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In this paper we study the problem of optimal fishing for regime switching, which may be regarded as sequential optimal problem with changes of regimes.

The growth dynamics of a given fish species is described by the differential stochastic logistic model in which we take into account two states: prior or during floods and after. The resulting dynamic programming principle leads to a system of variational inequalities, by means of viscosity solutions approach, we prove the existence and uniqueness of the value functions. Then numerical approximation is used to answer the question: what is the optimal fishing effort for a sustainable fishery?

Introduction

The simplest population model commonly used in fisheries is the logistic growth model extended to include catch:

dB dt = rB(1 - B K ) -C (1) 
where B is the biomass of the stock, r is the intrinsic rate of growth, K(the carrying capacity) is the biomass the stock would tend toward if unfished, and C is the catch rate.

The catch C is constant in quota management. Normally the catch is assumed to be proportional to fishing effort and to stock size, which results in the model proposed by [START_REF] Schaefer | Some aspects of the dynamics of populations important to the management of the commercial marine fisheries[END_REF] :

dB dt = rB(1 - B K ) -qEB (2) 
where E is the fishing effort and q is a parameter describing the efficiency of the fishing gear However, the environment is subject to significant random fluctuations that affect the population per capita natural growth rate. The effect of these fluctuations can be approximated by a white noise σ (t), where (t) is a standard white noise and σ > 0 measures the strength of environmental fluctuations see [START_REF] Brites | Fisheries management in random environments: Comparison of harvesting policies for the logistic model[END_REF]. Therefore, the above ODE Eq. ( 2) must be updated to the stochastic differential equation (SDE) which can be written in the standard format:

dB(t) = rB(t)(1 - B(t) K )dt -qE(t)B(t)dt + σB(t)dW (t) (3) 
where W (t) is a standard Wiener process. We will assume that r -qE > σ 2 /2, otherwise the population will rendered extinct (see [START_REF] Braumann | Stochastic differential equation models of fisheries in an uncertain world: extinction probabilities, optimal fishing effort, and parameter estimation[END_REF] ).

Environmentally driven long-term changes in fish populations, which can play a major role in determining how such populations respond to fishing pressure, are rapidly being recognized as a critical problem in fisheries science ((4)).

The life cycle of African fish species of river is closely related to the seasons -reproduction almost always occurring just prior to, or during, floods ((5), ( 6), [START_REF] Svensson | Fresh water fishes from the Gambia river (British West Africa): results of the Swedish expedition 1931[END_REF], [START_REF] Carey | Breeding seasons and quantitative data on gonads and ova for certain fish species[END_REF]).

Floods appear to be essential for the completion of their reproductive cycle for most species: the absence of floods due to the drought in the Sahel has caused a decline in fish reproduction in the central Niger Delta, the Senegal River and Lake Chad (Stauch, personal communication).

There is some evidence that flood intensity acts in favor of reproduction, as it has been observed that the structured age class related to the high floods in the Kafu were more varied (( 9)).

In our study we consider only two seasons: the dry season with intensive fishing and reduced reproduction, the flood period with reduced fishing and intensive reproduction.

A regime switching model provides an alternate approach to capturing nonconstant drift and volatility terms for the stochastic process followed by the biomass of fish. Therefore, the above SDE Eq. ( 3) must be updated to the another stochastic differential equation that captures the regime swithing :

dB(t) = r α(t) B(t)(1 - B(t) K
)dt -qE α(t) (t)B(t)dt + σ α(t) B(t)dW (t) [START_REF] Maccall | Fishery-management and stock-rebuilding prospects under conditions of low-frequency environmental variability and species interactions[END_REF] where α(t) refer to regimes and there are 2 regimes, i.e, α(t) ∈ {1, 2}

Certainly, there is some evidence that uncertainty in price parameters leads to changes in the optimal policy ((10)), and the number of studies that include uncertainty in both the biological stock dynamics and the price dynamics is steadily increasing. The models in [START_REF] Kvamsdal | Harvesting in a fishery with stochastic growth and a mean-reverting price[END_REF] have considered stochastic meanreverting prices and when compared with the typical geometric Brownian motion model, a mean-reverting price better reflect basic, microeconomic ideas about supply behavior (see [START_REF] Insley | A real options approach to the valuation of a forestry investment[END_REF]).

Let the instantaneous profit from the harvest of the stock biomass π(B t , h t ) be given as:

π(B t , h t ) = P t h t -c(B t , h t ) (5) 
where, h t denotes the volume of harvest, B t the stock of the resource, c(B t , h t ) is the cost function, both at time t and P t the mean-reverting (actual or spot) price of the harvest at the time of decision making. This can be modeled by the following process:

dP t = θ(p 0 -p1 h -P t )dt + σ P dW P (t) (6) 
The parameters are positve constants, θ is the reversion speed, p0 is a maximum price, p1 is the slope of the inverse demand curve and σ P is the volatility of the spot price (see [START_REF] Kvamsdal | Harvesting in a fishery with stochastic growth and a mean-reverting price[END_REF]).

Many works set the problem, in the infinite horizon time, as follows:

max ht +∞ 0 e -βt π(B t , h t )dt (7) 
Previous work finds, almost without exception, that all fishers are risk-averse (( 13), [START_REF] Dupont | Price uncertainty, expectations formation and fishers' location choices[END_REF], and ( 15)). Under an expected-utility theory (EUT) specification of choice under uncertainty, we assume a constant relative risk-aversion (CRRA) utility function defined as U (x) = x 1-γ 1 -γ where x signifies the lottery prize and γ is the CRRA coefficient to be estimated: with γ = 0 denoting risk neutrality, γ > 0 indicating risk aversion, and γ < 0 denoting risk loving (( 16)).

