Figure 3: Illustration of fuzzy variables characteristics from different models with Tokyo stock exchange data.

2 )

 2 Let ξ be a symmetric fuzzy variable. Let us prove that V S λ [ξ] = V λ[ξ]. Let us write:V S λ [ξ] = E λ [[(ξ -e λ ) -] 2 ] = ∫ +∞ 0 ⇕ λ {[(ξ -e λ ) -] 2 ≥ r}dr = ∫ +∞ 0 ⇕ λ {(ξ -e λ ) -∈] -∞; -√ r] ∪ [ √ r; +∞[}dr and V λ [ξ] = E λ [(ξ -e λ ) 2 ] = ∫ +∞ 0 ⇕ λ {(ξ -e λ ) 2 ≥ r}dr = ∫ +∞ 0 ⇕ λ {(ξ -e λ ) ∈ ] -∞; -√ r] ∪ [ √ r;+∞[}dr. If µ and ν are respectively membership functions of fuzzy variables ξ -e λ and (ξ -e λ ) -, then we have ν = { µ if ξ -e λ ≤ 0 0 otherwise . Let us observe that ξ is symmetric with respect to e λ if and only if ξ -e λ is symmetric with respect to 0. We have, ∀r > 0:M λ {(ξ-e λ ) ∈]-∞; -√ r]∪[ √ r; +∞[} = λ sup x∈]-∞;- √ r]∪[ √ r;+∞[ µ(x)+(1λ)(1-sup x∈]- √ r;-√ r[ µ(x)) = λ max(sup x∈]-∞;- √ r] µ(x), sup x∈[ √ r;+∞[ µ(x))+ (1 -λ)[1 -max(sup x∈]- √ r;0] µ(x), sup x∈[0; √ r[ µ(x))].Let us notice that by fact that ξ is symmetric, we have:sup x∈]-∞;- √ r] µ(x) = sup x∈[ √ r;+∞[ µ(x) and sup x∈]- √ r;0] µ(x) = sup x∈[0; √ r[ µ(x). so, we have:⇕ λ {(ξ -e λ ) ∈] -∞; -√ r] ∪ [ √ r; +∞[} = λ sup x∈]-∞;- √ r] µ(x) + (1 -λ)[1sup x∈]- √ r;0] µ(x)). However, sup x∈]-∞;- √ r] µ(x) = sup x∈]-∞;- √ r] ν(x) and sup x∈]- √ r;0] µ(x) = sup x∈]- √ r;0] ν(x), that is: ⇕ λ {(ξ -e λ ) ∈] -∞; -√ r] ∪ [ √ r; +∞[} = λ sup x∈]-∞;- √ r] ν(x) + (1 -λ)[1sup x∈]- √ r;0] ν(x)).19 By the fact that ν is null on the intervals [ √ r; +∞[ and [0; √ r[, we finally have:⇕ λ {(ξ -e λ ) ∈]-∞; -√ r]∪[ √ r; +∞[} = λ sup x∈]-∞;- √ r]∪[ √ r;+∞[ ν(x)+(1λ)[1 -sup x∈]- √ r;-√ r[ ν(x)) = ⇕ λ {(ξ -e λ ) -∈] -∞; -√ r] ∪ [ √ r; +∞[}. Therefore, we get V S λ [ξ] = V λ [ξ]. By a similar way, one can prove that KS λ [ξ] = K λ [ξ].Proof ofLemma 1: 1) Let us consider A ⊂ X such that M λ (A) = 0 and λ ∈ [0, 1]. Let us recall the third axiom of the measure M λ (A):    λm λ (A) + (1 -λ)m λ (A c ) = λ or (1 -λ)m λ (A) + λm λ (A c ) = λ • If λ = 0, then we obtain by Axiom 3:    m λ (A c ) = 0 or 0 = 0

1 2 ,( 1 1 . 1 . 2 ).

