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Abstract

Possibility, Necessity and Credibility measures are used in the liter-
ature in order to deal with imprecision. Recently, Yang and Iwamura
[11] introduced a new measure as convex linear combination of possi-
bility and necessity measures and they determined some of its axioms.
In this paper, we introduce characteristics (parameters) of a fuzzy vari-
able based on that measure, namely, Expected value, Variance, Semi-
Variance, Skewness, Kurtosis and Semi-Kurtosis. We determine some
properties of these characteristics and we compute them for trapezoidal
and triangular fuzzy variables. We display their application for the de-
termination of optimal portfolios when assets returns are described by
triangular or trapezoidal fuzzy variables.
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1 Introduction

1 Introduction

Uncertainty can be viewed as an aspect of randomness or ambiguity in real
life phenomena. Thereby, one needs a measure on fuzzy events (fuzzy mea-
sure) to analyze questions and problems dealing with such uncertainty. After
Zadeh’s work [12] introducing possibility and necessity measures, a vast liter-
ature appeared on fuzzy theory and fuzzy logic based on the aforementioned
measures. Twenty years later, Liu [6] introduced credibility measure as the
arithmetic mean of the two first measures. This measure has been used to
address other questions dealing with uncertainty (see Liu [7], Li et al. [5],
Huang et al. [4], Sadefo et al. [9] and Tassak et al. [10]). More recently,
Yang and Iwamura [11] introduced a new measure, denoted m, as a convex
linear combination of possibility and necessity measures (the weight A of the
possibility measure in the combination is a real parameter in the interval
[0;1]) and they determined some of its axioms. This new measure general-
ized the three previous ones and has been used in fuzzy chance-constrained
programming (Yang and Kakuzo [11], Dai et al. [1]) as a more generalized
approach compared with credibility constrained programming ones to find
optimal strategies for carbon capture. We used it in our recent conference
paper to determine Expected value and Variance of a fuzzy variable (Dzuche
et al. [2]).

This paper focuses on the recent measure for two major findings that
might be useful. First, the weight A can be considered as the the decision
maker confidence on the fuzzy event degree of realization such that degree
1 means a complete confidence and degree 0 means no confidence. The
m)— measure can become either possibility measure,or necessity measure or
credibility measure respectively for the decision marker who is self confident,
unconfident and neutral (the weight is equal to %) It is a comprise of the
two first measures and this finding is similar to the idea of Hurwicz decision
criteria in Microeconomics which is a compromise of maximax and maximin
criteria. On the other hand, due to the fact that the new measure generalizes
the three previous ones in technical point of view, many theoretical results
already solved with one of the three first measures can be generalized with
the new measure. In addition, some specific results will be outlined.

The modest contribution of this paper is to study, by means of my, fuzzy
variables characteristics and to implement obtained results for portfolio op-
timization models with fuzzy returns. More specifically, in the continuation
of our recent work (Dzuche et al. [2]), we propose some new axioms of
my, and we introduce fuzzy variables characteristics w.r.t. to this measure.
We determine four first moments (expected value, variance, skewness and
kurtosis) and two first semi-moments (semi-variance and semi-kurtosis)of
trapezoidal and triangular fuzzy variables. We establish some properties
of these characteristics and the obtained theoretical results are applied in
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portfolio selection with fuzzy returns.

The paper is organized as follows. Section 2 recalls useful notions on
fuzzy sets, on four previous usual fuzzy measures. We display some new
axioms of the more recent one. In Section 3, we introduce and study fuzzy
variables characteristics. More precisely, we focus on the determination of
four first moments and two first semi-moments of trapezoidal and triangu-
lar fuzzy variables and we establish some properties of these characteristics.
Section 4 displays an application of these characteristics in optimal portfo-
lios selection where assets returns proposed by Huang [4] are described by
triangular fuzzy variables. We also apply these characteristics to find opti-
mal portfolios by using Tokyo stock exchange data provided by Hasuike et
al. [3]. Appendix contains proofs of some results.

2 Preliminaries

Throughout this paper, X is a nonempty set, namely, the universal set. A
fuzzy subset A of X is defined by its membership function: p4 : X — [0, 1]
such that, to each = € X, is associated p4(x) representing the membership
grade of x to A. A is denoted by {(z,pa(x)),z € X}. If Vo € A, pa(x) €
{0,1}, then A becomes a crisp subset of X.

Let &€ be a mapping from X to R described by its membership function p
interpreted as: for any = € R, u(x) represents the degree that £ takes value
x. £ is said to be a fuzzy variable if £ is measurable. A fuzzy variable ¢ is
normal if Iz € R, pu(zo) = 1.
For ¢ and n be two fuzzy variables and « a real number, their sum & + 7 is
a fuzzy variable defined by: Vx € R, (£ +n)(x) = &(x) + n(x) and of is a
fuzzy variable defined by: Vz € R, (a€)(z) = af(x).
A fuzzy number £ is a fuzzy variable that satisfies: Ja, b,c,d € R with a <
b < ¢ < d such that (i) p is upper semi-continuous, (ii) Vr & [a,d], u(r) =0,
(iii) g is increasing on [a, b] and decreasing on [¢, d] and (iv) Vr € [b, ], u(r) =
1. Thus, we denote it by £ = (a,b,c,d). In the particular case where p is
a straight line on [a,b] and [c, d|, then & = (a,b, ¢, d) is the usual and well-
known trapezoidal fuzzy number. Then, we deduce analytical expressions

20 if g <z <b

LLifb<z<c
% fe<z<d
0 elsewhere
If b = ¢, then £ = (a,b,d) is a triangular fuzzy number.

