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Abstract

In this paper we study the problem of optimal fishing for regime switching,

which may be regarded as sequential optimal problem with changes of regimes.

The growth dynamics of a given fish species is described by the differential

stochastic logistic model in which we take into account two states: prior or

during floods and after. The resulting dynamic programming principle leads to

a system of variational inequalities, by means of viscosity solutions approach,

we prove the existence and uniqueness of the value functions. Then numerical

approximation is used to answer the question: what is the optimal fishing effort

for a sustainable fishery?
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1 Introduction

The simplest population model commonly used in fisheries is the logistic

growth model extended to include catch:

dB

dt
= rB(1− B

K
)− C (1)

where B is the biomass of the stock, r is the intrinsic rate of growth, K(the2

carrying capacity) is the biomass the stock would tend toward if unfished, and

C is the catch rate.4

The catch C is constant in quota management. Normally the catch is as-

sumed to be proportional to fishing effort and to stock size, which results in the

model proposed by (1) :

dB

dt
= rB(1− B

K
)− qEB (2)

where E is the fishing effort and q is a parameter describing the efficiency of the

fishing gear6

However, the environment is subject to significant random fluctuations that

affect the population per capita natural growth rate. The effect of these fluc-

tuations can be approximated by a white noise σε(t), where ε(t) is a standard

white noise and σ > 0 measures the strength of environmental fluctuations see

(2). Therefore, the above ODE Eq. (2) must be updated to the stochastic

differential equation (SDE) which can be written in the standard format:

dB(t) = rB(t)(1− B(t)

K
)dt− qE(t)B(t)dt+ σB(t)dW (t) (3)

where W (t) is a standard Wiener process. We will assume that r− qE > σ2/2,

otherwise the population will rendered extinct (see (3) ).8

Environmentally driven long-term changes in fish populations, which can

play a major role in determining how such populations respond to fishing pres-10

sure, are rapidly being recognized as a critical problem in fisheries science ((4)).

The life cycle of African fish species of river is closely related to the seasons12

- reproduction almost always occurring just prior to, or during, floods ((5), (6),

(7), (8)).14
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Floods appear to be essential for the completion of their reproductive cycle

for most species: the absence of floods due to the drought in the Sahel has16

caused a decline in fish reproduction in the central Niger Delta, the Senegal

River and Lake Chad (Stauch, personal communication).18

There is some evidence that flood intensity acts in favor of reproduction, as

it has been observed that the structured age class related to the high floods in20

the Kafu were more varied ((9)).

In our study we consider only two seasons: the dry season with intensive22

fishing and reduced reproduction, the flood period with reduced fishing and

intensive reproduction.24

A regime switching model provides an alternate approach to capturing non-

constant drift and volatility terms for the stochastic process followed by the26

biomass of fish. Therefore, the above SDE Eq. (3) must be updated to the

another stochastic differential equation that captures the regime swithing :28

dB(t) = rα(t)B(t)(1− B(t)

K
)dt− qEα(t)(t)B(t)dt+ σα(t)B(t)dW (t) (4)

where α(t) refer to regimes and there are 2 regimes, i.e, α(t) ∈ {1, 2}

Certainly, there is some evidence that uncertainty in price parameters leads30

to changes in the optimal policy ((10)), and the number of studies that in-

clude uncertainty in both the biological stock dynamics and the price dynamics32

is steadily increasing. The models in (11) have considered stochastic mean-

reverting prices and when compared with the typical geometric Brownian mo-34

tion model, a mean-reverting price better reflect basic, microeconomic ideas

about supply behavior (see (12)).36

Let the instantaneous profit from the harvest of the stock biomass π(Bt, ht)

be given as:

π(Bt, ht) = Ptht − c(Bt, ht) (5)

where, ht denotes the volume of harvest, Bt the stock of the resource,

c(Bt, ht) is the cost function, both at time t and Pt the mean-reverting (ac-

tual or spot) price of the harvest at the time of decision making. This can be
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modeled by the following process:

dPt = θ(p̄0 − p̄1h− Pt)dt+ σP dWP (t) (6)

The parameters are positve constants, θ is the reversion speed, p̄0 is a maximum

price, p̄1 is the slope of the inverse demand curve and σP is the volatility of the38

spot price (see (11)).

Many works set the problem, in the infinite horizon time, as follows:

maxht

∫ +∞

0

e−βtπ(Bt, ht)dt (7)

Previous work finds, almost without exception, that all fishers are risk-averse40

((13), (14), and (15)). Under an expected-utility theory (EUT) specification of

choice under uncertainty, we assume a constant relative risk-aversion (CRRA)42

utility function defined as U(x) =
x1−γ

1− γ
where x signifies the lottery prize and

γ is the CRRA coefficient to be estimated: with γ = 0 denoting risk neutrality,44

γ > 0 indicating risk aversion, and γ < 0 denoting risk loving ((16)).

In recent years, further emphasis has been put on developing models for op-46

timal management of these stochastic natural resources ((17); (18); (19)). Al-

though the number of studies in bioeconomic modeling that include the stochas-48

tic dynamics are increasing, they are still not adequate.

The time horizon also plays a crucial role in optimal policies and the usual50

infinite horizon framework problem requires the existence of linear growth con-

ditions on drift part of the logistic process for our solution to hold, raising the52

question of whether another solution may exist or not. In this paper, we consider

the finite time horizon T with utility on both profit and remaining biomass.54

The outline of this paper is as follows. In Section II we formulate a stochastic

optimal control problem. Section III the optimal strategies to the utility maxi-56

mization problem are derived. In Section IV we present examples to illustrate

the results. Finally, in section V we end with some summarizing comments.58
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2 Mathematical model

2.1 Stochastic logistic growth model60

Throughout this paper we let (Ω,F , {Ft}t≥0,P) be a complete probability

space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increas-62

ing and right continuous while F0 contains all P-null sets). Let W (t) and WP (t),

t ≥ 0, be scalar independant Brownian motions defined on this probability space.64

After specifying a stochastic model for biological growth that we use in this

paper. The valuation of the biomass can be described in terms of the following66

variables:

t is time, t ∈ [0;T ] and T is finite-horizon of time.68

α(t) is a right-continuous-time Markov chain, Ft-adapted with finite state

space S = {1; 2} and generator Q = (qij) ∈ R2 × R2 such that qij ≥ 070

for i 6= j and
∑2
j=1 qij = 0. We assume that the Markov chain α(.) is

independent of the Brownian motions WP (.) and W (.)72

B(t) stock of fish biomass at time t. Whith initial condition B(0) > 0

rα(t) intrinsic rate of growth in regime α(t)74

Eα(t) is the fishing effort which depends on the current regime α(t)

σα(t) is volatility in regime α(t). In any time rα(t) − qE > σ2
α(t)/276

We set an SDE under regime switching of the form:

dB(t) = f(t, B(t), α(t))dt+ g(t, B(t), α(t))dW (t) (8)

on t ≥ 0 with initial value B(0) = b ∈]0;K[, where

f : R+ × R+ × S → R and g : R+ × R+ × S → R (9)

This equation can be regarded as the result of the following 2 equations:

dB(t) = f(t, B(t), i)dt+ g(t, B(t), i)dW (t); i = 1, 2 (10)
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switching from one to the other according to the movement of the Markov chain.

Recalling that

f(t, B(t), i) = riB(t)(1− B(t)

K
)− qEi(t)B(t) and g(t, B(t), i) = σiB(t) (11)

B(t) is an unknown stochastic process, that is, the solution to Eq.(8) satisfying

the initial condition B(0) = b such that 0 < b < K. The logical requirement is

that B(t) must be positive. The resulting stochastic differential equation does

not satisfy the standard assumptions for existence and uniqueness of solutions,

namely, linear growth and the Lipschitz condition. Nevertheless, for any positive

initial condition, the solution exists and is unique under a hypothesis that both

f and g satisfy the local Lipschitz condition and in any time rα(t)−qE > σ2
α(t)/2.

The solution of this equation is.(For more details see Appendix A )

Bt,i =
K exp[(ri − qE − (1/2)σ2

i )t+ σiWt][
(K/B0) + ri

∫ t
0

exp[(ri − qE − (1/2)σ2
i )s+ σiWs]ds

] i = 1, 2.

(12)

2.2 The Mean- reverting spot price78

The version of the Ornstein-Uhlenbeck (OU) process we employ here is de-

scribed by

dPt = θ(p̄0 − p̄1h− Pt)dt+ σP dWP (t) (13)

where the parameters are positve constants, θ is the reversion speed, p̄0 is a

maximum price, p̄1 is the slope of the inverse demand curve and σp is the

volatility of the spot price. Note that the mean (or long-term) price p̄0 − p̄1h

may depend upon the harvest level. WP (t) is standardized Brownian motion as

before. Its solution for an initial condition P (0) = p is

Pt = pe−θt + (p̄0 − p̄1h)(1− e−θt) + σ

∫ t

0

e−θ(t−s)dWs (14)

One of the most convenient properties is that

Pt ∼ N
(
p̄0 − p̄1h+ (p+ p̄0 − p̄1h)e−θt,

σ2

2θ
(1− e−2θt)

)
(15)
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2.3 The optimization problem

The cost of harvest per unit time is assumed to depend on effort and to have

a quadratic form given by

c(Bt, Et) = (c1 + c2E(t))E(t) (16)

where c1, c2 > 0 are constants. The quadratic cost structure incorporates the80

case where the fishermen need to use less efficient vessels and fishing technologies

or pay higher overtime wages to implement an extraordinary high effort (see82

(20), (21)).