In recent years, further emphasis has been put on developing models for optimal management of these stochastic natural resources ((17); ( 18); ( 19)). Although the number of studies in bioeconomic modeling that include the stochastic dynamics are increasing, they are still not adequate.

The time horizon also plays a crucial role in optimal policies and the usual infinite horizon framework problem requires the existence of linear growth conditions on drift part of the logistic process for our solution to hold, raising the question of whether another solution may exist or not. In this paper, we consider the finite time horizon T with utility on both profit and remaining biomass.

The outline of this paper is as follows. In Section II we formulate a stochastic optimal control problem. Section III the optimal strategies to the utility maximization problem are derived. In Section IV we present examples to illustrate the results. Finally, in section V we end with some summarizing comments.

2 Mathematical model

Stochastic logistic growth model

Throughout this paper we let (Ω, F, {F t } t≥0 , P) be a complete probability space with a filtration {F t } t≥0 satisfying the usual conditions (i.e. it is increasing and right continuous while F 0 contains all P-null sets). Let W (t) and W P (t), t ≥ 0, be scalar independant Brownian motions defined on this probability space.

After specifying a stochastic model for biological growth that we use in this paper. The valuation of the biomass can be described in terms of the following variables:

t is time, t ∈ [0; T ] and T is finite-horizon of time. α(t) is a right-continuous-time Markov chain, F t -adapted with finite state space S = {1; 2} and generator Q = (q ij ) ∈ R 2 × R 2 such that q ij ≥ 0 for i = j and 2 
j=1 q ij = 0. We assume that the Markov chain α(.) is independent of the Brownian motions W P (.) and W (.) B(t) stock of fish biomass at time t. Whith initial condition B(0) > 0 r α(t) intrinsic rate of growth in regime α(t) E α(t) is the fishing effort which depends on the current regime α(t) σ α(t) is volatility in regime α(t). In any time r α(t) -qE > σ 2 α(t) /2

We set an SDE under regime switching of the form:

dB(t) = f (t, B(t), α(t))dt + g(t, B(t), α(t))dW (t) (8) 
on t ≥ 0 with initial value B(0

) = b ∈]0; K[, where 
f : R + × R + × S → R and g : R + × R + × S → R (9) 
This equation can be regarded as the result of the following 2 equations:

dB(t) = f (t, B(t), i)dt + g(t, B(t), i)dW (t); i = 1, 2 (10) 
switching from one to the other according to the movement of the Markov chain.

Recalling that

f (t, B(t), i) = r i B(t)(1 - B(t) K ) -qE i (t)B(t) and g(t, B(t), i) = σ i B(t) (11) 
B(t) is an unknown stochastic process, that is, the solution to Eq.( 8) satisfying 

the initial condition B(0) = b such that 0 < b < K.
B t,i = K exp[(r i -qE -(1/2)σ 2 i )t + σ i W t ] (K/B 0 ) + r i t 0 exp[(r i -qE -(1/2)σ 2 i )s + σ i W s ]ds i = 1, 2. (12) 

The Mean-reverting spot price 78

The version of the Ornstein-Uhlenbeck (OU) process we employ here is described by

dP t = θ(p 0 -p1 h -P t )dt + σ P dW P (t) (13) 
where the parameters are positve constants, θ is the reversion speed, p0 is a maximum price, p1 is the slope of the inverse demand curve and σ p is the volatility of the spot price. Note that the mean (or long-term) price p0 -p1 h may depend upon the harvest level. W P (t) is standardized Brownian motion as before. Its solution for an initial condition P (0) = p is

P t = pe -θt + (p 0 -p1 h)(1 -e -θt ) + σ t 0 e -θ(t-s) dW s (14) 
One of the most convenient properties is that

P t ∼ N p0 -p1 h + (p + p0 -p1 h)e -θt , σ 2 2θ (1 -e -2θt ) (15) 

The optimization problem

The cost of harvest per unit time is assumed to depend on effort and to have a quadratic form given by

c(B t , E t ) = (c 1 + c 2 E(t))E(t) (16) 
where c 1 , c 2 > 0 are constants. The quadratic cost structure incorporates the case where the fishermen need to use less efficient vessels and fishing technologies or pay higher overtime wages to implement an extraordinary high effort (see [START_REF] Clark | Mathematical Bioeconomics: The Optimal Management Resources[END_REF], ( 21)).

By substituting the values in equation 5, the profit function can be rearranged as:

π(B t , P t , E) = (qB t P t -c 1 -c 2 E(t))E(t) (17) 
where, c 1 and c 2 are positive parameters.

For a time t in the horizon [0, T ], we define a performance criterion for each i ∈ S as:

V i (t, b t , p t ) =E bt,pt,i T t e -β(s-t) π(B s , P s , E s , i) 1-γ 1 -γ ds + e -β(T -t) V i (B T ) (18) =E bt,pt,i T t e -β(s-t) l(s, B s , P s , E s , i)ds + e -β(T -t) m(T, B T ) (19) 
We will start the optimization at time t = 0. Let b 0 = b, p 0 = p with b, p ∈ ]0; +∞], we have

V i (0, b, p) =E b,p,i T 0 e -βs π(B s , P s , E s , i) 1-γ 1 -γ ds + e -βT V i (B T ) (20) =E b,p,i T 0 e -βs l(s, B s , P s , E s , i)ds + e -βT m(T, B T ) (21) 
Here E b,p,i is the conditional expectation given B(0) = b, P (0) = p and α(0) = i under P, where T is the finite time horizon β > 0 is a discount factor.