Figure 1 displays a trapezoidal fuzzy variable and a triangular one.

of the membership functions of £ : Vo € R, u(x) =
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Figure 1: On right trapezoidal fuzzy variable (1,2,3,4) and on left
triangular fuzzy variable (1,3.5,4).

In the following, we recall classical fuzzy measures proposed in the liter-
ature to deal with imprecision.
Let B C X and £ : X — R be a fuzzy variable whose membership function
u, that means, each element x of X is associated to a real number £(z)
by means of £ with the membership grade pu(&(x)). We have the follow-
ing classical and well-known measures: the Possibility measure defined by
Pos(B) = sup,ep p(é(x)) (Zadeh [12]); the Necessity measure defined by
Nec(B) = 1 — Pos(B¢) = inf,ep p(&(x)) (Zadeh [12]) and the Credibility
measure defined by Cred(B) = 3[Pos(B) + Nec(B)] (Liu [6]).
Yang and Iwamura [11] introduced a measure, denoted m) and defined by
for A € [0,1],

mA(B) = Asup pp(2)) + (1 = A) inf up(z)) (1)
zeX ze

or equivalently, we have:

mx({¢ € B}) = APos({¢ € B}) + (1 — A)Nec({¢ € B}).

In particular, we have: For A\ = 0 (resp. A = 1, resp. A = %) my = Nec
(resp. my = Pos, resp. my = Cr). They established some axioms of my
such as universality, subadditivity for A > % and monotonicity. Notice that
if P(X) is the power set of X, then the triplet (X,P(X), my) is called a
M-fuzzy space.

In addition, we have the following two new axioms of m.

1.
Ama(B) + (1 = N)my(B¢) = A
or (2)
(I =X)mx(B) + Amx(B€) = A
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2. my(UierB;) = sup;ey ma(B;) if sup;er ma(B;) < A where (B;)ier is a
countable family of subsets of X and I C N.

When \ = %, the Axiom defined by (2) becomes the duality axiom of credi-
bility measure defined by Liu [6] as Cr(B) 4+ Cr(B°¢) = 1.

Let us end this Section by evaluating the measure of events £ > ¢ and
¢ <tforte R when £ is a trapezoidal fuzzy variable.

Example 1. my{{ > t} = Asup,s; u(r) + (1 — A)(1 — sup,, p(r)) and
ma{€ <t} = Asup,<; pu(r) + (L= A)(1 = sup,¢ (7))

We obtain:
0 if d<t,
/\Eld__ct) if e<t<d,
my{>t} =4 A if b<t<c,
)x(t—bazj;b—t ifa<t<b,
(1 ift<a
1 if d<t,
)\(d—dt)_—i;t—c ife<t<d,
mE<ty ={ A ifb<t<e
)\ét__;) if a<t<b,
0 if t<a.

Throughout this paper, £ is a normal fuzzy variable.

In the following Section, we introduce four main characteristics of a fuzzy
variable by means of my— measure. We compute them for trapezoidal and
triangular fuzzy variables and determine some of their properties.

3 Characteristics of a fuzzy variable with respect
to the m)-measure

In the following Subsection, we introduce and study the expected value and
the variance of a fuzzy variable with respect to m)— measure. Results of
our recent conference paper (Dzuché et al.[2]) are a part of the findings of
the Subsection.



3.1 Expected value and Variance

3.1 Expected value and Variance

Definition 1. Let & be a fuzzy variable and X € [0,1]. The expected value
of £ is defined by:

0 “+o00
am:/hm&a+4W+A mAf€ > r}dr (3)

—00
with the condition that, at least one of the two integrals is finite.

Remark 1. 1) When A = %, we obtain the expected value defined by Liu [6]

by means of the credibility measure as follows:

400 0
Byle= [ orleznar- [ org<nar
0 —00
provided that, at least one of the two integrals is finite.
2) Liu [6] introduced for a normalized fuzzy variable, the upper expected

value of & and the lower expected value of & respectively denoted E[£] and
E[¢] and defined by:

. 400 0
E[¢] = ; Pos{& > r}dr —/ Nec{¢ < r}dr (4)
and oo 0
E¢] = ; Nec{¢ > r}dr —/_ Pos{¢ < r}ldr. (5)
We have:
E\[§] = AE[¢] + (1 = N E[¢] (6)

We now compute the expected values of trapezoidal and triangular fuzzy
variables.

Example 2. - The expected value of a trapezoidal fuzzy variable £ = (a,b, ¢, d)
based on the my— measure is defined by:

a+b+)\c+d'

Bg = (1- 0225

- We deduce that the expected value of a triangular fuzzy variable £ = (a,b, c)

s given by:
c b
A=+ —.
+ 2 + 2

a

Ex[g]=(1- /\)2

1
-If A= 50 we obtain expected values of Liu [6] respectively for trapezoidal

and triangular fuzzy variables, that is, E% €] = W and E% €] = %HC.
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The following result establishes that the expected value of a trapezoidal
fuzzy variable is increasing with respect to A.

Proposition 1. Let & = (a,b,c,d) be a trapezoidal fuzzy variable, A1, Ao €
[0, 1].
If )\1 § )\2 then E)\l [ﬂ § E)\Q [5]

Proof: Let £ = (a,b,c,d) be a trapezoidal fuzzy variable and let us set:
FO) = (1= X\ 22 + 252 We have: f/(\) = 52 + 9452 > 0 since ¢ > a and
d>b. So f = E\[£] is increasing with respect to \. [

We end this Subsection by introducing the Variance of a fuzzy variable
and we compute it in some cases.