By substituting the values in equation 5, the profit function can be rear-

ranged as:

π(Bt, Pt, E) = (qBtPt − c1 − c2E(t))E(t) (17)

where, c1 and c2 are positive parameters.84

For a time t in the horizon [0, T ], we define a performance criterion for each

i ∈ S as:

Vi(t, bt, pt) =Ebt,pt,i

[∫ T

t

e−β(s−t)
π(Bs, Ps, Es, i)

1−γ

1− γ
ds+ e−β(T−t)Vi(BT )

]
(18)

=Ebt,pt,i

[∫ T

t

e−β(s−t)l(s,Bs, Ps, Es, i)ds+ e−β(T−t)m(T,BT )

]
(19)

We will start the optimization at time t = 0. Let b0 = b, p0 = p with b, p ∈

]0; +∞], we have

Vi(0, b, p) =Eb,p,i

[∫ T

0

e−βs
π(Bs, Ps, Es, i)

1−γ

1− γ
ds+ e−βTVi(BT )

]
(20)

=Eb,p,i

[∫ T

0

e−βsl(s,Bs, Ps, Es, i)ds+ e−βTm(T,BT )

]
(21)

Here Eb,p,i is the conditional expectation given B(0) = b, P (0) = p and86

α(0) = i under P, where T is the finite time horizon β > 0 is a discount factor.
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We say that the control process E(t) is admissible if the following tree con-88

ditions are satisfied:

1. the SDE (4) for the state process B(t) has a unique strong solution;90

2. the SDE (6) for the state process P (t) has a unique strong solution;

3. Eb,p,i

[∫ T
0
|e−βtπ(Bt, Pt, Et, i)

1−γ

1− γ
|dt+ |e−βTV (BT )|

]
<∞.92

Write A for the set of admissible controls. The number of tools, gears, hours,

vessels and manpower is finite and limited, so we require the set A in which the94

controls take values to be bounded. The stochastic control problem is to find

an optimal control E∗ ∈ Ai such that:96

vi(b, p) = sup
E∈Ai

Vi(b, p) (22)

3 Main results

The Hamilton-Jacobi-Bellman equations associated with this problem is a

variational inequality involving, at least heuristically, a nonlinear second order

parabolic differential equations :

∂vi
∂t

(t, bt, pt) + sup
E∈Ai

{
−βvi(t, bt, pt) +

π(Bt, Pt, Et)
1−γ

1− γ
+ Lvi(t, bt, pt)

}
= 0,

(23)

vi(T, bt, pt) = κγ
B1−γ
T

1− γ
for i ∈ {0; 1}; κ > 0 (24)

where L is an operator defined by:

Lvi(t, B, P ) = θ(p̄0 − p̄1qEB − P )
∂vi
∂p

(t, B, P ) + f(B,Ei)
∂vi
∂b

(t, B, P )

+
1

2
σ2
P

∂2vi
∂p2

(t, B, P ) +
1

2
g2(B,E)

∂2vi
∂b2

(t, B, P ) + qij(vj(t, B, P )− vi(t, B, P ))

(25)

As it is well-known, there is not in general a smooth solution of the equation

(23) hence we find the solution in the viscosity sense, as introduced by (22), in
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subsection 3.2. Recall that E∗free is the optimal solution of equation 23. The

optimal harvest rule E∗(t) can be described as follows

E∗(t) =


0 if E∗free(t) < 0

E∗free(t) if 0 ≤ E∗free(t) ≤ Emax

Emax if E∗free(t) > Emax

(26)

In addition to these, we know that the fishery is valueless if the stock goes98

extinct and therefore add the condition Vi(0, Pt) = 0, which must hold for all

Pt and i.100

3.1 On the regularity of value functions

In this section, we study the growth and continuity properties of the value

functions.

We shall make the following assumptions: there exist ρ > 0 such that for all

s, t ∈ [0;T ], b, b′ ∈ R+, p, p
′ ∈ R+ and E ∈ A

|l(t, b, p, E)− l(s, b′, p′, E)|+ |m(b, p)−m(b′, p′)| ≤ ρ [|t− s|+ |b− b′|+ |p− p′|]

(27)

and the global linear growth conditions:

|l(t, b, p, E)|+ |m(b, p)| ≤ ρ [1 + |b|+ |p|] (28)

Lemma 3.1. Let (27) and (28) hold. For any k ∈ [0; 2] there exists C =

C(k;K;T ) > 0 such that for all h, t ∈ [0;T ], b, p, bt, pt ∈ R+:

E|Bt,bth |
k ≤ C(1 + |bt|k); E|P t,pth |k ≤ C(1 + |pt|k) (29)

E|Bt,bth − bt|k ≤ C(1 + |bt|k)h
k
2 ; E|P t,pth − pt|k ≤ C(1 + |pt|k)h

k
2 (30)

E|Bt,bth −Bt,b
′
t

h |
k ≤ C|bt − b′t|2; E|P t,pth − P t,p

′
t

h |k ≤ C|pt − p′t|2 (31)

E
[

sup
0≤s≤h

|Bt,bth |
]k ≤ C(1 + |bt|k)h

k
2 ; E

[
sup

0≤s≤h
|P t,pth |

]k ≤ C(1 + |pt|k)h
k
2 (32)

10



Proof 3.1. See Appendix B102

Proposition 3.1. For any i ∈ S, the value function denoted by vi(s, b, p) sat-

isfies a linear growth condition and is also Lipschitz in (b, p) uniformly in t.

There exists a constant C > 0, such that

0 ≤ vi(s, bs, ps) ≤ C(1 + |bs|+ |ps|),

∀(s, bs, ps) ∈ [0;T ]× R+ × R+ (33)

|vi(s, bs, ps)− vi(s, b′s, p′s)| ≤ C(|bs − b′s|+ |ps − p′s|),

∀s ∈ [0;T ], bs, b
′
s ∈ R+, ps, p

′
s ∈ R+ (34)

Proof 3.2. We first show that v is Lipschitz in (b, p), uniformly in t and its

linear growth condition.

vi(s, bs, ps) = sup
E∈A

E

[∫ T

s

e−β(u−s)l(i, u,Bs,bsu , P s,psu , Eu)du+ e−β(T−s)m(Bs,bsT , P s,psT )

]
(35)

1. Using elementary inequality | supA− supB| ≤ sup |A−B|, Lipschitz con-
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dition (27) on l ; m and from estimate (3.1), with k=1,

|vi(s, bs, ps)− vi(s, b′s, p′s)|

≤ sup
E∈Ai

∣∣∣∣∣E
[ ∫ T

s

e−β(u−s)
(
l(i, u,Bs,bsu , P s,psu , Eu)−l(i, u,Bs,b

′
s

u , P
s,p′s
u , Eu)

)
du

+ e−β(T−s)
(
m(Bs,bsT , P s,psT )−m(B

s,b′s
T , P

s,p′s
T )

)]∣∣∣∣∣
≤ sup
E∈Ai

E

[ ∫ T

s

∣∣∣∣(l(i, u,Bs,bsu , P s,psu , Eu)− l(i, u,Bs,b
′
s

u , P
s,p′s
u , Eu)

)∣∣∣∣du
+

∣∣∣∣(m(Bs,bsT , P s,psT )−m(B
s,b′s
T , P

s,p′s
T )

)∣∣∣∣]
≤ sup
E∈Ai

E

[ ∫ T

s

(
|Bs,bsu −Bs,b

′
s

u |+|P s,psu −P s,p
′
s

u |
)
du+

(
|Bs,bsT −Bs,b

′
s

T |+|P s,psT −P s,p
′
s

T |
)]

≤ sup
E∈Ai

[ ∫ T

s

E
(
|Bs,bsu −Bs,b

′
s

u |+E|P s,psu −P s,p
′
s

u |
)
du+

(
E|Bs,bsT −Bs,b

′
s

T |+E|P s,psT −P s,p
′
s

T |
)]

|vi(s, bs, ps)− vi(s, b′s, p′s)| ≤ C
(
|bs − b′s|+ |ps − p′s|

)
(36)

2. from linear growth condition (28) on l ; m and from estimate (3.1), with

k=1,

|vi(s, bs, ps)| ≤ sup
E∈Ai

E

[∫ T

s

∣∣∣l(i, u,Bs,bsu , P s,psu , Eu)
∣∣∣du+

∣∣∣m(Bs,bsT , P s,psT )
∣∣∣]

(37)

|vi(s, bs, ps)| ≤ ρ sup
E∈Ai

E

[∫ T

s

(
1 + |Bs,bsu |+ |P s,psu |

)
du+

(
1 + |Bs,bsT |+ |PT |

)]
(38)

|vi(s, bs, ps)| ≤ ρ sup
E∈Ai

[∫ T

s

(
1 + E|Bs,bsu |+ E|P s,psu |

)
du+

(
1 + E|Bs,bsT |+ E|P s,psT |

)]
(39)

|vi(s, bs, ps)| ≤ C (1 + |bs|+ |ps|) (40)

Proposition 3.2. Under assumptions (49) and (28) the value function v ∈

C0([0;T ] × R+ × R+). More precisely, there exists a constant C > 0 such that

12



for all t, s ∈ [0;T ], bt, bs ∈ R+, pt, ps ∈ R+,

|vi(t, bt, pt)− vi(s, bs, ps)| ≤ C
[
(1 + |bt|+ |pt|)|s− t|

1
2 + |bt − bs|+ |pt − ps|

]
(41)

Proof 3.3. Let 0 ≤ t < s ≤ T . To prove continuity property in time t, we use

the dynamic programming principle.

vi(t, b, p) = sup
E∈Ai

E

[∫ T

t

e−β(u−t)l(i, u,Bt,btu , P t,ptu , Eu)du+ e−β(T−t)m(Bt,btT , P t,ptT )

]
(42)

= sup
E∈Ai

E

[∫ s

t

e−β(u−t)l(i, u,Bt,btu , P t,ptu , Eu)du+ e−β(s−t)v(s,Bt,bts , P t,bts , i)

]
(43)

= sup
E∈Ai

E

[∫ s−t

o

e−βul(i, t+ u,Bt,btt+u, P
t,pt
t+u , Et+u)du+ e−β(s−t)v(s,Bt,bts−t, P

t,pt
s−t , i)

]
(44)

0 ≤ vi(t, bt, pt)− vi(s, bs, ps) = sup
E∈Ai

E

[ ∫ s−t

0

e−β(u)l(i, u,Bt,btu , P t,ptu , Eu)du

+ e−β(s−t)
(
v(s,Bt,bts−t, P

t,bt
s−t , i)− v(s, bs, ps, i)

)
+
(
e−β(s−t) − 1

)
v(s, bs, ps, i)

]
(45)