We say that the control process E(t) is admissible if the following tree conditions are satisfied:

1. the SDE (4) for the state process B(t) has a unique strong solution;

2. the SDE (6) for the state process P (t) has a unique strong solution;

3. E b,p,i

T 0 |e -βt π(B t , P t , E t , i) 1-γ 1 -γ |dt + |e -βT V (B T )| < ∞.
Write A for the set of admissible controls. The number of tools, gears, hours, vessels and manpower is finite and limited, so we require the set A in which the controls take values to be bounded. The stochastic control problem is to find an optimal control E * ∈ A i such that:

v i (b, p) = sup E∈Ai V i (b, p) (22) 
3 Main results

The Hamilton-Jacobi-Bellman equations associated with this problem is a variational inequality involving, at least heuristically, a nonlinear second order parabolic differential equations :

∂v i ∂t (t, b t , p t ) + sup E∈Ai -βv i (t, b t , p t ) + π(B t , P t , E t ) 1-γ 1 -γ + Lv i (t, b t , p t ) = 0, (23) 
v i (T, b t , p t ) = κ γ B 1-γ T 1 -γ f or i ∈ {0; 1}; κ > 0 ( 24 
)
where L is an operator defined by:

Lv i (t, B, P ) = θ(p 0 -p1 qEB -P ) ∂v i ∂p (t, B, P ) + f (B, E i ) ∂v i ∂b (t, B, P ) + 1 2 σ 2 P ∂ 2 v i ∂p 2 (t, B, P ) + 1 2 g 2 (B, E) ∂ 2 v i ∂b 2 (t, B, P ) + q ij (v j (t, B, P ) -v i (t, B, P )) ( 25 
)
As it is well-known, there is not in general a smooth solution of the equation [START_REF] Liu | Optimal stopping of switching diffusions with state dependent switching rates[END_REF] hence we find the solution in the viscosity sense, as introduced by ( 22), in subsection 3.2. Recall that E * f ree is the optimal solution of equation 23. The optimal harvest rule E * (t) can be described as follows

E * (t) =          0 if E * free (t) < 0 E * free (t) if 0 ≤ E * free (t) ≤ E max E max if E * free (t) > E max (26) 
In addition to these, we know that the fishery is valueless if the stock goes extinct and therefore add the condition V i (0, P t ) = 0, which must hold for all P t and i. 100

On the regularity of value functions

In this section, we study the growth and continuity properties of the value functions.

We shall make the following assumptions: there exist ρ > 0 such that for all

s, t ∈ [0; T ], b, b ∈ R + , p, p ∈ R + and E ∈ A |l(t, b, p, E) -l(s, b , p , E)| + |m(b, p) -m(b , p )| ≤ ρ [|t -s| + |b -b | + |p -p |] (27) 
and the global linear growth conditions:

|l(t, b, p, E)| + |m(b, p)| ≤ ρ [1 + |b| + |p|] (28) 
Lemma 3.1. Let ( 27) and (28) hold. For any k ∈ [0; 2] there exists

C = C(k; K; T ) > 0 such that for all h, t ∈ [0; T ], b, p, b t , p t ∈ R + : E|B t,bt h | k ≤ C(1 + |b t | k ); E|P t,pt h | k ≤ C(1 + |p t | k ) (29) E|B t,bt h -b t | k ≤ C(1 + |b t | k )h k 2 ; E|P t,pt h -p t | k ≤ C(1 + |p t | k )h k 2 (30) E|B t,bt h -B t,b t h | k ≤ C|b t -b t | 2 ; E|P t,pt h -P t,p t h | k ≤ C|p t -p t | 2 (31) E sup 0≤s≤h |B t,bt h | k ≤ C(1 + |b t | k )h k 2 ; E sup 0≤s≤h |P t,pt h | k ≤ C(1 + |p t | k )h k 2 (32) Proof 3.1. See Appendix B 102 Proposition 3.1.
For any i ∈ S, the value function denoted by v i (s, b, p) satisfies a linear growth condition and is also Lipschitz in (b, p) uniformly in t.

There exists a constant C > 0, such that

0 ≤ v i (s, b s , p s ) ≤ C(1 + |b s | + |p s |), ∀(s, b s , p s ) ∈ [0; T ] × R + × R + (33) |v i (s, b s , p s ) -v i (s, b s , p s )| ≤ C(|b s -b s | + |p s -p s |), ∀s ∈ [0; T ], b s , b s ∈ R + , p s , p s ∈ R + (34) Proof 3.2.
We first show that v is Lipschitz in (b, p), uniformly in t and its linear growth condition. 