Definition 2. Let § be a fuzzy variable such that E[{] = ey and A € [0,1] .
The variance of £ is defined by:

+oo
VAlE] = E[(€ — ex)?] = /0 mal(€ — ex)? > r}dr. (7)

In the following Example, we compute the variance of a trapezoidal fuzzy
variable and a triangular one.

Example 3. 1. £ = (a,b,c,d) is a trapezoidal fuzzy variable with ex-
pected value e),.

— _ d_
We set: a =b—a,y=c—b, f=d—c, t = Blex —a) — of ex)

without loss of generality, we assume that: b < eAﬁ< cc,y’y <a<p,
c—ey<ey—a<d—eyandc—ey <t<ey—a. We obtain:

VAlE] = Ae — ex)? + &[(ex — a)(#2 — (c — €r)?)

=3 = (c—en))] + 3l[d—ex)((ex — a)? = #2) = 3((ex — a)® — %))
+3[53(d = ex)?) + 5(en —a)® = (ex = a)?(d - e)).

2. € = (a,b,c) is a triangular fuzzy variable with expected value e.

We set: a=b—a, f=c—0b,t= ﬁ(e,\—aﬂ):z(c—@)
loss of generality, we assume that: b > ey and o > 5. We obtain:
VALl = (b—ex)? = L22[(b—ex)?(ex — a) + 3 (b — e))?]

+3lle—e)t® = (b—en)?) = 5t = (b—en)®)] + 2l(ex —a)((c —er)? -
t2) = 3((c —ex)® —t7)]

+2[5(ex—aP + 3(c—en)’ = (c—ex)(ex —a)).

and

and without

The following result establishes useful properties (linearity and homo-
geneity) of the expected value and the variance respectively with respect to
the m)— measure.

Proposition 2. Let { and n be two fuzzy variables such that E)\[§] < oo and
E\[n] < oo, p a nonnegative real number, v a real number and A € [0, 1].



3.2 Skewness and Kurtosis

; { EA\[€ + 1] = EA[€] + Exln]
" | Ex[pé] = pEN[E]

2. VAlug +v] = p?Vilg].

Proof: 1) The proof of the linearity is given in the Section Appendix.
2) Since af + (3 is a fuzzy variable; on the other hand, by Definition 2 and
the first Proposition 2 , we have:

VA€ +v] = Ex[(u€ +v — Ex[uE+1v])*] = [( €+V pEx[€] - v)?]. Thus,
we have: Vi [ué +v] = Ex[(u€ — nE\[€])?] = Ex[p?(€ — Ex[€])?). Flnally, by
the first result of Proposition 2, we have: Vj[ué +v] = p?E\[(& — EA[€])?] =
W2VAlE). O

Throughout this paper, we introduce new concepts and establish new
results.

In the following Subsection, we introduce and study the Skewness and
Kurtosis of a fuzzy variable with respect to the my- measure.

3.2 Skewness and Kurtosis

Definition 3. Let £ be a fuzzy variable such that Ey\[§] = ey and X € [0,1] .
1) The skewness of & is defined by:

0 Yoo
SKEl = Balle=en)’] = [ (=)’ < rh=tldrs [ m{(6=en)? > ryar

- 3)
2) The kurtosis of & is defined by:
+oo
Kl = Blie—en'] = [ ma{(e=en)' = rjar )

We now compute skewness and kurtosis of a trapezoidal fuzzy variable
and a triangular one with expected value e).

Example 4. 1. For a trapezoidal fuzzy variable § = (a,b, c,d).
The Skewness SK,\[§] of € is given by:

SKA[E] = [(1=A)(b—ex)* =Ala—ex) ']+ [(d—ex)*~(c—ex)"].

4(b—a) 4(d —¢)

2. For a triangular fuzzy variable & = (a,b, c).
The Skewness SK,\[€] of € is given by:

1
4(b— a)

SK,[¢] = [(1—>\)(b—ex)4—>\(a—ex)4]+4(c ) [(c—ex)*—(b—ex)].

1
If = 5 we obtain Li et al.’s result on Skewness ([5]).
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In the following Example, we compute kurtosis of a trapezoidal fuzzy
variable and a triangular one.

Example 5. 1. £ = (a,b,c,d) is a trapezoidal fuzzy variable with ex-
pected value e),.
—a) — ald -
Weset:a:b—a,yzc—b,ﬁzd—c,tzﬁ(e)‘ a5)_2< 2V

without loss of generality, we assume that: b < ey < ¢, v < a < S,

c—ey<ey—a<d—eyandc—ey <t<ey—a. We obtain:

K[ = Ae—en)' + 3llex —a)(t* = (¢ —ex)?)

— 5 = (c—e)”)]+ 3[(d —ex)((ex — a)* = 1) — 5((ex —a)® — 17)]

+3[5(d—en)’) + 5(en — @)’ = (ex —a)'(d — ey)].

2. £ = (a,b,c) is a triangular fuzzy variable with expected value ey.