Applying linear growth condition (27) on l, noting that 0 ≤ 1−e−β(s−t) ≤ β(s−t)

13



and v satisfies (3.1) , we deduce that:

|vi(t, bt, pt)− vi(s, bs, ps)|

≤ sup
E∈Ai

E

[ ∫ s−t

0

∣∣l(i, u,Bt,btu , P t,ptu , Eu)
∣∣du+

∣∣∣e−β(s−t)(v(s,Bt,bts−t, P
t,bt
s−t , i)−v(s, bs, ps, i)

)∣∣∣
+
∣∣∣(e−β(s−t) − 1

)
v(s, bs, ps, i)

∣∣∣]
≤ (s−t) 1

2

(∫ s−t

0

sup
E∈Ai

E
∣∣l(i, u,Bt,btu , pt,ptu , Eu)

∣∣2 du) 1
2

+ sup
E∈Ai

E
∣∣∣e−β(s−t) (v(s,Bt,bts−t, P

t,pt
s−t , i)− v(s, bs, ps, i)

) ∣∣∣
+ sup
E∈Ai

E
∣∣∣(e−β(s−t) − 1

)
v(s, bs, ps, i)

∣∣∣
≤ (s−t) 1

2

(∫ s−t

0

ρ2 sup
E∈Ai

(
1 + E|Bt,btu |+ E|pt,ptu |

)2
du

) 1
2

+ sup
E∈Ai

E
∣∣∣ (v(s,Bt,bts−t, P

t,pt
s−t , i)− v(s, bs, ps, i)

) ∣∣∣
+ β|s− t| sup

E∈A
E |v(s, bs, ps, i)|

≤ |s−t| 12
(∫ s−t

0

ρ sup
E∈Ai

(
1 + E|Bt,btu |+ E|P t,ptu |

)
du

)
+ sup
E∈Ai

E
∣∣∣(v(s,Bt,bts−t, P

t,pt
s−t , i)−v(s, bs, ps, i)

)∣∣∣
+ β|s− t| sup

E∈Ai
E
∣∣∣v(s, bs, ps, i)

∣∣∣
≤ C ′

(
|s− t| 12

∫ s−t

0

(1 + E|Bt,btu |+ E|P t,ptu |)du+ (|bt − bs|+ |pt − ps|) + β(1 + |bs|+ |ps|)|s− t|
)

≤ C
[
(1 + |bt|+ |pt|)|s− t|

1
2 + |bt − bs|+ |pt − ps|

]
(46)

3.2 Existence of viscosity solution

In this section we will first define what we mean by viscosity solutions. Then104

we will prove that the value function is a viscosity solution.

From the optimization problem (23), we derive the Bellman equations as

follows:

∂vi
∂t

(t, B, P )+ sup
E∈Ai

{
−βvi(t, B, P )+

π1−γ

1− γ
+θ(p̄0− p̄1qEB−P )

∂vi
∂p

(t, B, P )

+
[
riB

(
1− B

K

)
− qEB

]∂vi
∂b

(t, B, P ) +
1

2
σ2
P

∂2vi
∂p2

(t, B, P ) +
1

2
σ2B2 ∂

2vi
∂b2

(t, B, P )

+ qij(vj(t, B, P )− vi(t, B, P ))

}
= 0 (47)
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The corresponding Hamiltonian has the following form:

H
(
i, s, B, P, ui,

∂ui
∂s

,
∂ui
∂b

,
∂ui
∂p

,
∂2ui
∂b2

,
∂2ui
∂p2

)
=
∂ui
∂s

(s,B, P )+ sup
E∈Ai

{
−βui(s,B, P )+

π(Bs, Ps, Es)
1−γ

1− γ
+Lui(s,B, P )

}
= 0

(48)

We have the following systems:
H
(
i, s, B, P, ui,

∂ui
∂s

,
∂ui
∂b

,
∂ui
∂p

,
∂2ui
∂b2

,
∂2ui
∂p2

)
= 0 for (i, s, B, P ) ∈ S × [0;Ti]× R+ × R+

ui(T,B, ) = κγ
B1−γ
T

1−γ for i, j ∈ {0; 1} κ > 0.

(49)

we recall that

π(Bs, Ps, Es) = (qBsPs − c1 − c2E(s))E(s) (50)

In order to study the possibility of existence and uniqueness of a solution of106

(49), we use a notion of viscosity solution introduced by (22).

108

Let denote the set of measurable functions on [0;T ]×R+×R+ with polyno-

mial growth of degree q ≥ 0 as,

Cq([0;T ]× R+ × R+)

= {φ : [0;T ]×R+×R+,measurable | ∃C > 0, |φ(t, b, p)| ≤ C(1 + |b|q + |p|q)}.

(51)

Definition 3.1. We say that ui ∈ C0([0;T ]× R+ × R+) is called

i. a viscosity subsolution of (49) if for any i ∈ S, ui(T, b, p) ≤ κγ
b1−γT

1−γ , for

all b ∈ R+, p ∈ R+ and for all functions φ ∈ C1,2,2([0;T ] × R+ × R+) ∩

C2([0;T ]×R+×R+) and (t̄, b̄, p̄) such that ui−φ attains its local maximum

at (t̄, b̄, p̄),

H
(
i, t̄, b̄, p̄, φ(t̄, b̄, p̄),

∂φ(t̄, b̄, p̄)

∂s
,
∂φ(t̄, b̄, p̄)

∂b
,
∂φ(t̄, b̄, p̄)

∂p
,
∂2φ(t̄, b̄, p̄)

∂b2
,
∂2φ(t̄, b̄, p̄)

∂p2

)
≥ 0

(52)
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ii. a viscosity supersolution of (49) if for any i ∈ S, ui(T, b, p) ≥ κγ
b1−γT

1−γ , for

all b ∈ R+, p ∈ R+ and if for all functions φ ∈ C1,2,2([0;T ]× R+ × R+) ∩

C2([0;T ]×R+×R+) and (t, b, p) such that ui−φ attains its local minimum

at (t, b, p),

H

(
i, t, b, p, φ(t, b, p),

∂φ(t, b, p)

∂s
,
∂φ(t, b, p)

∂b
,
∂φ(t, b, p)

∂p
,
∂2φ(t, b, p)

∂b2
,
∂2φ(t, b, p)

∂p2

)
≤ 0

(53)

iii. a viscosity solution of (49) if it is both a viscosity sub- and a supersolution110

of equation (49)

Theorem 3.1. Under assumptions (27), the value function v is a viscosity112

solution of (47).

Proof 3.4. We establish the viscosity super- and sub-solution properties, re-114

spectively in the following two steps.

Step 1. vi(t, bt, pt), i = 1; 2 is a viscosity super-solution of (47).

We already know that v ∈ C0([0;T ] × R+ × R+). We first note that

vi(T, b, p) = κγ
B1−γ
T

1−γ so, the boundary condition at time t = T is clearly

satisfied. Let (s, bs, ps) ∈ [0;T ] × R+ × R+, i ∈ S and φ ∈ C1,2,2([0;T ] ×

R+ × R+) ∩ C2([0;T ] × R+ × R+) such that vi(., ., .) − φ(., ., .) has a local

minimum at (s, bs, ps). Let N(bs, ps) a neighborhood of (s, bs, ps) where

vi(., ., .) − φ(., ., .) take its minimum, we introduce a new test-function ψ

as follows:

ψ(., ., ., j) =

φ(., ., .) + [vi(s, bs, ps)− φ(s, bs, ps)], if j = i

vi(., ., .), if j 6= i.

(54)

This helps us to suppose without any loss of generality that this minimum116

is equal to 0.

Let τα be the first jump time of α(t)
(

= α(t)bs,ps,i
)
, i.e. τα = min{t ≥

s : α(t) 6= i}. Then τα > s, a.s. Let θs ∈ (s, τα) be such that the state
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(Bbs,it , P ps,it ) starts at (bs, ps) and stays in N(bs, ps) for s ≤ t ≤ θs. Apply-

ing the generalized Itô’s formula to the switching process e−βtψ(t, Bt, Pt, α(t)),

taking integral from t = s to t = θs∧h, where h > 0 is a positive constant,

and then taking expectation we have

Ebs,ps,i

[
e−βθs∧hψ(θs ∧ h,Bθs∧h, Pθs∧h, α(θs ∧ h))

]
= ψ(s,Bs, Ps, i)+Ebs,ps,i

[∫ θs∧h

s

e−βt
{
−βψ(t, Bt, Pt, α(t))+

∂ψ(t, Bt, Pt, α(t))

∂t

+
[
riBt

(
1−Bt

K

)
−qEBt

]∂ψ(t, Bt, Pt, α(t))

∂b
+θ(p̄0−p̄1qEBt−Pt)

∂ψ(t, Bt, Pt, α(t))

∂p

+
1

2
σ2B2

t

∂2ψ(t, Bt, Pt, α(t))

∂b2
+

1

2
σ2
P

∂2ψ(t, Bt, Pt, α(t))

∂p2

+ qα(t)j(ψ(t, Bt, Pt, j)− ψ(t, Bt, Pt, α(t)))

}
dt

]
; α(t) 6= j (55)

From hypothesis, for any t ∈ [s, θs ∧ h]

vi(t, B
bs
t , P

ps
t ) ≥ φ(t, Bbst , P

ps
t )+vi(s, bs, ps)−φ(s, bs, ps) ≥ ψ(t, Bbst , P

ps
t , i)

(56)

Recalling that (Bbss , P
ps
s ) = (bs, ps) and using Equations (54) and (56), we

have

Ebs,ps,i

[
e−βθs∧hψ(θs ∧ h,Bθs∧h, Pθs∧h, α(θs ∧ h))

]
≥

+ vi(s, bs, ps) + Ebs,ps,i

[∫ θs∧h

s

e−βt
{
−βvi(t, Bt, Pt) +

∂ψ(t, Bt, Pt, α(t))

∂t

+
[
riBt

(
1−Bt

K

)
−qEBt

]∂ψ(t, Bt, Pt, α(t))

∂b
+θ(p̄0−p̄1qEBt−Pt)

∂ψ(t, Bt, Pt, α(t))