 21112 [START_REF] Dai | Optimal strategies for carbon capture, utilization and storage based on an inexact m λ -measure fuzzy chance-constrained programming[END_REF][, then we obtain by Axiom 4:  -λ)m λ (A c ) = λ or λm λ (A c ) = λ which implies that    m λ (A c ) = λ 1-λ or m λ (A c ) = However, λ ∈] 1 2 , 1[⇒ m λ (A c ) = λ 1-λ > 1, which is wrong. So, we have m λ (A c ) = 1.Finally, for λ = 1, we obtain by Axiom 3: However, 0 = 1 is wrong. So,λm λ (A c ) = 1. Let us consider A ⊂ X and λ ∈ [ 1 2 , 1[. ⇒) If m λ (A) = 0, then according to Lemma 1, we have m λ (A c ) = 1. ⇐) If m λ (A c ) = 1, then by Axiom 3, we have:    λm λ (A) + (1 -λ) = λ or (1 -λ)m λ (A) + λ = λ However, λ ∈ [ 1 2 , 1[⇒ m λ (A) = 2λ-1 λ< 0, which is wrong. So, we have m λ (A) = 0. Hence the result.

Table 1 :

 1 Optimal selection from each model.

	00	63.39	0.00	0.00	36.61	0.00	0.00
	λ = λ = λ = 1 1 3 1 ( K S ) ( K) 2 ( K S ) 20.00 0.05 0.6471 0.00 20.04 0.00 0.00 0.00 0.00 2 λ = 2 ( K) 42.50 0.00 0.00 3 λ = 2 3 (K S ) 42.50 0.00 0.00	0.05 79.89 80.00 57.50 57.50	31.33 0.00 0.00 0.00 0.00	3.85 0.07 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
	Mean Variance	SV	Skewness	Kurtosis	SK
	λ = 1 3 ( K) 1.3005 λ = 1 3 ( K S ) 1.3004 λ = 1 1.60 2 ( K) λ = 1 1.60 2 ( K S ) λ = 2 1.80 3 ( K) λ = 2 3 (K S ) 1.80	0.4571 0.4570 0.7018 0.7019 1.0510 1.0510	0.2482 0.2482 -1.5336 × 10 -5 -0.0014 0.6140 -0.6823 0.6141 -0.6823 1.0404 -1.6573 1.0404 -1.6573	0.6593 0.6594 1.7290 1.7291 3.2213 3.2213	0.4880 0.4875 1.6873 1.6872 3.2202 3.2202

Table 2 :

 2 Comparison of the characteristics of different optimal portfolios.

Target values Mean:t 1 Variance: t 2 Skewness:

Table 4 :

 4 Optimal selection from each model.

	Mean Variance	SV	Skewness Kurtosis	SK
	λ = 1 4 ( K) λ = 1 4 ( K S ) 0.0201 0.02 λ = 1 0.07 3 ( K) λ = 1 0.07 3 ( K S ) λ = 1 0.09 2 ( K) λ = 1 2 (K S ) 0.09	0.0262 0.0264 0.0285 0.0286 0.04 0.04	0.0047 0.0047 0.0114 0.0114 0.0389 0.0385	0.012 0.0122 0.0141 0.0142 0.01 0.01	0.0049 0.0050 0.0058 0.0058 0.0083 0.0081	1.6745 × 10 -4 1.7094 × 10 -4 6.6001 × 10 -4 6.6330 × 10 -4 0.0037 0.0036

Table 5 :

 5 Comparison of the characteristics of different optimal portfolios. Target values Mean:t 1 Variance: t 2 Skewness: t 3

	λ = λ = λ =	1 4 1 3 1 2	0.02 0.07 0.09	0.04 0.04 0.04	0.01 0.01 0.01

Table 6 :

 6 Selected target values depending on λ.

* The work has been done under the research Grant No 17-497RG/M AT HS/AF/ACG-F R3240297728 offered by The World Academy of Sciences (TWAS) to the Applied Mathematics to Social Sciences Research Group of the Laboratory of Mathematics-University of Douala-Cameroon. The authors (members of the Laboratory of Mathematics) sincerely thanks TWAS.

Implementation of the two models with Tokyo stock exchange data

To end this Section, we implement the two proposed models by using real data as Tokyo stock exchange data.

4.3

Implementation of the two models with Tokyo stock exchange data

We implement Tokyo stock exchange data through the two previous models for λ = 1 4 , λ = 1 3 and λ = 1 2 . The target values t 1 , t 2 , t 3 are given in Table 6. Different optimal investment proportions and optimal characteristics are respectively given in Tables 4 and5.

Asset i 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%) (%) [START_REF] Tassak | Characterization of order dominances on fuzzy variables for portfolio selection with fuzzy returns[END_REF]