We set: a =b—a, B=c—b,t= 6(6)‘_(2:;(6_6)‘)
loss of generality, we assume that: b > ey and o > 5. We obtain:
Ky[€) = (b—ex)* = 12[(b = ex)*(ex — a) + 2 (b — en)”]
+3le—en)t* = (b—en)) = 3(t° = (b—exn)®)] + 2(ex —a) (e —ex)* -
t') = 5((c —ex)” = )]

+ A[%(e)\ —a)®+ %(c —e\)? — (c—ex)t(ex —a)].

«

and

and without

We end this Subsection by establishing some of their properties.

Proposition 3. Let £ be a fuzzy variable, u and v two real numbers such
that > 0 and X\ € [0,1]. We have:

1) Sx[ué + v] = pPSA[E].
2) Kx[ué +v] = p*K,[€].

Proof: The proof of this Proposition is similar to the proof of the sec-
ond result of Proposition 2. [J

In the following Subsection, we introduce semi-variance and semi-kurtosis
of a fuzzy variable £ such that Ey[¢] = ey and A € [0, 1].

3.3 Semi-variance and semi-kurtosis

Definition 4. 1) The semi-variance of £ is defined by:
s 2 oo 2
Wi =Bl -ePl= [ mdle—e) P2 (0)
2) The semi-kurtosis of £ is defined by:

+oo
KS[E) = Ball(€ — en) 1Y) = /0 ma{[(E —ex) 1t > rdr. (1)
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Example 6. 1. For a trapezoidal fuzzy variable & = (a, b, ¢, d), we obtain:

a)

_(ex—a)?
W =25 TN 30— a)

1
If X\ = 3 we obtain Huang’s result on semi-variance [4].
b)
5

E\N—Q maxu; (e) — 5

max|0; (ex — ¢)°]
5(d — ¢)

+(1-=X)

1
If X\ = o0 we obtain Sadefo et al.’s result on semi-kurtosis [9].

2. For a triangular fuzzy variable & = (a,b,c), we obtain:

a)

3 max|0; (ex — b)?]

3(c—b)

V/\S[ﬁ] _ )\(e,\ —a) max|0; (ex — b)?]

sb—a) " 3= 0N

If A= o we obtain Huang’s result on semi-variance [4].
b)

° max|0; (ex — b)°]

5(c —b)

Gt

sb—a) " Bo-a  TUA

1
If = o we obtain Sadefo et al.’s result on semi-kurtosis [9)].

The following result justifies that the risk’s level of a trapezoidal fuzzy
variable (defined by semi-variance or semi-kurtosis) depend on the optimistic
parameter and on the expected return position with respect to the support
of the variable. Its proof is given in the Appendix.

Proposition 4. Let £ = (a,b,c,d) be a trapezoidal fuzzy variable with ex-
pected value ey and X € [0,1].

1. Ifa<ex <borb<ey<cthen V¢ and KY[{] increases with
respect to \.

2. If c < ey <d then:
- V€] increases with respect to X when A <
- K{[€] increases with respect to A\ when A <

oL

Remark 2.

10



3.4 Some properties of fuzzy variables characteristics

For the cases where a < ey <b orb < ey <c, the trapezoidal fuzzy variable
describes almost either lower expected returns or average expected returns.
That is the reason why the more the investor is confident (X increases), the
more he is exposed to a high risk’s level (semi-variance and semi-kurtosis
are greater).

For ¢ < ey < d, the trapezoidal fuzzy variable describes almost either higher
expected returns. Thus, the risk remains increasing for an optimistic maxi-
mum’s level (% for semi-variance and % for semi-kurtosis).

For X\ > % (resp. A > %), the monotonicity of the semi-variance of the trape-
zoidal fuzzy variable (resp. its semi-kurtosis) depends on o, 3,y = c—b. That
means, the investor can feel himself secured with high values of returns. In
that, risk cannot remain increasing with respect to the optimistic factor, it
will necessarily depend on returns’ spread (o, B,7).

In the following, we establish some properties or relationships of charac-
teristics of a fuzzy variable £ such that E)\[{] = ey and A € [0, 1].

3.4 Some properties of fuzzy variables characteristics

The following result justifies that variance (respectively kurtosis) is greater
than semi-variance (respectively semi-kurtosis). In addition, it justifies that
they are equal for symmetric fuzzy variables. Its proof is given in the Ap-
pendix.

Proposition 5. 1) We have: 0 < V2] < Vy[¢] and 0 < K [€] < K,[¢].
2) Furthermore, if £ is symmetric with respect to ey, that is, Vr € R, p(ey —
r) = p(ex +r), then
{ V€l = Wale]
KJ[€] = Kz[¢]
The following result establishes necessary and sufficient conditions under
which Variance and Kurtosis are null for some values of .

Proposition 6. If A € [3,1[, then

{ V)\[f] :0<:>m,\{§:e>\} =1
K)\[f] :O<:>m>\{§:e>\} =1

To prove this result, we need the following Lemma which is proved in
the Appendix.