∂p

+
1

2
σ2B2

t

∂2ψ(t, Bt, Pt, α(t))

∂b2
+

1

2
σ2
P

∂2ψ(t, Bt, Pt, α(t))

∂p2

+ qij(vj(t, Bt, Pt)− vi(t, Bt, Pt))
}
dt

]
(57)
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By Bellman’s principle

ψ(s, bs, ps, i) = vi(s, bs, ps) = sup
E∈Ai

Ebs,ps,i

[ ∫ θs∧h

s

e−βtl(i, t, Bs,bst , P s,pst , Et)dt

+ e−β(θs∧h)vi(θs ∧ h,Bs,bsθs∧h, P
s,ps
θs∧h)

]
≥ sup
E∈Ai

Ebs,ps,i

[ ∫ θs∧h

s

e−βtl(i, t, Bs,bst , P s,pst , Et)dt

+ e−β(θs∧h)ψ(θs ∧ h,Bs,bsθs∧h, P
s,ps
θs∧h, i)

]
(58)

Setting τ = E(θs ∧ h) combining (57) and (58) and multiplying both sides

by 1/(τ − s) > 0 , we obtain

sup
E∈Ai

Ebs,ps,i

[
1

τ − s

∫ θs∧h

s

e−βt
{
βvi(t, Bt, Pt)−

∂ψ(t, Bt, Pt, α(t))

∂t

−
[
riBt

(
1−Bt

K

)
−qEBt

]∂ψ(t, Bt, Pt, α(t))

∂b
−θ(p̄0−p̄1qEBt−Pt)

∂ψ(t, Bt, Pt, α(t))

∂p

− 1

2
σ2B2

t

∂2ψ(t, Bt, Pt, α(t))

∂b2
− 1

2
σ2
P

∂2ψ(t, Bt, Pt, α(t))

∂p2

− qij [vj(t, Bt, Pt)− vi(t, Bt, Pt)]− l(i, t, Bs,bst , P s,pst , Et)

}
dt

]
≥ 0 (59)

letting τ ↓ s and using the dominated convergence theorem, it turns out

that

e−βs

[
− ∂ψ(s, bs, ps, i)

∂t
+ inf
E∈Ai

{
βvi(s, bs, ps)−[

ribs

(
1− bs

K

)
− qEbs

]∂ψ(s, bs, ps, i)

∂b
− θ(p̄0 − p̄1qEbs − ps)

∂ψ(s, bs, ps, i)

∂p

− 1

2
σ2b2s

∂2ψ(s, bs, ps, i)

∂b2
− 1

2
σ2
P

∂2ψ(s, bs, ps, i)

∂p2

− qij [vj(s, bs, ps)− vi(s, bs, ps)]− l(i, s, bs, ps, Es)
}]
≥ 0 (60)

This shows that the value function vi(t, bt, pt), i = 1; 2 satisfies the viscos-118

ity super-solution property (53).

Step 2. vi(t, bt, pt), i = 1; 2 is a viscosity sub-solution of (47).

We argue by contradiction. Assume that there exist an i0 ∈ S, a point
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(s, bs, ps) ∈ [0;T ] × R∗+ × R∗+ and a testing function φi0 ∈ C1,2,2([0;T ] ×

R∗+×R∗+)∩C2([0;T ]×R∗+×R∗+) such that vi0(., ., .)−φi0(., ., .) has a local

maximum at (s, bs, ps) in a bounded neighborhood N(bs, ps), vi0(s, bs, ps) =

φi0(s, bs, ps), and

min

[
− ∂φi0(s, bs, ps)

∂t
+ inf
E∈Ai0

{
βvi0(s, bs, ps)−[

ri0bs

(
1− bs

K

)
− qEbs

]∂φi0(s, bs, ps)

∂b
− θ(p̄0− p̄1qEbs− ps)

∂φi0(s, bs, ps)

∂p

−1

2
σ2b2s

∂2φi0(s, bs, ps)

∂b2
−1

2
σ2
P

∂2φi0(s, bs, ps)

∂p2
−qi0j [vj(s, bs, ps)−vi0(s, bs, ps)]

− l(i0 , s, bs, ps, Es)
}

; vi0(T, bs, ps)− κγ
B1−γ
T

1− γ

]
> 0 i0 6= j (61)

By the continuity of all functions involved in (61) (vi0 , φ
′
i0
, φ′′i0 , qij , l, ...),120

there exist a δ > 0 and an open ball Bδ(bs, ps) ⊂ N(bs, ps) such that

− ∂φi0(t, bt, pt)

∂t
+ inf
E∈Ai0

{
βvi0(t, bt, pt)−[

ri0bt

(
1− bt

K

)
− qEbt

]∂φi0(t, bt, pt)

∂b
− θ(p̄0 − p̄1qEbt − pt)

∂φi0(t, bt, pt)

∂p

−1

2
σ2b2s

∂2φi0(t, bt, pt)

∂b2
−1

2
σ2
P

∂2φi0(t, bt, pt)

∂p2
−qi0j [vj(t, bt, pt)−vi0(t, bt, pt)]

− l(i0 , t, bt, pt, Et)
}
> δ i0 6= j; (t, bt, pt) ∈ Bδ(bs, ps) (62)

and

vi0(T, bt, pt)− κγ
B1−γ
T

1− γ
> δ (t, bt, pt) ∈ Bδ(bs, ps) (63)

Let θδ = min{t ≥ s : (t, Bt, Pt) 6∈ Bδ(bs, ps)} be the first exit time of

(t, Bt, Pt) (= (t, Bs,bst , P s,pst )) from Bδ(bs, ps). Let θ = θδ ∧ τα where τα is

the first jump time of α(t)bs,ps,i0 . Then θ > 0, a.s.. For 0 ≤ t ≤ θ, we
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have

βvi0(t, Bt, Pt)−
∂φi0(t, Bt, Pt)

∂t

−
[
ri0bt

(
1−Bt

K

)
−qEi0Bt

]∂φi0(t, Bt, Pt)

∂b
−θ(p̄0−p̄1qEBt−Pt)

∂φi0(t, Bt, Pt)

∂p

−1

2
σ2b2s

∂2φi0(t, Bt, Pt)

∂b2
−1

2
σ2
P

∂2φi0(t, Bt, Pt)

∂p2
−qi0j [vj(t, Bt, Pt)−vi0(t, Bt, Pt)]

− l(i0 , t, Bt, Pt, Et) > δ i0 6= j; (t, Bt, Pt) ∈ Bδ(bs, ps) (64)

and

vi0(T, bt, pt)− κγ
B1−γ
T

1− γ
> δ (t, bt, pt) ∈ Bδ(bs, ps) (65)

As previously, we can replace φi0 by a new test-function ψ defined as

follows:

ψ(., ., ., j) =

φi0(., ., .), if j = i0

vi0(., ., .), if j 6= i0.

(66)

For any stopping time τ ∈ [s;T ]. Applying Itô’s formula to the switching

process e−βtψ(t, Bt, Pt, α(t)), taking integral from t = s to t = (θs ∧ τ)−

and then taking expectation yield

Ebs,ps,i

[
e−βθ∧τψ(θ ∧ τ,Bθ∧τ , Pθ∧τ , α(θ ∧ τ))

]
= vi0(s, bs, ps)+Ebs,ps,i

[∫ (θ∧τ)−

s

e−βt
{
−βψ(t, Bt, Pt, α(t))+

∂ψ(t, Bt, Pt, α(t))

∂t

+
[
riBt

(
1−Bt

K

)
−qEiBt

]∂ψ(t, Bt, Pt, α(t))

∂b
+θ(p̄0−p̄1qEBt−Pt)

∂ψ(t, Bt, Pt, α(t))

∂p

+
1

2
σ2B2

t

∂2ψ(t, Bt, Pt, α(t))

∂b2
+

1

2
σ2
P

∂2ψ(t, Bt, Pt, α(t))

∂p2

+ qα(t)j [vj(t, Bt, Pt)− ψ(t, Bt, Pt, α(t))]

}
dt

]
; α(t) 6= j (67)

in which we used Ebs,ps,i

[
e−βθ∧τψ(θ∧τ,Bθ∧τ , Pθ∧τ , α(θ∧τ))

]
= Ebs,ps,i

[
e−βθs∧τψ(θ∧

τ,Bθ∧τ , Pθ∧τ , α(θ ∧ τ)−)

]
due to continuity. Noting that the integrand in

the RHS of (67) is continuous in t. Using (64), (65) and that vi0(t, Bt, Pt) ≤
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φi0(t, Bt, Pt) in (67). Also noting that α(t) = i0 for 0 ≤ t ≤ θ, it follows

vi0(s, bs, ps)

≥ Ebs,ps,i0

[
e−βθ∧τφi0(θ ∧ τ,Bθ∧τ , Pθ∧τ , α(θ ∧ τ))

+

∫ (θ∧τ)

s

e−βt
{
βvi0(t, Bt, Pt)−

∂φi0(t, Bt, Pt)

∂t

−
[
riBt

(
1−Bt

K

)
−qEiBt

]∂φi0(t, Bt, Pt)

∂b
−θ(p̄0−p̄1qEBt−Pt)

∂φi0(t, Bt, Pt)

∂p

− 1

2
σ2B2

t

∂2φi0(t, Bt, Pt)

∂b2
− 1

2
σ2
P

∂2φi0(t, Bt, Pt)

∂p2

− qi0j [vj(t, Bt, Pt)− vi0(t, Bt, Pt)]

}
dt

]
; i0 6= j (68)

i.e122

vi0(s, bs, ps)

≥ Ebs,ps,i0

[
e−βτvi0(τ,Bτ , Pτ , α(τ))1{τ<θ}+e

−βθvi0(θ,Bθ, Pθ, α(θ))1{τ≥θ}

+

∫ (θ∧τ)

s

e−βt
{
l(i0 , t, Bt, Pt, Et) + δ

}
dt

]
≥ Ebs,ps,i0

[
e−βτ [κγ

B1−γ
T

1− γ
+ δ])1{τ<θ} + e−βθvi0(θ,Bθ, Pθ, α(θ))1{τ≥θ}

+

∫ (θ∧τ)

s

e−βt
{
l(i0 , t, Bt, Pt, Et) + δ

}
dt

]
≥ Ebs,ps,i0

[
+

∫ (θ∧τ)

s

e−βt
{
l(i0 , t, Bt, Pt, Et)