v i (s, b s , p s ) = sup E∈A E T s e -β(u-s) l(i, u, B s,bs u , P s,ps u , E u )du + e -β(T -s) m(B s,bs T , P s,ps T ) (35 
|v i (s, b s , p s ) -v i (s, b s , p s )| ≤ sup E∈Ai E T s e -β(u-s) l(i, u, B s,bs u , P s,ps u , E u )-l(i, u, B s,b s u , P s,p s u , E u ) du + e -β(T -s) m(B s,bs T , P s,ps T ) -m(B s,b s T , P s,p s T ) ≤ sup E∈Ai E T s l(i, u, B s,bs u , P s,ps u , E u ) -l(i, u, B s,b s u , P s,p s u , E u ) du + m(B s,bs T , P s,ps T ) -m(B s,b s T , P s,p s T ) ≤ sup E∈Ai E T s |B s,bs u -B s,b s u |+|P s,ps u -P s,p s u | du+ |B s,bs T -B s,b s T |+|P s,ps T -P s,p s T | ≤ sup E∈Ai T s E |B s,bs u -B s,b s u |+E|P s,ps u -P s,p s u | du+ E|B s,bs T -B s,b s T |+E|P s,ps T -P s,p s T | |v i (s, b s , p s ) -v i (s, b s , p s )| ≤ C |b s -b s | + |p s -p s | (36) 
2. from linear growth condition (28) on l ; m and from estimate (3.1), with k=1,

|v i (s, b s , p s )| ≤ sup E∈Ai E T s l(i, u, B s,bs u , P s,ps u , E u ) du + m(B s,bs T , P s,ps T ) ( 37 
)
|v i (s, b s , p s )| ≤ ρ sup E∈Ai E T s 1 + |B s,bs u | + |P s,ps u | du + 1 + |B s,bs T | + |P T | (38) |v i (s, b s , p s )| ≤ ρ sup E∈Ai T s 1 + E|B s,bs u | + E|P s,ps u | du + 1 + E|B s,bs T | + E|P s,ps T | ( 39 
)
|v i (s, b s , p s )| ≤ C (1 + |b s | + |p s |) (40) 
Proposition 3.2. Under assumptions (49) and (28

) the value function v ∈ C 0 ([0; T ] × R + × R + ). More precisely, there exists a constant C > 0 such that for all t, s ∈ [0; T ], b t , b s ∈ R + , p t , p s ∈ R + , |v i (t, b t , p t ) -v i (s, b s , p s )| ≤ C (1 + |b t | + |p t |)|s -t| 1 2 + |b t -b s | + |p t -p s | (41) 
Proof 3.3. Let 0 ≤ t < s ≤ T . To prove continuity property in time t, we use the dynamic programming principle.

v i (t, b, p) = sup E∈Ai E T t e -β(u-t) l(i, u, B t,bt u , P t,pt u , E u )du + e -β(T -t) m(B t,bt T , P t,pt T ) (42) = sup E∈Ai E s t e -β(u-t) l(i, u, B t,bt u , P t,pt u , E u )du + e -β(s-t) v(s, B t,bt s , P t,bt s , i) (43) = sup E∈Ai E s-t o e -βu l(i, t + u, B t,bt t+u , P t,pt t+u , E t+u )du + e -β(s-t) v(s, B t,bt s-t , P t,pt s-t , i) (44) 0 ≤ v i (t, b t , p t ) -v i (s, b s , p s ) = sup E∈Ai E s-t 0 e -β(u) l(i, u, B t,bt u , P t,pt u , E u )du + e -β(s-t) v(s, B t,bt s-t , P t,bt s-t , i) -v(s, b s , p s , i) + e -β(s-t) -1 v(s, b s , p s , i) (45) 
Applying linear growth condition [START_REF] Barles | Convergence of numerical schemes for degenerate parabolic equations arising in finance theory[END_REF] on l, noting that 0 ≤ 1-e -β(s-t) ≤ β(s-t) and v satisfies (3.1) , we deduce that:

|v i (t, b t , p t ) -v i (s, b s , p s )| ≤ sup E∈Ai E s-t 0 l(i, u, B t,bt u , P t,pt u , E u ) du+ e -β(s-t) v(s, B t,bt s-t , P t,bt s-t , i)-v(s, b s , p s , i) + e -β(s-t) -1 v(s, b s , p s , i) ≤ (s-t) 1 2 s-t 0 sup E∈Ai E l(i, u, B t,bt u , p t,pt u , E u ) 2 du 1 2 + sup E∈Ai E e -β(s-t) v(s, B t,bt s-t , P t,pt s-t , i) -v(s, b s , p s , i) + sup E∈Ai E e -β(s-t) -1 v(s, b s , p s , i) ≤ (s-t) 1 2 s-t 0 ρ 2 sup E∈Ai 1 + E|B t,bt u | + E|p t,pt u | 2 du 1 2 + sup E∈Ai E v(s, B t,bt s-t , P t,pt s-t , i) -v(s, b s , p s , i) + β|s -t| sup E∈A E |v(s, b s , p s , i)| ≤ |s-t| 1 2 s-t 0 ρ sup E∈Ai 1 + E|B t,bt u | + E|P t,pt u | du + sup E∈Ai E v(s, B t,bt s-t , P t,pt s-t , i)-v(s, b s , p s , i) + β|s -t| sup E∈Ai E v(s, b s , p s , i) ≤ C |s -t| 1 2 s-t 0 (1 + E|B t,bt u | + E|P t,pt u |)du + (|b t -b s | + |p t -p s |) + β(1 + |b s | + |p s |)|s -t| ≤ C (1 + |b t | + |p t |)|s -t| 1 2 + |b t -b s | + |p t -p s | (46)

Existence of viscosity solution

In this section we will first define what we mean by viscosity solutions. Then 104 we will prove that the value function is a viscosity solution.