Lemma 1. Let A C X be an event and X € [0, 1].
0ifA=0

1) my(A) = 0= my(A°) ={ 25 or 1if A €0, 1]
1if A €)3,1]

2) Furthermore, for X € [%, 1], we have:

m)\(A) =0& m)\(AC) =1

11



4 Application for portfolio selection

We now justify the Proposition.
Proof of Proposition 6: Let £ be a fuzzy variable with F)[¢] = ey and
A € [3,1[. Let us prove that VA[¢] = 0 my{ =e\} = 1.
(«<): Let us assume that my{§ = ey} = 1.
It is obvious that my{¢ — ey = 0} = 1 if and only if m{(¢ —ey)?} = 1.
By Lemma 1, we obtain my{(¢ —ey)? # 0} = 0.
Let r > 0, we have:
ma{(€ —ex)? >} < {ma{(€ —en)? > 0} < {ma{(€ —er)* # 0} = 0.
This implies that m){(§ —ex)? > r} =0, Vr > 0.
Therefore, V3[¢] = [57° ma{(€ — ex)? > r}dr = 0.
(=): Let us assume that V)[¢] = 0.
Since my takes values in [0;1], 0+O° ma{(¢€ —ex)? > r}dr = 0 implies that
ma{(€ —ex)? >r} =0, Vr >0, that is my{(£ — e))? # 0} = 0.
By Lemma 1, we have: my{(¢ —e))? = 0} = 1 and we deduce that my{¢ —
ex =0} =1, that is, my{{ =ex} = 1.
In a similar way, it is easy to prove that K[| =0 my{{ =e\} =1. O
In the following Section, we propose two models and implement them for
the determination of optimal portfolios in Finance.

4 Application for portfolio selection

4.1 Optimization models

Let us consider an investor who likes to invest his capital in n securities
in the proportion x, xa,..., ¥, such that Vi € {1,2,...,n}, x; € [0,1] and
o, @y = 1. It is well-known that an investment of a part x; of the capital
in the i*" security generates a return denoted by x;&; which is not currently
known. Making up such investment consists on constituting a portfolio
((%4,&))1<i<n where the n fuzzy variables x1&1, ..., zn&, are future returns
of the n securities and the fuzzy variable £ = & x1 + foxo + ... + Epay 18
the total future return or the portfolio future return. With respect to the
credibility measure, Huang [4], Li et al. [5], Sadefo et al. [9] assumed
that &; is a fuzzy variable and they proposed models based on parameters
(mean, variance and semi-variance for Huang; mean, variance and skew-
ness for Li et al.; mean, variance, skewness and kurtosis for Sadefo et al.)
in order to determine optimal portfolios. In this Section, we propose two
models based on parameters with respect to m) to solve the same ques-
tion of determination of best portfolios. Those new models give a family
of solutions which are optimal portfolios and generalize more recent models
proposed by Sadefo et al. [9] in the particular case where A\ = % For that,
we consider the first family of seven assets returns described by the fol-
lowing triangular fuzzy variables proposed by Huang [4] and used by many
authors: & = (—0.3,1.8,2.3), & = (—0.4,2.0,2.2), & = (—0.5,1.9,2.7),
& = (—0.6,2.2,2.8), & = (—0.7,2.4,2.7), & = (—0.8,2.5,3.0) , & =
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4.2  Implementation of the two models with Huang’s data

(—0.6,1.8,3.0) and the second family of ten assets returns described by the
following trapezoidal fuzzy variables proposed by Hasuike et al. [3] (written
as (a,b,c,d)): & = (—0.362,—0.123,0.005,0.873), &2 = (—0.37, —0.069, 0.069, 0.536),
& = (—0.329,—-0.129,0.025,0.738), & = (—0.193,0.005,0.177,0.412), & =
(—0.299, —0.082,0.114,0.437), & = (—0.342,—0.052,0.108, 0.49) ,

& = (—0.292,—0.056,0.067,0.436), &g = (—0.25,0.060,0.193,0.649), & =
(—0.405, —0.093,0.130,0.756) , &9 = (—0.554,0.009,0.236,0.5). In addi-
tion, we set for each family of assets, three targets values t1, t9, t3 considered
respectively as the minimum benefit (expected value), the maximum risk
(variance) and the minimum skewness that the investor can bear. The two
proposed selection models for best portfolios of those assets are:

minimize K[z, &, + Tiy&ip + .- + i, i)

subject to
B[z &y + 23,800 + o + 23,8, ) >t
Waxi &y + ®in&io + oo + 24,80 ] < 2 (12)

Salxi&iy + Tigio + oo + 24,80, ) > 3

and o
minimize K¥ [z, &, + 24,80, + o + 3,60,
subject to
Exlxi &) + win&ip + .o+ 23,8, ] > 0
Waxi &iy + Tinio + .o + 24,80, ) < o (13)

S)\[xzjgil + xi2§i2 + ...+ x’bkf’bk] Z t3
Tip + X4y + .o —}—x% =1
zi, >0,k € {7;10}

In the following paragraph, we implement the two models by using Huang’s
data.

4.2 Implementation of the two models with Huang’s data

In the following, we implement with Huang’s data the two previous models
for A = %, A= % and \ = % where the selected target values t1,to,t3 are
given in Table 3.
For that, we set: Vi € {1,...,7}, & = (a4, bs, ¢;) and the combination of those
seven triangular fuzzy variables is also a triangular fuzzy variable denoted
by £ = 22‘721 & = (a,b,c) where a = 21'721 a;, b= Zzzl b; and ¢ = 21'7:1 ci,
oy = bl — Qq, ﬁz = C; — bi and o = 23:1 (07N ﬂ = ZZ:I Bl
We recall that Sadefo et al. [9] defined these characteristics in the particular
case where A = %

By implementing those formulas in Matlab through the previous pro-
posed models, we obtain (i) Table 1 which presents in each line (from the
second line) how the best portfolio is made up of in term of percentage of
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4.2

Implementation of the two models with Huang’s data

the seven securities for a given value of A\ and for either K, either K° as
objective function and, (ii) Table 2 gives characteristics (parameters) of best
portfolios of Table 1.