}
dt+e−βθvi0(θ,Bθ, Pθ, α(θ))1{τ≥θ}

+ e−βτ [κγ
B1−γ
T

1− γ
]1{τ<θ}

]
+ δEbs,ps,i0

[ ∫ (θ∧τ)

s

e−βtdt+ e−βτ1{τ<θ}

]
(69)

Now the estimate of the term Ebs,ps,i0

[ ∫ (θ∧τ)
s

e−βtdt+e−βτ1{τ<θ}

]
.There

exist a positive constant C0 such that

Ebs,ps,i0

[ ∫ (θ∧τ)

s

e−βtdt+ e−βτ1{τ<θ}

]
≥ C0

(
1− Ebs,ps,i0

[
e−βτα

])
(70)
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For details see (23). It follows that

vi0(s, bs, ps)

≥ sup
τ∈[s;T ];E∈A

Ebs,ps,i0

[
+

∫ (θ∧τ)

s

e−βt
{
l(i0 , t, Bt, Pt, Et)

}
dt

+ e−βθvi0(θ,Bθ, Pθ, α(θ))1{τ≥θ} + e−βτ [κγ
B1−γ
T

1− γ
]1{τ<θ}

]
+ C0δ

(
1− Ebs,ps,i0

[
e−βτα

])
(71)

which is a contradiction to the DP principle since Ebs,ps,i0

[
e−βτα

]
< 1.

Therefore the value function vi(t, bt, pt), i = 1; 2 is a viscosity sub-solution124

of the system (2.8).

This completes the proof of Theorem 3.1126

3.3 Comparison principle: uniqueness of the viscosity solution

In this section, we prove a comparison result from which we obtain the128

uniqueness of the solution of the coupled system of partial differential equations.

In proving comparison results for viscosity solutions, the notion of parabolic130

superjet and subjet defined by Crandall, Ishii and Lions [19] is particularly

useful. Thus, we begin by132

Definition 3.2. Given v ∈ Co([0;T ]×R×R×S) and (t; b; p; i) ∈ [0;T )×R×R×S,

we define the parabolic superjet:

P2,+v(t, b, p, i) =

{
(c, q,M) ∈ R× R2 × S2 : v(s, b′, p′, i) ≤ v(t, b, p, i)

+ c(s− t) + q.((b′ − b), (p′ − p)) +
1

2
((b′ − b), (p′ − p)).M((b′ − b), (p′ − p))

+ o(|((b′ − b), (p′ − p))|2) as (s; b′, p′)→ (t; b, p)

}
(72)

and its closure:

P̄2,+v(t, b, p, i) =

{
(c, q,M) = lim

n→∞
(cn, qn,Mn)

with (cn, qn,Mn) ∈ P2,+v(tn, bn, pn, i) and

lim
n→∞

(tn, bn, pn, v(tn, bn, pn, i)) = (t, b, p, v(t, b, p, i))

}
(73)
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Similarly, we define the parabolic subjet P̄2,−v(t, b, p, i) = −P̄2,+(−v)(t, b, p, i)

and its closure P̄2,−v(t, b, p, i) = −P̄2,+(−v)(t, b, p, i)134

It is proved in (24) that

P2,+(−)v(t, b, p, i) =

{(
φ

∂t
(t, b, p, i), D(b,p)φ(t, b, p, i), D2

(b,p)φ(t, b, p, i)

and v − φ has a global maximum (minimum) at (t, b, p, i)

)}
(74)

The previous notions lead to new definition of viscosity solutions.

Definition 3.3. ui ∈ C0([0;T ] × R∗+ × R∗+) satisfying the polynomial growth136

condition is a viscosity solution of (49)

if138

(1) for any test-function φ ∈ C1,2,2([0;T ] × R∗+ × R∗+) if (t, b, p) is a local

maximum point of ui(., ., .) − φ(., ., .) and if (c, q, L1) ∈ P̄2,+u(t, b, p, i)

with c = ∂φ(t, b, p)/∂t; q = D(b,p)φ(t, b, p) and L1 ≤ D2
(b,p)φ(t, b, p), then

H
(
i, s, b, p, ui,

∂ui
∂s

,
∂ui
∂b

,
∂ui
∂p

,
∂2ui
∂b2

,
∂2ui
∂p2

)
≤ 0 (75)

in this case u is a viscosity subsolution,

(2) for any test-function φ ∈ C1,2,2([0;T ] × R∗+ × R∗+) if (t, b, p) is a local

minimum point of ui(., ., .) − φ(., ., .) and if (c, q, L2) ∈ P̄2,−u(t, b, p, i)

with c = ∂φ(t, b, p)/∂t; q = D(b,p)φ(t, b, p) and L2 ≥ D2
(b,p)φ(t, b, p), then

H
(
i, s, b, p, ui,

∂ui
∂s

,
∂ui
∂b

,
∂ui
∂p

,
∂2ui
∂b2

,
∂2ui
∂p2

)
≥ 0 (76)

in this case u is a viscosity supersolution,140

It is proved in (25) that this new definition and the previous one are equiva-

lent. We refer the reader to the mentioned paper for a proof. The last definition142

is particular suitable for the discussion of a maximum principle which is the

backbone of the uniqueness problem for the viscosity solutions theory.144

Before state next lemma, we first introduce the inf and sup-convolution146

operations we are going to use.
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Definition 3.4. For any usc (upper semi-continuous ) function U : Rm → R

and any lsc (lower semi-continuous ) function V : Rm → R, we set

Rα[U ](z, r) = sup
|Z−z|≤1

{
U(Z)− r · (Z − z)− |Z − z|

2α

}
(77)

Rα[V ](z, r) = inf
|Z−z|≤1

{
V (Z) + r · (Z − z) +

|Z − z|
2α

}
(78)

Rα[U ](z, r) is called the modified sup-convolution and Rα[V ](z, r) the modified148

inf-convolution. Notice that Rα[V ](z, r) = −Rα[−U ](z, r)

Lemma 3.2. (nonlocal Jensen-Ishii’s lemma (25))150

For any i ∈ S, let ui(., ., .) and vi(., ., .) be, respectively, a usc and lsc function

defined on [0;T ]×R+×R+ and φ ∈ C1,2,2([0;T ]×R2
+×R2

+)∩C2([0;T ]×R2
+×R2

+)152

if (t̂, (b̂1, p̂1), (b̂2, p̂2)) ∈ [0;T ] × R2
+ × R2

+ is a zero global maximum point of

ui(t, b, p)−vi(t, b′, p′)−φ(t, (b, p), (b′, p′)) and if c−d := Dtφ(t̂, (b̂1, p̂1), (b̂2, p̂2)),154

q := D(b,p)φ(t̂, (b̂1, p̂1), (b̂2, p̂2)), r := −D(b′,p′)φ(t̂, (b̂1, p̂1), (b̂2, p̂2)) , then for

any K > 0, there exists α(K) > 0 such that, for any 0 < α < α(K), we156

have: there exist sequences tk → t̂, (bk, pk) → (b̂1, p̂1), (b′k, p
′
k) → (b̂2, p̂2),

qk → q, rk → r, matrices Mk, Nk and a sequence of functions φk, converging158

to the function φα := Rα[φ](((b, p), (b′, p′)), (q, r)) uniformly in R2
+ ×R2

+ and in

C2(B((t̂, (b̂1, p̂1), (b̂2, p̂2)),K)), such that160

ui(tk, (bk, pk))→ ui(t̂, (b̂1, p̂1)), vi(tk, (b
′
k, p
′
k))→ vi(t̂, (b̂2, p̂2)) (79)

(tk, (bk, pk), (b′k, p
′
k)) is a global maximum of ui(., (., .))−vi(., (., .))−φ(., (., .), (., .))

(ck, qk,Mk) ∈ P̄2,+ui(tk, (bk, pk)) (80)

(−dk, rk, Nk) ∈ P̄2,−vi(tk, (b
′
k, p
′
k)) (81)

− 1

α

 I 0

0 I

 ≤
 Mk 0

0 −Nk

 ≤ D2
(b,p),(b′,p′)φ(tk, (bk, pk), (b′k, p

′
k)) (82)
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Here ck−dk = ∇tφ(tk, (bk, pk), (b′k, p
′
k)), qk = ∇(b,p)φ(tk, (bk, pk), (b′k, p

′
k)), rk =

∇(b′,p′)φ(tk, (bk, pk), (b′k, p
′
k)) and φα(t̂, (b̂1, p̂1), (b̂2, p̂2)) = φ(t̂, (b̂1, p̂1), (b̂2, p̂2)),162

∇φα(t̂, (b̂1, p̂1), (b̂2, p̂2)) = ∇φ(t̂, (b̂1, p̂1), (b̂2, p̂2))

Now we can state our comparison result.164

Theorem 3.2. (comparison principle):

If ui(t, b, p) and vi(t, b, p) are continuous in (t, b, p) and are, respectively,

viscosity subsolution and supersolution of the HJB system (47) with at most

linear growth then

ui(t, b, p) ≤ vi(t, b, p) for all (t, b, p, i) ∈ [0;T ]× R+ × R+ × S (83)

Proof 3.5. For %, ε, δ, λ > 0, we define the auxiliary functions φ : (0;T ]×R2
+×

R2
+ → R and Ξ: [0;T ]× R2

+ × R2
+ × S by

φ(t, (b, p), (b′, p′)) =
%

t
+

1

2ε
|(b, p)−(b′, p′)|2+δeλ(T−t)(|(b, p)|2+ |(b′, p′)|2) (84)

and

Ξ(t, (b, p), (b′, p′), i) = vi(t, b, p)− ui(t, b′, p′)− φ(t, (b, p), (b′, p′)) (85)

By using the linear growth of vi and ui, we have for each i ∈ S

lim
|(b,p)|+|(b′,p′)|→∞

Ξ(t, (b, p), (b′, p′), i) = −∞ (86)