From the optimization problem (23), we derive the Bellman equations as follows:

∂v i ∂t (t, B, P ) + sup E∈Ai -βv i (t, B, P ) + π 1-γ 1 -γ + θ(p 0 -p1 qEB -P ) ∂v i ∂p (t, B, P ) + r i B 1 - B K -qEB ∂v i ∂b (t, B, P ) + 1 2 σ 2 P ∂ 2 v i ∂p 2 (t, B, P ) + 1 2 σ 2 B 2 ∂ 2 v i ∂b 2 (t, B, P ) + q ij (v j (t, B, P ) -v i (t, B, P )) = 0 (47)
The corresponding Hamiltonian has the following form:

H i, s, B, P, u i , ∂u i ∂s , ∂u i ∂b , ∂u i ∂p , ∂ 2 u i ∂b 2 , ∂ 2 u i ∂p 2 = ∂u i ∂s (s, B, P )+ sup E∈Ai -βu i (s, B, P )+ π(B s , P s , E s ) 1-γ 1 -γ +Lu i (s, B, P ) = 0 (48)
We have the following systems:

     H i, s, B, P, u i , ∂u i ∂s , ∂u i ∂b , ∂u i ∂p , ∂ 2 u i ∂b 2 , ∂ 2 u i ∂p 2 = 0 f or (i, s, B, P ) ∈ S × [0; T i ] × R + × R + u i (T, B, ) = κ γ B 1-γ T 1-γ f or i, j ∈ {0; 1} κ > 0. ( 49 
)
we recall that

π(B s , P s , E s ) = (qB s P s -c 1 -c 2 E(s))E(s) (50) 
In order to study the possibility of existence and uniqueness of a solution of 106 (49), we use a notion of viscosity solution introduced by ( 22).
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Let denote the set of measurable functions on [0; T ] × R + × R + with polynomial growth of degree q ≥ 0 as,

C q ([0; T ] × R + × R + ) = {φ : [0; T ] × R + × R + , measurable | ∃C > 0, |φ(t, b, p)| ≤ C(1 + |b| q + |p| q )}. ( 51 
) Definition 3.1. We say that u i ∈ C 0 ([0; T ] × R + × R + ) is called i. a viscosity subsolution of (49) if for any i ∈ S, u i (T, b, p) ≤ κ γ b 1-γ T 1-γ , for all b ∈ R + , p ∈ R + and for all functions φ ∈ C 1,2,2 ([0; T ] × R + × R + ) ∩ C 2 ([0; T ]×R + ×R + ) and ( t, b, p) such that u i -φ attains its local maximum at ( t, b, p), H i, t, b, p, φ( t, b, p), ∂φ( t, b, p) ∂s , ∂φ( t, b, p) ∂b , ∂φ( t, b, p) ∂p , ∂ 2 φ( t, b, p) ∂b 2 , ∂ 2 φ( t, b, p) ∂p 2 ≥ 0 (52)
ii. a viscosity supersolution of (49) if for any i ∈ S, Proof 3.4. We establish the viscosity super-and sub-solution properties, respectively in the following two steps.

u i (T, b, p) ≥ κ γ b 1-γ T 1-γ , for all b ∈ R + , p ∈ R + and if for all functions φ ∈ C 1,2,2 ([0; T ] × R + × R + ) ∩ C 2 ([0; T ] × R + × R + )
Step 1. v i (t, b t , p t ), i = 1; 2 is a viscosity super-solution of (47).

We already know that v ∈ C 0 ([0; T ] × R + × R + ). We first note that

v i (T, b, p) = κ γ B 1-γ T 1-γ so, the boundary condition at time t = T is clearly satisfied. Let (s, b s , p s ) ∈ [0; T ] × R + × R + , i ∈ S and φ ∈ C 1,2,2 ([0; T ] × R + × R + ) ∩ C 2 ([0; T ] × R + × R + )
such that v i (., ., .) -φ(., ., .) has a local minimum at (s, b s , p s ). Let N(b s , p s ) a neighborhood of (s, b s , p s ) where v i (., ., .) -φ(., ., .) take its minimum, we introduce a new test-function ψ as follows:

ψ(., ., ., j) =      φ(., ., .) + [v i (s, b s , p s ) -φ(s, b s , p s )], if j = i v i (., ., .), if j = i. ( 54 
)
This helps us to suppose without any loss of generality that this minimum is equal to 0.

Let τ α be the first jump time of α(t) = α(t) 

Recalling that (B bs s , P ps s ) = (b s , p s ) and using Equations ( 54) and (56), we have 

E bs,ps,i e -βθs∧h ψ(θ s ∧ h, B θs∧h , P θs∧h , α(θ s ∧ h)) ≥ + v i (s,
r i b s 1 - b s K -qEb s ∂ψ(s, b s , p s , i) ∂b -θ(p 0 -p1 qEb s -p s ) ∂ψ(s, b s , p s , i) ∂p - 1 2 σ 2 b 2 s ∂ 2 ψ(s, b s , p s , i) ∂b 2 - 1 2 σ 2 P ∂ 2 ψ(s, b s , p s , i) ∂p 2 -q ij [v j (s, b s , p s ) -v i (s, b s , p s )] -l(i, s, b s , p s , E s ) ≥ 0 (60)
This shows that the value function v i (t, b t , p t ), i = 1; 2 satisfies the viscos-118 ity super-solution property (53).

Step 2. v i (t, b t , p t ), i = 1; 2 is a viscosity sub-solution of (47).