Asset i 1 (%) | 2 %) [3 %) [4(%) 5 %) 6 (%) |7 %)
I
A=2 (K) | 0.00 | 63.39 | 0.00 | 0.00 | 36.61 | 0.00 | 0.00
|
A= §( K%) | 0.05 | 06471 | 0.00 | 0.05 | 31.33 | 3.85 | 0.00
I
A= (K) |20.04| 0.00 | 000 | 79.89 | 0.00 | 0.07 | 0.00
I
A= (KS) {2000 000 | 0.00 |80.00| 0.00 | 0.00 | 0.00
)
A=3 (K) | 4250 | 0.00 | 0.00 | 57.50 | 0.00 | 0.00 | 0.00
)
A=2 (K%) | 42.50 | 0.00 | 0.00 | 57.50 | 0.00 | 0.00 | 0.00
Table 1: Optimal selection from each model.
Mean | Variance SV Skewness Kurtosis SK
A=z2(K) | 1.3005 | 0.4571 | 0.2482 -0.0014 0.6593 | 0.4880
A=1(K®°)[1.3004 | 0.4570 | 0.2482 [ —1.5336 x 1075 | 0.6594 | 0.4875
A=1(K) | 1.60 | 0.7018 | 0.6140 -0.6823 1.7290 | 1.6873
A=3(K | 160 | 0.7019 | 0.6141 -0.6823 1.7291 | 1.6872
A=2(K) | 1.80 | 1.0510 | 1.0404 -1.6573 3.2213 | 3.2202
A=2 (K | 180 | 1.0510 | 1.0404 -1.6573 3.2213 | 3.2202

Table 2 : Comparison of the characteristics of different optimal portfolios.

Target values | Mean:t; | Variance: to | Skewness: t3

T

A= — 1.3 0.5 0
1

A= 5 1.6 0.8 -0.6823
2

A= 2 1.8 1.2 -2
3

Table 3: Selected target values depending on A.

Table 1 gives strategies to invest in the seven assets in order to obtain
best portfolios for each of the three values of the parameter. More precisely,
no investment in &3 and &7, greater investment in & and &4 for greater values

of \.

We can observe the impact of the parameter A\ variation through the follow-

ing histogram.
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4.2  Implementation of the two models with Huang’s data

m KurtosisModel(A=1/3)

m SemikurtosisModel(A=1/3)

m KurtosisModel(A=1/2)

W SemikurtosisModel(A=1/2)

M KurtosisModel(A=2/3)

m SemikurtosisModel(A=2/3)

Figure 2: Mlustration of fuzzy variables characteristics from different
models with Huang’s data.

According to the results of Table 2, we can make the following observa-
tions:
- The mean increases with respect to A, it can be interpreted as follows:
the more the optimistic parameter is greater (the more self confident the
investor is), the greater is the expected return which represents its benefit.
In addition, risk measures such as variance, kurtosis, semi-variance, semi-
kurtosis increase with respect to A. It means that, when the investor is self
confident in investment and he is looking for greater benefits, meanwhile he
is exposed to greater risk.
- The skewness is decreasing with respect to A. It means that returns’ spread
is more greater on left of the mean when A increases. Thus, the investor is
exposed to loss (negative returns) when he is more self confident.
- Notice that, for a given value of A, it is not always possible to get invest-
ment proportions with some targets values. By varying A as in Table 3, one
can obtain models that converge to a unique solution with some given target
values.
- For A = %, the two proposed models coincide. For further research, it is
interesting to determine different optimistic parameter’s values or the min-
imum optimistic parameter’s value such that the two models coincide.

15



4.3

Implementation of the two models with Tokyo stock exchange data

To end this Section, we implement the two proposed models by using
real data as Tokyo stock exchange data.

4.3

exchange data

Implementation of the two models with Tokyo stock

We implement Tokyo stock exchange data through the two previous models

for A\=1 A=

1
3

and A\ = % The target values t1, t2,t3 are given in Table 6.

Different optimal investment proportions and optimal characteristics are re-

spectively given in Tables 4 and 5.

Asseti | 1 (%) |2 (%) |3 (%) |4 (%) |5 (%) |6(%)|[7%)|8(%)|9 (%) | 10 (%)
(K1) | 0.00 [ 0.00 [ 0.00 [ 45.30 | 0.00 | 0.00 [ 0.00 | 54.69 | 0.00 | 0.00
(Ky_1) | 0.05 | 0.04 | 0.05 | 43.77 | 0.06 | 0.05 | 0.07 | 55.84 | 0.04 | 0.03
4
(K1) | 0.00 [ 0.00 [ 0.00 [ 16.83 | 0.00 | 0.00 | 0.00 | 83.16 | 0.00 | 0.00
(Ky_.) | 0.00 | 0.00 | 0.00 | 16.83 | 0.00 [ 0.00 | 0.00 | 83.16 | 0.00 | 0.00
—3
(K,_1) | 4851 | 0.00 | 0.00 [ 28.78 | 0.00 [ 0.00 | 18.87 | 3.75 | 0.00 | 0.00
(KY_,) | 4837 | 0.00 | 0.00 | 3171 | 0.00 | 0.00 | 17.56 [ 2.25 | 0.00 | 0.00
2
Table 4: Optimal selection from each model.
Mean | Variance SV Skewness | Kurtosis SK
A=1(K) [ 002 | 0.0262 [0.0047 | 0.012 0.0049 | 1.6745 x 101
A=1( K%) ]0.0201 | 0.0264 | 0.0047 | 0.0122 0.0050 | 1.7094 x 10~*
A=z(K) | 007 | 0.0285 [0.0114 | 0.0141 0.0058 | 6.6001 x 10~*
A=z(K°) | 007 | 0.028 [0.0114| 0.0142 | 0.0058 | 6.6330 x 10~*
A=1 (K) | 0.09 0.04 | 0.0389 0.01 0.0083 0.0037
A= (K°) | 0.09 0.04 | 0.0385 0.01 0.0081 0.0036

Table 5 : Comparison of the characteristics of different optimal portfolios.