Then, since vi and ui are uniformly continuous with respect to (t, b, p) on each

compact subset of [0;T ]×R+×R+×S and that S is a finite set, Ξ attains its global

maximum at some finite point belonging to a compact K ⊂ [0;T ]×R2
+×R2

+×S

say,
(
tδε, (b1δε, p1δε), (b2δε, p2δε), αδε

)
. Observing that 2Ξ

(
tδε, (b1δε, p1δε), (b2δε, p2δε), αδε

)
≥

Ξ
(
tδε, (b1δε, p1δε), (b2δε, p2δε), αδε

)
+ Ξ

(
tδε, (b1δε, p1δε), (b2δε, p2δε), αδε

)
and using

the uniform continuity of vi and ui on K we have

1

ε
|(b1δε, p1δε)− (b2δε, p2δε)|2

≤ vi
(
tδε, (b1δε, p1δε)

)
−vi

(
t̂δε, (b2δε, p2δε)

)
+ui

(
tδε, (b1δε, p1δε)

)
−ui

(
tδε, (b2δε, p2δε)

)
≤ 2C|(b1δε, p1δε)− (b2δε, p2δε)| (87)
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Thus,

|(b1δε, p1δε)− (b2δε, p2δε)| ≤ 2Cε (88)

where C is a positive constant independent of %, ε, δ, λ. From the inequality,166

2Ξ
(
T, (0, 0), (0, 0), αδε

)
≤ 2Ξ

(
tδε, (b1δε, p1δε), (b2δε, p2δε), αδε

)
(89)

and the linear growth for vi and ui, we have:

δ
(
|(b1δε, p1δε)

)
|2 + |(b2δε, p2δε|2

)
≤ e−λ(T−tδε)

[
vi
(
tδε, b1δε, p1δε

)
− vi

(
T, 0, 0

)
+ ui

(
T, 0, 0

)
− ui

(
tδε, b2δε, p2δε

)]
≤ e−λ(T−tδε)C2

(
1 + |(b1δε, p1δε)|+ |(b2δε, p2δε)|

)
(90)

It follows that

δ
(
|(b1δε, p1δε)

)
|2 + |(b2δε, p2δε|2

)
(1 + |(b1δε, p1δε)|+ |(b2δε, p2δε)|

) ≤ C2 (91)

Consequently, there exists Cδ > 0 such that

|(b1δε, p1δε)|+ |(b2δε, p2δε)| ≤ Cδ (92)

This inequality implies that for any fixed δ ∈ (0, 1), the sets {(b1δε, p1δε), ε > 0}

and {(b2δε, p2δε), ε > 0} are bounded by Cδ independent of ε. It follows from in-

equalities (90) and (92) that, possibly if necessary along a subsequence, named

again
(
tδε, (b1δε, p1δε), (b2δε, p2δε), αδε

)
that there exist (b1δ0, p1δ0) ∈ R2

+, tδε0 ∈

(0, T ] and αδε0 ∈ S such that: lim
ε↓0

(b1δε, p1δε) = (b1δ0, p1δ0) = lim
ε↓0

(b1δε, p1δε),

lim
ε↓0

tδε = tδ0, lim
ε↓0

αδε = αδ0.

If tδε = T then writing that Ξ
(
t, (b, p), (b, p), αδε

)
≤ Ξ

(
T, (b1δε, p1δε), (b2δε, p2δε), αδε

)
,
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we have

ui(t, b, p)− vi(t, b, p)−
%

t
− 2δeλ(T−t)(|(b, p)|2)

≤ ui(T, (b1δε, p1δε))− vi(T, (b2δε, p2δε))−
%

T

− 1

2ε
|(b1δε, p1δε)− (b2δε, p2δε)|2 − δ(|(b1δε, p1δε)|2 + |(b2δε, p2δε)|2)

≤ ui(T, (b1δε, p1δε))− vi(T, (b2δε, p2δε))

= [ui(T, (b1δε, p1δε))− vi(T, (b1δε, p1δε))]

+ [vi(T, (b1δε, p1δε))− vi(T, (b2δε, p2δε))]

≤ C1|(b1δε, p1δε)− (b2δε, p2δε)| (93)

where the last inequality follows from the uniform continuity of vi and by as-

sumption that ui(T, (b1δε, p1δε)) = κγ
b1−γT

1−γ = vi(T, (b1δε, p1δε)) Sending %, ε, δ ↓ 0

and using estimate (88), we have: ui(t, b, p) ≤ vi(t, b, p) . Assume now that

tδε < T .

Applying Lemma 3.2 with ui, vi and φ(t, (b, p), (b′, p′)) at the point (tδε, (b1δε, p1δε), (b2δε, p2δε), αδε) ∈

(0;T ) × R2
+ × R2

+ × S, for any ζ ∈ (0, 1) there are d ∈ R,Mδε, Nδε ∈ S2 such

that:(
d− %

t2
− λδeλ(T−t)(|(bδε, pδε)|2 + |(b′δε, p′δε)|2),

1

ε
((bδε, pδε)− (b′δε, p

′
δε))

+ 2δeλ(T−t)(bδε, pδε),Mδε + 2δeλ(T−t)I

)
∈ P̄2,+v(t, b, p, i)(

d,
1

ε
((bδε, pδε)−(b′δε, p

′
δε))−2δeλ(T−t)(b′δε, p

′
δε), Nδε−2δeλ(T−t)I

)
∈ P̄2,−v(t, b, p, i)

(94)

and
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− 1

ζ

 I 0

0 I

 ≤
 Mδε 0

0 −Nδε

 ≤ D2
(b,p),(b′,p′)φ(tδε, (bδε, pδε), (b

′
δε, p

′
δε))

+ ζ
(
D2

(b,p),(b′,p′)φ(tδε, (bδε, pδε), (b
′
δε, p

′
δε))
)2

≤ ε+ ζ(2 + 4δεeλ(T−t))

ε2

 I −I

−I I

+(2δ+4ζδ2εeλ(T−t))eλ(T−t)

 I 0

0 I


(95)

Letting δ ↓ 0 and taking ζ =
ε

2
, we obtain

− 1

ε

 I 0

0 I

 ≤

 Mδε 0

0 −Nδε

 ≤ 2

ε

 I −I

−I I

 (96)

It follows that

(bδε, pδε)Mδε

 bδε

pδε

− (b′δε, p
′
δε)Nδε

 b′δε

p′δε



= ((bδε, pδε), (b
′
δε, p

′
δε))

 Mδε 0

0 −Nδε




 bδε

pδε

 b′δε

p′δε





≤ ((bδε, pδε), (b
′
δε, p

′
δε))

2

ε

 I −I

−I I




 bδε

pδε

 b′δε

p′δε




≤ 2

ε
|(bδε, pδε)− (b′δε, p

′
δε)|2 (97)

Furthermore, the definition of the viscosity subsolution ui and supersolution vi
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implies that

min

[
βui0(tδε, bδε, pδε)−

(
d− %

t2δε
− λδeλ(T−tδε)(|(bδε, pδε)|2 + |(b′δε, p′δε)|2)

)
+ inf
E∈Ai0

{
−
[
ri0bδε

(
1− bδε

K

)
− qEbδε

](1

ε
(bδε − b′δε) + 2δeλ(T−t)bδε

)
−θ(p̄0−p̄1qEbδε−ps)

(1

ε
(pδε−p′δε)+2δeλ(T−t)pδε

)
−1

2
(σbδε;σP )(Mδε+2δeλ(T−t)I)

 σbδε

σp


− qi0j [uj(tδε, bδε, pδε)− ui0(tδε, bδε, pδε)]

− l(i0 , tδε, bδε, pδε, Etδε)
}

; ui0(T, , bδε, pδε)− κγ
B1−γ
T

1− γ

]
≤ 0 i0 6= j (98)

and168

min

[
βvi0(tδε, bδε, pδε)−d+ inf

E∈Ai0

{
−
[
ri0bδε

(
1−bδε

K

)
−qEbδε

](1

ε
(bδε−b′δε)+2δeλ(T−t)b′δε

)

−θ(p̄0−p̄1qEbδε−ps)
(1

ε
(pδε−p′δε)+2δeλ(T−t)p′δε

)
−1

2
(σb′δε;σP )(Nδε−2δeλ(T−t)I)

 σb′δε

σp


− qi0j [vj(tδε, b′δε, p′δε)− vi0(tδε, b

′
δε, p

′
δε)]

− l(i0 , tδε, b′δε, p′δε, Etδε)
}

; vi0(T, , bδε, pδε)− κγ
B1−γ
T

1− γ

]
≥ 0 i0 6= j (99)

Let us define operators AE(x, v, φ,X,Z) and BE(x, v).