We argue by contradiction. Assume that there exist an i 0 ∈ S, a point

(s, b s , p s ) ∈ [0; T ] × R * + × R * + and a testing function φ i0 ∈ C 1,2,2 ([0; T ] × R * + × R * + ) ∩ C 2 ([0; T ] × R * + × R * +
) such that v i0 (., ., .) -φ i0 (., ., .) has a local maximum at (s, b s , p s ) in a bounded neighborhood N(b s , p s ), v i0 (s, b s , p s ) = φ i0 (s, b s , p s ), and

min - ∂φ i0 (s, b s , p s ) ∂t + inf E∈Ai 0 βv i0 (s, b s , p s )- r i0 b s 1 - b s K -qEb s ∂φ i0 (s, b s , p s ) ∂b -θ(p 0 -p1 qEb s -p s ) ∂φ i0 (s, b s , p s ) ∂p - 1 2 σ 2 b 2 s ∂ 2 φ i0 (s, b s , p s ) ∂b 2 - 1 2 σ 2 P ∂ 2 φ i0 (s, b s , p s ) ∂p 2 -q i0j [v j (s, b s , p s )-v i0 (s, b s , p s )] -l( i0 , s, b s , p s , E s ) ; v i0 (T, b s , p s ) -κ γ B 1-γ T 1 -γ > 0 i 0 = j (61)
By the continuity of all functions involved in (61) (v i0 , φ i0 , φ i0 , q ij , l, ...), 120 there exist a δ > 0 and an open ball and

B δ (b s , p s ) ⊂ N(b s , p s ) such that - ∂φ i0 (t, b t , p t ) ∂t + inf E∈Ai 0 βv i0 (t, b t , p t )- r i0 b t 1 - b t K -qEb t ∂φ i0 (t, b t , p t ) ∂b -θ(p 0 -p1 qEb t -p t ) ∂φ i0 (t, b t , p t ) ∂p - 1 2 σ 2 b 2 s ∂ 2 φ i0 (t, b t , p t ) ∂b 2 - 1 2 σ 2 P ∂ 2 φ i0 (t, b t , p t ) ∂p 2 -q i0j [v j (t, b t , p t )-v i0 (t, b t , p t )] -l( i0 , t, b t , p t , E t ) > δ i 0 = j; (t, b t , p t ) ∈ B δ (b s , p s ) (62) and v i0 (T, b t , p t ) -κ γ B 1-γ T 1 -γ > δ (t, b t , p t ) ∈ B δ (b s , p s ) (63) Let θ δ = min{t ≥ s : (t,
v i0 (T, b t , p t ) -κ γ B 1-γ T 1 -γ > δ (t, b t , p t ) ∈ B δ (b s , p s ) ( 65 
)
As previously, we can replace φ i0 by a new test-function ψ defined as follows:

ψ(., ., ., j) = For details see [START_REF] Liu | Optimal stopping of switching diffusions with state dependent switching rates[END_REF]. It follows that

     φ i0 (., ., .), if j = i 0 v i0 (., ., .), if j = i 0 . (66) 
+ e -βτ [κ γ B 1-γ T 1 -γ ]1 {τ <θ} + δE bs,ps,i0 (θ∧τ ) 
v i0 (s, b s , p s ) ≥ sup τ ∈[s;T ];E∈A E bs,ps,i0 + (θ∧τ ) s e -βt l( i0 , t, B t , P t , E t ) dt + e -βθ v i0 (θ, B θ , P θ , α(θ))1 {τ ≥θ} + e -βτ [κ γ B 1-γ T 1 -γ ]1 {τ <θ} + C 0 δ 1 -E bs,ps,i0 e -βτα (71) 
which is a contradiction to the DP principle since E bs,ps,i0 e -βτα < 1.

Therefore the value function v i (t, b t , p t ), i = 1; 2 is a viscosity sub-solution of the system (2.8).

This completes the proof of Theorem 3.1

Comparison principle: uniqueness of the viscosity solution

In this section, we prove a comparison result from which we obtain the uniqueness of the solution of the coupled system of partial differential equations.

In proving comparison results for viscosity solutions, the notion of parabolic we define the parabolic superjet:

P 2,+ v(t, b, p, i) = (c, q, M ) ∈ R × R 2 × S 2 : v(s, b , p , i) ≤ v(t, b, p, i) + c(s -t) + q.((b -b), (p -p)) + 1 2 ((b -b), (p -p)).M ((b -b), (p -p)) + o(|((b -b), (p -p))| 2 ) as (s; b , p ) → (t; b, p) (72) 
and its closure:

P2,+ v(t, b, p, i) = (c, q, M ) = lim n→∞ (c n , q n , M n ) with (c n , q n , M n ) ∈ P 2,+ v(t n , b n , p n , i) and lim n→∞ (t n , b n , p n , v(t n , b n , p n , i)) = (t, b, p, v(t, b, p, i)) (73)
Similarly, we define the parabolic subjet P2,v(t, b, p, i) = -P2,+ (-v)(t, b, p, i)

and its closure P2,-v(t, b, p, i) = -P2,+ (-v)(t, b, p, i)
It is proved in [START_REF] Linos | Optimal control of diffustion processes and hamilton-jacobibellman equations part i: the dynamic programming principle and application[END_REF] that

P 2,+(-) v(t, b, p, i) = φ ∂t (t, b, p, i), D (b,p) φ(t, b, p, i), D 2 (b,p) φ(t, b, p, i)
and v -φ has a global maximum (minimum) at (t, b, p, i)

The previous notions lead to new definition of viscosity solutions.