Target values | Mean:t; | Variance: to | Skewness: t3
A= i 0.02 0.04 0.01
A= é 0.07 0.04 0.01
A= % 0.09 0.04 0.01

Table 6: Selected target values depending on .

As we can observe from Tables 5 and 2, optimal portfolios characteristics
except the skewness (skewness neither describes benefit nor risk), vary in the
same manner with respect to the parameter A\ whatever data are described.
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5 Concluding Remarks

The following histogram provides for Tokyo stock exchange data, clear ob-
servations of those characteristics variations according to the model and the
parameter A.

0,1
0,09
0,08
0,07 : _
0,06 M KurtosisModel(A=1/4)
0,05 B SemikurtosisModel(A=1/4)
0,04
0,03 ® KurtosisModel(A=1/3)
0,02 B SemikurtosisModel(A=1/3)
0,01
0 B KurtosisModel(A=1/2)
& & & Oé,\" & o‘."\‘j m SemikurtosisModel(A=1/2)
) N & I &
@ A’é\ “)G\\ \Q\} \A,b&\ 6\{{-&
&

Figure 3: Illustration of fuzzy variables characteristics from different
models with Tokyo stock exchange data.

5 Concluding Remarks

In this paper, we have determined two useful axioms of the m)— measure of
fuzzy events combining possibility and necessity measures with an optimistic
parameter which describes investor attitude to make a decision in uncertain
situations. By means of the my-measure and its axioms, we have defined and
determined properties of some characteristics (four first moments and two
first semi-moments) of a fuzzy variable. These moments and semi-moments
have been determined and analyzed for trapezoidal and triangular fuzzy
variables. The obtained results generalize those obtained earlier by Liu [6],
Li et al. [5], Huang et al. [4] and Sadefo et al. [9]. Those theoretical results
have been illustrated in portfolio selection with fuzzy returns in Finance.
We have proposed and implemented two models which led to a huge variety
of solutions in portfolio selection according to some given target values. We
have displayed the impact of the variation of the optimistic parameter on
the investment’s risk and the benefit: the benefit and the risk increase with
respect to the optimistic parameter.

For further research, we propose to tackle some interesting questions among
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6 Appendix

which: (i) the determination of k-moments and 2k-moments (for k£ € N) of
a fuzzy variable (ii) the study of dominance on fuzzy variables based on the
new measure and (iii) the study of partial lower moments of a fuzzy variable
based on the new measure.

6 Appendix

Proof of Proposition 2 (linearity of the mean): According to the ex-
pressions recalled in relations (4) and (5) and the notions of optimistic and
pessimistic functions respectively given by:

Xoup(a) = sup{r/Pos{z € X/&(xz) > r} > a} and Xgp(a) = sup{r/Pos{z €
X/&(x) > r} > a} with a € (0, 1], Liu and Liu [7] proved that:

1. El¢] = [y Xeuwp(a)da and E[¢] = [} Xin(a)da.

2. B[ +n] = E[¢] + E[n] and E[¢ +n] = E[¢] + E[n].
3. For a > 0, E[a¢] = dE[¢] and E[af] = aE[¢].

4. For a <0, Elaf] = aE[¢] and E[af] = aE[¢].

Furthermore, according to relation (6), we have:

For A € R, E,\[¢] = AE[¢] + (1 — M) E[¢] and thus:

E\[€+n] = AE[€+n]+ (1 = NE[¢ + 1], that is,

EXE 4] = [ME[E] + (1 = NE[E]| + [AE[n] + (1 = M) Eln]] = Ex[¢] + Ex[n].

On the other hand, we have for a nonnegative real number o
Exag] = AE[ag] + (1 = M Elag]=a(AE[¢] + (1 = N E[C]]) = aE[E].

Proof of Proposition 4: Let & = (a,b,c,d) be a trapezoidal fuzzy
variable with expected value ey and X € [0, 1].

o Tfa<e, <bthen VI[e] = A=W ang K§[¢] = Az,
5

W haves (V)31 = 52 1ABE > 0 nd (kO] = 2+
A eilea—a)t > 0.

o Ifh < ey < c then VI[e] = A0 _ N0 g jeS[e] = Alaze)

3a 3a
(ex—b)®
)\ Sa . ( B )3 ( 7b)3 e (e 7a)2 e (e 7b)2
Wo have: (VS)[f] = (S0 — (pt 4 bl _\Beh? s g
and (KS)’)\E] — (6A5;a)5 _ (€A5;a)5 + )\e&(e?;a)‘l _ )\e&(ez—b)“ >0.

o If ¢ < ey < d then VF[g] = A&z \@2" 4 (1 y)lana® g
5

K5l = A@52 b 4 yylesa”,
’ 2 ’ 2
We have: (V9),[¢] = (ea=a)? _ (ex=b)® )\GA(ez—a) RGO

3a 3a «

18



6 Appendix

(exggfl)?’ +(1_)\)€&(€2{C)2 and (KS>/A[§] _ (exs;a)S _ (5’)\5;0«)5 _i_)\e&(@?;a)zl _

AEA(G,\ b)* . (6A5a0) + (1 _ )\)e&(e%—c)4‘
We easﬂy check that:

A2 = (VO] >0and A < 2 = (K9)\[¢]>0. O

Proof of Proposition 5 1) Let us prove that 0 < Vi°[¢] < V,[¢]. Let
x € X and r € R. We have:

. —12 (f—e)\>21f§§6)\ . g .
[(E—en)T]" = { 0if € > ey . This definition leads us to two cases:

i) First case: &(x) < ey.