AE(t, b, p, w,X, Y Z) =
[
ri0b

(
1− b

K

)
− qEb

]
X+ θ(p̄0− p̄1qEb−ps)Y +

1

2
wZw′

(100)

BE(t, b, p, v) = qi0j [vj(t, b, p)− vi0(t, b, p)] (101)

by Subtracting these last two inequalities and remarking that min(x; y)−min(z; t) ≤

0 implies either x − z ≤ 0 or y − t ≤ 0, we divide our consideration into two170

cases:
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Case 1

β
[
ui0(tδε, bδε, pδε)−vi0(tδε, bδε, pδε)

]
+
%

t2δε
+λδeλ(T−tδε)(|(bδε, pδε)|2+|(b′δε, p′δε)|2)

≤ sup
E∈Ai0

{
l(i0 , tδε, bδε, pδε, Etδε)− l(i0 , tδε, b′δε, p′δε, Etδε)

}
+ sup
E∈Ai0

{
AE
(
tδε, bδε, pδε, (σbδε;σP ),

1

ε
(bδε−b′δε)+2δeλ(T−tδε)bδε,

1

ε
(pδε−p′δε)+2δeλ(T−tδε)pδε,

Mδε + 2δeλ(T−tδε)I
)

−AE
(
tδε, b

′
δε, p

′
δε, (σb

′
δε;σP ),

1

ε
(bδε−b′δε)+2δeλ(T−t)b′δε,

1

ε
(pδε−p′δε)+2δeλ(T−tδε)p′δε,

Nδε − 2δeλ(T−tδε)I
)}

+ sup
E∈Ai0

{
BE(tδε, bδε, pδεu)−BE(tδε, b

′
δε, p

′
δεv)]

}
≡ I1 + I2 + I3 (102)

In view of condition (27) on l and from estimate (3.1), we have the classical

estimates of I1 and I2:

I1 ≤C|(bδε, pδε)− (b′δε, p
′
δε)| (103)

I2 ≤C(
1

ε
|(bδε, pδε)− (b′δε, p

′
δε)|2 + 2δeλ(T−tδε)(1 + |(bδε, pδε)|2 + |(b′δε, p′δε)|2)

(104)

Using the Lipschitz condition for u and v, we have

I3 ≤ 2C|(bδε, pδε)− (b′δε, p
′
δε)| (105)

Writing that Ξ(t, (b, p), (b, p), i) ≤ Ξ(tδε, (bδε, pδε), (bδε, pδε), i) for i ∈ S

and using the inequality (102),

ui(t, b, p)− vi(t, b, p)−
%

t
− 2δeλ(T−t)|(b, p)|2 ≤

vi(tδε, bδε, pδε)− ui(tδε, bδε, pδε)−
%

tδε
− 2δeλ(T−t)|(bδε, pδε)|2 ≤

1

β

[
I1 + I2 + I3

]
− %

βt2δε
− λ

β
δeλ(T−tδε)(|(bδε, pδε)|2 + |(b′δε, p′δε)|2) (106)

this implies

ui(t, b, p)− vi(t, b, p)−
%

t
− 2δeλ(T−t)|(b, p)|2 ≤

1

β

[
I1 + I2 + I3

]
− λ

β
δeλ(T−tδε)(|(bδε, pδε)|2 + |(b′δε, p′δε)|2) (107)

30



Sending ε ↓ 0, with the above estimates of (I1)− (I2)− (I3), we obtain:

ui(t, b, p)−vi(t, b, p)−
%

t
−2δeλ(T−t)|(b, p)|2 ≤ 2δ

β
eλ(T−t0)

[
C(1+2|(b0, p0)|2)−λ|(b0, p0)|2

]
(108)

Choose λ sufficiently large positive (λ ≥ 2C) and send %, δ → 0+ to172

conclude that ui(t, b, p) ≤ vi(t, b, p)

Case 2 the second case occurs if

ui0(T, , bδε, pδε)− vi0(T, , bδε, pδε) ≤ 0 (109)

and174

finally that ui(t, b, p) ≤ vi(t, b, p)

This completes the proof.176

The following corollary follows from Theorems 3.1 and 3.2.

Corollary 3.1. The value function v is a uniques viscosity solution of (47) that178

has at most a linear growth.

4 Monotone Finite Difference and Simulation180

The determination of the effort value requires numerical computations. Thus,

instead of arbitrary parameters values, we have decided to use realistic values.182

We found a quite complete set of parameter values in (2) and (11). The time

horizon was set at Ti = 5 years. The complete set of parameter values is listed184

in Table 1.

4.1 Sample Realisations of Price and Stock186

We chose the maximum fishing effort value for these sample realisations.
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Parameters Description Values Units

r1; r2 Intrinsic growth rate 0.71; 0.68 year−1

K Carrying capacity 80.5× 106 kg

q Catchability coefficient 3.30× 10−6 SFU−1year−1

Emax Maximum fishing effort 0.7r/q SFU

Bo Initial population size 0.5K kg

β Discount factor 0.05 year−1

p0 Price per unit yield 1.59 kg−1

c1 Linear cost parameter 96× 10−6 SFU−1year−1

c2 Quadratic cost parameter 0.10× 10−6 SFU−2year−1

θ Mean-reversion speed 0.59

p̄0 Price of the stock 1.211

p̄1 Strength of demand 0.0001

σ Volatility of the stock 0.3

σp Volatility of the price 0.3

T Time horizon 5 years

γ risk aversion coefficient 0.3

Table 1: Numerical parameters
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4.2 The Numerical Approximation190

In this section, we present a numerical solution. We consider the switching

process α(t) where α(t) ∈ S = {1, 2} represents the season. In particular, α(t) =

1 stands for the flood period with reduced fishing and intensive reproduction.

and α(t) = 2 the dry season with intensive fishing and reduced reproduction.

The generator of α(t) is given by 2.0367 −2.0367

−1.9821 1.9821

 (110)

For our problems we need to ensure that our discretization methods con-

verge to the viscosity solution and determine the optimal effort. Using the basic192

results of (26) and (27), this ensures that our numerical solutions convergence

to the viscosity solution. For this purpose, we use the fully implicit upwind194

scheme which is unconditionally monotone.

196

To approximate the solution to (23) we discretize variables t, p and B with

stepsizes ∆t, ∆p and ∆B respectively. The value of vi at a grid point (tn; pk;Bl)

in the regime i is denoted by vnk,l(i). The derivatives of vi are approximated by

∂vi
∂t
≈
vn+1
k,l (i)− vnk,l(i)

∆t
,

∂2vi
∂b2

≈
vn+1
k,l+1(i) + vn+1

k,l−1(i)− 2vn+1
k,l (i)

(∆b)2
,

∂2vi
∂p2

≈
vn+1
k+1,l(i) + vn+1

k−1,l(i)− 2vn+1
k,l (i)

(∆p)2
,

Θi
∂vi
∂p
≈


Θi

vn+1
k+1,l(i)− v

n+1
k,l (i)

2∆p
if Θi > 0

Θi

vn+1
k,l (i)− vn+1

k−1,l(i)

2∆p
if Θi < 0

and

Φi
∂vi
∂b
≈


Φi
vn+1
k,l+1(i)− vn+1

k,l (i)

2∆b
if Φi > 0

Φi
vn+1
k,l (i)− vn+1

k,l−1(i)

2∆b
if Φi < 0

.
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Discretizing equation (23)

vn+1
k,l − vnk,l

∆t
+ sup
E∈Ai

{(
− β + qij

)
vn+1
k,l

+max
(
θ(p̄0−p̄1qEBl−Pk); 0

)vn+1
k+1,l − v

n+1
k,l

∆p
−min

(
θ(p̄0−p̄1qEBl−Pk); 0

)vn+1
k,l − v

n+1
k−1,l

∆p

+max
(
riBl(1−

Bl
K

)−qEBl; 0
)vn+1

k,l+1 − v
n+1
k,l

∆b
−min

(
riBl(1−

Bl
K

)−qEBl; 0
)vn+1

k,l − v
n+1
k,l−1

∆b

+
1

2
σ2
p

vn+1
k+1,l + vn+1

k−1,l − 2vn+1
k,l

(∆p)2
+

1

2
σ2
BB

2
l

vn+1
k,l+1 + vn+1

k,l−1 − 2vn+1
k,l

(∆b)2

+
(qEBlPk − c1E − c2E2)1−γ

1− γ
− qijvn+1

k,l (j)

}
= 0 (111)

and rearranging the terms, we obtain

(
−β+

1

∆t
−

σ2
p

(∆p)2
−σ

2
BB

2
l

(∆b)2
+qij−

1

∆p
θ(p̄0−p̄1qEBl−Pk)− 1

∆b

(
riBl(1−

Bl
K

)−qEBl
))
vn+1
k,l

+ sup
E∈Ai

{( σ2
p

2(∆p)2
+

max
(
θ(p̄0 − p̄1qEBl − Pk); 0

)
∆p

)
vn+1
k+1,l

+
( σ2

p

2(∆p)2
+

min
(
θ(p̄0 − p̄1qEBl − Pk); 0

)
∆p

)
vn+1
k−1,l

+
( σ2

BB
2
l

2(∆b)2
+

max
(
riBl(1−

Bl
K

)− qEBl; 0
)

∆b

)
vn+1
k,l+1

+
( σ2B2

2(∆b)2
+

min
(
riBl(1−

Bl
K

)− qEBl; 0
)

∆b

)
vn+1
k,l−1

− qijvn+1
k,l (j) +

(qEBlPk − c1E − c2E2)1−γ

1− γ

}
=
vnk,l
∆t

(112)

In addition, we consider that:198

• the optimization starts at time t = 0 and ends at time t = T < +∞

• the time interval is uniformly partitioned as 0 = t0 < t1 < ... < tN = T200

with

tn+1 − tn = ∆t = T
N , n = 0, 1, ..., N − 1;202

• the state variable of biomass takes values within the interval [0, 2K], which
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is uniformly partitioned as 0 = B0 < B1 < ... < Bm = 2K with Bl+1 −204

Bl = ∆B = 2K/m, l = 0, 1, ...,m− 1;

• the state variable of prices takes values within the interval [0, pmax], which206

is uniformly partitioned as 0 = p0 < p1 < ... < pm = pmax with

pk+1 − pk = ∆p =
pmax
m

, k = 0, 1, ...,m− 1;208

• we have boundary conditions, a terminal conditions vi(T, bt, pt) = κγ
B1−γ
T

1− γ
,

and a initial condition vi(0, b, p) = 0.210

If we define the constants

ai = 1−β∆t−
σ2
p∆t

(∆p)2
−σ

2
BB

2
l ∆t

(∆B)2
+qij∆t−

∆t

∆p
θ(p̄0−p̄1qEBl−Pk)−∆t

∆b

(
riBl(1−

Bl
K

)−qEBl
)

(113)

bi =
σ2
p∆t

2(∆p)2
+

max
(
θ(p̄0 − p̄1qEBl − Pk); 0

)
∆p

∆t (114)

ci =
σ2
p∆t

2(∆p)2
+

min
(
θ(p̄0 − p̄1qEBl − Pk); 0

)
∆p

∆t (115)

di =
σ2
BB

2
l ∆t

2(∆b)2
+

max
(
riBl(1−

Bl
K

)− qEBl; 0
)

∆B
∆t (116)

ei =
σ2
BB

2
l ∆t

2(∆b)2
+

min
(
riBl(1−

Bl
K

)− qEBl; 0
)

∆B
∆t (117)

fi =
(qEBlPk − c1E − c2E2)1−γ

1− γ
∆t (118)

We can rewrite this difference equation in a more manageable form:

sup
E∈Ai

{
aiv

n+1
k,l + biv

n+1
k+1,l + civ

n+1
k−1,l + div

n+1
k,l+1 + eiv

n+1
k,l−1

− qij∆tvn+1
k,l (j) + fi

}
= vnk,l (119)

Writing (119) in a appropriate matrix form,

sup
E∈Ai

{
AE
i vn+1

i −Λjiv
n+1
j + Fn+1

i − vni

}
= 0 (120)
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4.3 Howard’s algorithm

We denote by vni and vn+1
i the approximations at time n and n+ 1.212

Step 0: start with an initial value for the control E0. Compute the solution v0i

of AE0

i w −Λjiv
n+1
j + Fn+1

i − vni = 0.214

Step j → j+1: given vjh, find Ej+1 ∈ Ai maximizing AE
i w−Λjiv

n+1
j +Fn+1

i −

vni = 0. Then compute the solution vj+1
h of AEj+1

i w−Λjiv
n+1
j + Fn+1

i −216

vni = 0.