Definition 3.3. u i ∈ C 0 ([0; T ] × R * + × R * + ) satisfying the polynomial growth condition is a viscosity solution of (49) if (1) for any test-function φ ∈ C 1,2,2 ([0; T ] × R * + × R * + ) if (t, b, p
) is a local maximum point of u i (., ., .) -φ(., ., .) and if (c, q, L 1 ) ∈ P2,+ u(t, b, p, i)

with c = ∂φ(t, b, p)/∂t; q = D (b,p) φ(t, b, p) and L 1 ≤ D 2 (b,p) φ(t, b, p), then H i, s, b, p, u i , ∂u i ∂s , ∂u i ∂b , ∂u i ∂p , ∂ 2 u i ∂b 2 , ∂ 2 u i ∂p 2 ≤ 0 (75)
in this case u is a viscosity subsolution,

(2) for any test-function

φ ∈ C 1,2,2 ([0; T ] × R * + × R * + ) if (t, b, p
) is a local minimum point of u i (., ., .) -φ(., ., .) and if (c, q, L 2 ) ∈ P2,u(t, b, p, i) with c = ∂φ(t, b, p)/∂t; q = D (b,p) φ(t, b, p) and L 2 ≥ D 2 (b,p) φ(t, b, p), then

H i, s, b, p, u i , ∂u i ∂s , ∂u i ∂b , ∂u i ∂p , ∂ 2 u i ∂b 2 , ∂ 2 u i ∂p 2 ≥ 0 (76)
in this case u is a viscosity supersolution, It is proved in [START_REF] Barles | Second-order elliptic integro-differential equations: viscosity solutions' theory revisited[END_REF] that this new definition and the previous one are equivalent. We refer the reader to the mentioned paper for a proof. The last definition is particular suitable for the discussion of a maximum principle which is the backbone of the uniqueness problem for the viscosity solutions theory.

Before state next lemma, we first introduce the inf and sup-convolution operations we are going to use. 

R α [U ](z, r) = sup |Z-z|≤1 U (Z) -r • (Z -z) - |Z -z| 2α (77) R α [V ](z, r) = inf |Z-z|≤1 V (Z) + r • (Z -z) + |Z -z| 2α (78) R α [U ](z, r) is called the modified sup-convolution and R α [V ](z, r) the modified inf-convolution. Notice that R α [V ](z, r) = -R α [-U ](z, r) Lemma 3.2. (nonlocal Jensen-Ishii's lemma (25))
For any i ∈ S, let u i (., ., .) and v i (., ., .) be, respectively, a usc and lsc function

defined on [0; T ]×R + ×R + and φ ∈ C 1,2,2 ([0; T ]×R 2 + ×R 2 + )∩C 2 ([0; T ]×R 2 + ×R 2 + ) if ( t, ( b1 , p1 ), ( b2 , p2 )) ∈ [0; T ] × R 2 + × R 2 + is a zero global maximum point of u i (t, b, p)-v i (t, b , p )-φ(t, (b, p), (b , p )) and if c-d := D t φ( t, ( b1 , p1 ), ( b2 , p2 )),
q := D (b,p) φ( t, ( b1 , p1 ), ( b2 , p2 )), r := -D (b ,p ) φ( t, ( b1 , p1 ), ( b2 , p2 )) , then for any K > 0, there exists α(K) > 0 such that, for any 0 < α < α(K), we have: there exist sequences t k → t, (b k , p k ) → ( b1 , p1 ), (b k , p k ) → ( b2 , p2 ), q k → q, r k → r, matrices M k , N k and a sequence of functions φ k , converging to the function φ α := R α [φ](((b, p), (b , p )), (q, r)) uniformly in R 2 + × R 2 + and in C 2 (B(( t, ( b1 , p1 ), ( b2 , p2 )), K)), such that

u i (t k , (b k , p k )) → u i ( t, ( b1 , p1 )), v i (t k , (b k , p k )) → v i ( t, ( b2 , p2 )) ( 79 
) (t k , (b k , p k ), (b k , p k ))
is a global maximum of u i (., (., .))-v i (., (., .))-φ(., (., .), (., .))

(c k , q k , M k ) ∈ P2,+ u i (t k , (b k , p k )) (80) 
(-d k , r k , N k ) ∈ P2,-v i (t k , (b k , p k )) (81) - 1 α   I 0 0 I   ≤   M k 0 0 -N k   ≤ D 2 (b,p),(b ,p ) φ(t k , (b k , p k ), (b k , p k )) (82) Here c k -d k = ∇ t φ(t k , (b k , p k ), (b k , p k )), q k = ∇ (b,p) φ(t k , (b k , p k ), (b k , p k )), r k = ∇ (b ,p ) φ(t k , (b k , p k ), (b k , p k ))
and φ α ( t, ( b1 , p1 ), ( b2 , p2 )) = φ( t, ( b1 , p1 ), ( b2 , p2 )), 162 ∇φ α ( t, ( b1 , p1 ), ( b2 , p2 )) = ∇φ( t, ( b1 , p1 ), ( b2 , p2 ))

Now we can state our comparison result. 

u i (t, b, p) ≤ v i (t, b, p) f or all (t, b, p, i) ∈ [0; T ] × R + × R + × S (83) 
Proof 3.5. For , , δ, λ > 0, we define the auxiliary functions φ :

(0; T ] × R 2 + × R 2 + → R and Ξ: [0; T ] × R 2 + × R 2 + × S by φ(t, (b, p), (b , p ) 
) = t + 1 2 |(b, p)-(b , p )| 2 +δe λ(T -t) (|(b, p)| 2 +|(b , p )| 2 ) (84)
and