We have: [(£(z) —ex)7]* = (£(z) —ex)”.

Therefore, [(£(z) —ex) ]2 > 7 & (E(z) —en)? > 1.

ii) Second case: £(z) > ey.

We have: [(£(z)—ex) ]2 = 0 which implies that (£(z)—ex)? > [(£(z)—ex) ]2
Thus, [(€(z) — ex)]2 > r implies (£(z) — ex)? > 1.

It follows that: V(x,7) € X xR, {z/[(£(z)—en) > > 7} C {x/(&(z)—ex)? >
T}

By the fact that m) is monotone, we obtain:

o € R0 e [ 1) S mal(60) )= 1

Finally, VALE] = o ma{(€—ex)? > r}dr > i ma{[(€—ex) ] > r}dr =
vSlel

In the same manner, one can prove that 0 < kY [¢] < K, [¢].

2) Let £ be a symmetric fuzzy Variable Let us prove that V,[¢] = V4 [€].

Let us write: V)\ (€] = E\[[(§ —ex)] P OA(E —en))? > r}dr =
T —en) € o0 \f] (V7 —i—oo[}dr and
Vx[ﬁ] = B(€ el = fi T 0 {E —e)? = rtdr = [0 —en)

] = 605 —y/r] U [/ +oo[}dr

If 4 and v are respectively membership functions of fuzzy variables £ — ey
pif§ —ex <0
0 otherwise

¢ is symmetric with respect to ey if and only if & — ey is symmetric with
respect to 0. We have, Vr > 0:

Mi{(6-ex) €] ~00; —yTIUIVF +ool} = ASUDe)_oer—ymiyi ool M) +(1-
A)(l_supxe}—\/ﬁ—\/ﬂ ,LL(ZL‘)) =A max(supare}—oo;—\/ﬂ lu(x)a SUPge(\/r;4o00] lUJ($))+
(1- )‘)[1 - max(supxe],\/;;o] p(z), SUPze[0;/7] M(JI))]

Let us notice that by fact that £ is symmetric, we have: SUD ] —00;— /7] u(x) =
supxe[\[ +Oo[,u(nlc) and sup,e)_ /7.0 4(T) = SUP,epo;, 7 #(T). SO, We have:
(€ ex) €] — 00 —VI] ULy 00[} = AsDy sor s () + (1= )1 -
SUD,e] 0] ()

However, supge)_ oo, — /7] H(T) = SUPye]—o0;— 7 V(T) and sup,e)_ .0 () =
supxe] \[0] v(x), that is:

Ta{(€—en) €] = o0s =] U [/ +00[} = Asup,e) oo, V(@) + (1= A)[1 =
SUPe]— /o) V()

and (£ —ey)”, then we have v = . Let us observe that
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6 Appendix

By the fact that v is null on the intervals [\/r; +o0o[ and [0; /r[, we finally
have:

Ba0(6e0) €)=~V AUIV 40l = A iy ) 1
A1 — supge)— ViV =M€ —ex)” €] = oo; =] U [V/r; +ool}.
Therefore, we get V3 [5] VA €]

By a similar way, one can prove that K{[¢] = K,[¢]. O

Proof of Lemma 1: 1) Let us consider A C X such that My(A4) =
0 and A € [0,1]. Let us recall the third axiom of the measure My (A):
Xma(A) + (1 — Ama(4) = A
or
(1 = X)mx(A) + Amy(A°) = A

e If A =0, then we obtain by Axiom 3:

my(A°) =0
or . That is, Amy(A¢) = 0.
0=0

e If X €]0, 3], then we obtain by axiom 4:

(1= \)ma(A%) = A mA(A%) = £
or which implies that or
Amy(A°) = A my(A°) =1

Furthermore, A €]0, 3] = 0 < my(A°) = {25 < 1.

e If A €]1,1[, then we obtain by Axiom 4:
)m

(1= A)yma(4°) = A mA(4%) = 25
or which implies that or
)\mA(AC) = m)\(AC) =1
However, A €]3, 1[= m,(A°) = ﬁ > 1, which is wrong. So, we have
my(A€) = 1.
Finally, for A = 1, we obtain by Axiom 3:
0=1
or . However, 0 = 1 is wrong. So, Am)(A°) = 1.
my(A°) =1

2) Let us consider A C X and A € [3,1].
=) If m)(A) = 0, then according to Lemma 1, we have my(A¢) = 1.
<) If my(A°) =1, then by Axiom 3, we have:

My (A) + (1= X)) = A my(A) = 2271
or which implies that ¢ or
(I=X)mx(A)+ A=A mx(A) =0
However, \ € [%,1[:> mx(A) Z’\T_l < 0, which is wrong. So, we have

mx(A) = 0. Hence the result. OJ
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