Final step :if |vj+1
i − vji | < ε, then set vn+1

i = vj+1
i218

4.4 Optimal effort

We applied the Howard’s algorithm: we compute the optimal effort in both220

regimes. As result:

Regimes Optimal effort

1 7.5303× 1.0e+ 04

2 7.2121× 1.0e+ 04

Table 2: Optimal Effort

222
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224

226

5 Conclusions

We treat an finite-horizon optimal fishery problem in switching diffusion228

models. Using the viscosity solution approach, we prove that the value function
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is the unique viscosity solution of the associated system of HJB equations. As230

an application, the optimal effort is deduced by using Howard’s algorithm.

These methodologies can be applied to similar comparison studies and other232

fishery models. This will be the subject of a further paper.

Appendix A Stochastic logistic growth with harvesting234

dBt =rBt(1−
Bt
K

)dt− qEBtdt+ σBtdW (t) (A.1)

=rBt

(
1− qE

r
− Bt
K

)
dt+ σBtdW (t) (A.2)

Recalling the Itô’s chain rules for solving the SDE dXt = f(X, t)dt+g(X, t)dWt

t ≥ 0 or

dV (X(t), t) =

(
Vt(X(t), t) + f(X(t), t)VX +

1

2
g2(X(t), t)VXX

)
dt+g(X(t), t)VXdW (t)

Let V (Bt, t) = B−1t

∂V

∂t
= 0

∂V

∂Bt
= −B−2t

∂2V

∂B2
t

= 2B−3t

f(Bt, t) = rBt

(
1− qE

r
− Bt
K

)
g(Bt, t) = σBt

dVt =

[
0 + rBt

(
1− qE

r
− Bt
K

)
(−B−2t ) +

1

2
σ2B2

t (2B−3t )

]
dt+ σBt(−B−2t )dWt

(A.3)

d(B−1t ) =

[
−r
(
B−1t (1− qE

r
)− 1

K

)
+ σ2B−1t

]
dt− σB−1t dWt (A.4)

To linearize (A.3), set B−1t = yt so that

dyt =

[
−r
(
yt(1−

qE

r
)− 1

K

)
+ σ2yt

]
dt− σytdWt (A.5)

=
[ r
K

+
(
−r + σ2 + qE

)
yt

]
dt− σytdWt (A.6)

We are looking for a solution to (A.5) of the form y(t) = y1(t).y2(t) where

dy1(t) =(−r + σ2 + qE)y1dt− σy1dWt, y1(0) = 1

dy2(t) =atdt+ btdWt, y2(0) = y(0) = y0
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and the process coefficients at; bt are, at this point, unknown.

dyt =d(y1.y2)

=y1dy2 + y2dy1 + dy1dy2

=y1dy2 + y2dy1 + [(−r + σ2 + qE)y1dt− σy1dWt][atdt+ btdWt]

=y1dy2 + y2dy1 − σbty1dt

=y1(atdt+ btdWt) + y2[(−r + σ2 + qE)y1dt− σy1dWt]− σbty1dt

=y1(atdt+ btdWt) + (−r + σ2 + qE)ydt− σydWt − σbty1dt

Now, select at, bt so that

y1(atdt+ btdWt)− σbty1dt =
r

K
dt

Thus

bt = 0 at =
r

K
y−11 (A.7)

We integrate dy1(t) and dy2(t) to

y1(t) = exp

[∫ t

0

−σdWs +

∫ t

0

(
(−r + σ2 + qE)− 1

2
σ2

)
ds

]
= exp

[
−σWt +

(
−r + qE +

1

2
σ2

)
t

]
y2(t) =y0 +

∫ t

0

r

K
y−11 (s)ds

Thus

y(t) = exp

[
−σWt +

(
−r + qE +

1

2
σ2

)
t

]
×[

y0 +
r

K

∫ t

0

exp

[
σWs +

(
r − qE − 1

2
σ2

)
s

]
ds

]
Hence

Bt =
exp

[(
r − qE − (1/2)σ2

)
t+ σWt

][
B−10 + (r/K)

∫ t
0

exp [(r − qE − (1/2)σ2) s+ σWs] ds
] (A.8)

Bt =
K exp

[(
r − qE − (1/2)σ2

)
t+ σWt

][
K/B0 + r

∫ t
0

exp [(r − qE − (1/2)σ2) s+ σWs] ds
] (A.9)
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Appendix B Proof of lemma 3.1

1. Let k ∈ [0; 2] and h = s− t.

According to Hölder inequality Eηk ≤
[
Eη2

]k/2
for ∀k ≥ 0,

E|P t,pth |k ≤
[
E|P t,pth |2

]k/2
(B.1)

Given that

dP (t) = f ′(t, P (t))dt+ g′(t, P (t))dw(t) (B.2)

According to the elementary inequality |
∑M
i=1 ai|2 ≤M

∑M
i=1 |ai|2,

|P t,pth |2 ≤ 3

{
|pt|2 +

∣∣∣ ∫ h

0

f ′(u+ t, P t,ptu , i)du
∣∣∣2 +

∣∣∣ ∫ h

0

g′(u+ t, P t,ptu , i)dwu

∣∣∣2}
(B.3)

Thus, using Ito-isometry and Fubini’s theorem

E|P t,pth |2 ≤ 3

{
|pt|2 +

∫ h

0

E
∣∣∣f ′(u+ t, P t,ptu , i)

∣∣∣2du+

∫ h

0

E
∣∣∣g′(u+ t, P t,ptu , i)

∣∣∣2du}
(B.4)

f’ and g’ satisfying the growth condition by definition, thus there exists

C1 ∈ R such that

E|P t,bth |2 ≤ C1

{
1 + |pt|2 +

∫ h

0

E
∣∣∣P t,ptu

∣∣∣2du} (B.5)

Applying Gronwall’s inequality we obtain

E|P t,pth |2 ≤ C1e
C1h
[
1 + |pt|2

]
(B.6)

i.e

E|P t,pth |2 ≤ C
[
1 + |pt|2

]
(B.7)

Using (B.1) and elementary inequalities (a1 + a2)k ≤ 2k−1(|a1|k + |a2|k)

and (
√
|a1 + a2| ≤

√
|a1|+

√
|a2|) we deduce

E|P t,pth |k ≤ C
[
1 + |pt|k

]
(B.8)

The same reasoning gives....

E|Bt,bth |
k ≤ C

[
1 + |bt|k

]
(B.9)
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2. We have

|P t,pth −pt|2 ≤ 2

{∣∣∣ ∫ h

0

f ′(u+ t, P t,ptu , i)du
∣∣∣2 +

∣∣∣ ∫ h

0

g′(u+ t, P t,ptu , i)dwu

∣∣∣2}
(B.10)

Similar arguments as above we deduce

E|P t,pth − pt|2 ≤ C1

∫ h

0

[
1 + E

∣∣∣P t,ptu

∣∣∣2]du (B.11)

using (B.7) we deduce

E|P t,pth − pt|2 ≤ C
(
1 + |pt|2

)
h (B.12)

Hence

E|P t,pth − pt|k ≤ C
(
1 + |pt|k

)
hk/2 (B.13)

3. Let us define the process P t,pts − P
t,p′t
s . Put f̄(u + t, P t,ptu , P

t,p′t
u , i) =

f ′(u + t, P t,ptu , i) − f ′(u + t, P
t,p′t
u , i) and ḡ(u + t, P t,ptu , P

t,p′t
u , i) = g′(u +

t, P t,ptu , i)− g′(u+ t, P
t,p′t
u , i). Then

E|Bt,pth −Bt,p
′
t

h |2 ≤ 3

(
|pt−p′t|2+E

∣∣∣ ∫ h

0

f̄(u+t, P t,ptu , P
t,p′t
u , i)du

∣∣∣2+E
∣∣∣ ∫ h

0

ḡ(u+t, P t,ptu , P
t,p′t
u , i)dwu

∣∣∣2)
E|P t,pth −P t,p

′
t

h |2 ≤ 3

(
|pt−p′t|2+E

∫ h

0

∣∣∣f̄(u+t, P t,ptu , P
t,p′t
u , i)

∣∣∣2du+E

∫ h

0

∣∣∣ḡ(u+t, P t,ptu , B
t,p′t
u , i)

∣∣∣2du)
E|P t,pth − P t,p

′
t

h |2 ≤ C
(
|pt − p′t|2 +

∫ h

0

E
∣∣∣P t,ptu − P t,p

′
t

u

∣∣∣2du) (B.14)

Hence

E|P t,pth − P t,p
′
t

h |2 ≤ C|pt − p′t|2 (B.15)

Similar arguments as above we deduce

E|Bt,bth −Bt,b
′
t

h |
k ≤ C|bt − b′t|2; E|P t,pth − P t,p

′
t

h |k ≤ C|pt − p′t|2 (B.16)

4. Using Doob’s inequality for submartingale. We get

E
[

sup
0≤s≤h

|Bt,bth |
]k ≤ C(1 + |bt|k)h

k
2 ; E

[
sup

0≤s≤h
|P t,pth |

]k ≤ C(1 + |pt|k)h
k
2

(B.17)
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