Ξ(t, (b, p), (b , p ), i) = v i (t, b, p) -u i (t, b , p ) -φ(t, (b, p), (b , p )) (85) 
By using the linear growth of v i and u i , we have for each i ∈ S lim

|(b,p)|+|(b ,p )|→∞ Ξ(t, (b, p), (b , p ), i) = -∞ (86) 
Then, since v i and u i are uniformly continuous with respect to (t, b, p) on each compact subset of [0; T ]×R + ×R + ×S and that S is a finite set, Ξ attains its global maximum at some finite point belonging to a compact

K ⊂ [0; T ] × R 2 + × R 2 + × S say, t δ , (b 1δ , p 1δ ), (b 2δ , p 2δ ), α δ . Observing that 2Ξ t δ , (b 1δ , p 1δ ), (b 2δ , p 2δ ), α δ ≥ Ξ t δ , (b 1δ , p 1δ ), (b 2δ , p 2δ ), α δ + Ξ t δ , (b 1δ , p 1δ ), (b 2δ , p 2δ
), α δ and using the uniform continuity of v i and u i on K we have

1 |(b 1δ , p 1δ ) -(b 2δ , p 2δ )| 2 ≤ v i t δ , (b 1δ , p 1δ ) -v i tδ , (b 2δ , p 2δ ) +u i t δ , (b 1δ , p 1δ ) -u i t δ , (b 2δ , p 2δ ) ≤ 2C|(b 1δ , p 1δ ) -(b 2δ , p 2δ )| (87) Thus, |(b 1δ , p 1δ ) -(b 2δ , p 2δ )| ≤ 2C ( 88 
)
where C is a positive constant independent of , , δ, λ. From the inequality, 166 2Ξ T, (0, 0), (0, 0),

α δ ≤ 2Ξ t δ , (b 1δ , p 1δ ), (b 2δ , p 2δ ), α δ (89) 
and the linear growth for v i and u i , we have:

δ |(b 1δ , p 1δ ) | 2 + |(b 2δ , p 2δ | 2 ≤ e -λ(T -t δ ) v i t δ , b 1δ , p 1δ -v i T, 0, 0 + u i T, 0, 0 -u i t δ , b 2δ , p 2δ ≤ e -λ(T -t δ ) C 2 1 + |(b 1δ , p 1δ )| + |(b 2δ , p 2δ )| (90) It follows that δ |(b 1δ , p 1δ ) | 2 + |(b 2δ , p 2δ | 2 (1 + |(b 1δ , p 1δ )| + |(b 2δ , p 2δ )| ≤ C 2 (91) 
Consequently, there exists C δ > 0 such that

|(b 1δ , p 1δ )| + |(b 2δ , p 2δ )| ≤ C δ (92) 
This inequality implies that for any fixed δ ∈ (0, 1), the sets {(b 1δ , p 1δ ), > 0}

and {(b 2δ , p 2δ ), > 0} are bounded by C δ independent of . It follows from inequalities (90) and (92) that, possibly if necessary along a subsequence, named again t δ , (b 1δ , p 1δ ), (b 2δ , p 2δ ), α δ that there exist (b 1δ0 , p 1δ0 ) ∈ R 2 + , t δ 0 ∈ (0, T ] and α δ 0 ∈ S such that: lim

↓0 (b 1δ , p 1δ ) = (b 1δ0 , p 1δ0 ) = lim ↓0 (b 1δ , p 1δ ), lim ↓0 t δ = t δ0 , lim ↓0 α δ = α δ0 .
If t δ = T then writing that Ξ t, (b, p), (b, p), α δ ≤ Ξ T, (b 1δ , p 1δ ), (b 2δ , p 2δ ), α δ , we have

u i (t, b, p) -v i (t, b, p) - t -2δe λ(T -t) (|(b, p)| 2 ) ≤ u i (T, (b 1δ , p 1δ )) -v i (T, (b 2δ , p 2δ )) - T - 1 2 |(b 1δ , p 1δ ) -(b 2δ , p 2δ )| 2 -δ(|(b 1δ , p 1δ )| 2 + |(b 2δ , p 2δ )| 2 ) ≤ u i (T, (b 1δ , p 1δ )) -v i (T, (b 2δ , p 2δ )) = [u i (T, (b 1δ , p 1δ )) -v i (T, (b 1δ , p 1δ ))] + [v i (T, (b 1δ , p 1δ )) -v i (T, (b 2δ , p 2δ ))] ≤ C 1 |(b 1δ , p 1δ ) -(b 2δ , p 2δ )| (93)
where the last inequality follows from the uniform continuity of v i and by as-

sumption that u i (T, (b 1δ , p 1δ )) = κ γ b 1-γ T 1-γ = v i (T, (b 1δ , p 1δ ))
Sending , , δ ↓ 0 and using estimate (88), we have: u i (t, b, p) ≤ v i (t, b, p) . Assume now that t δ < T . Applying Lemma 3.2 with u i , v i and φ(t, (b, p), (b , p )) at the point (t δ , (b 1δ , p 1δ ), (b 2δ , p 2δ ), α δ ) ∈ (0; T ) × R 2 + × R 2 + × S, for any ζ ∈ (0, 1) there are d ∈ R, M δ , N δ ∈ S 2 such that: 

d - t 2 -λδe λ(T -t) (|(b δ , p δ )| 2 + |(b δ , p δ )| 2 ), 1 ((b δ , p δ ) -(b δ , p δ )) + 2δe λ(T -t) (b δ , p δ ), M δ + 2δe λ(T -t) I ∈ P2,+ v(t, b, p, i) d, 1 ((b δ , p δ )-(b δ , p δ ))-2δe λ(T -t) (b δ , p δ ), N δ -2δe λ(T -t) I ∈ P2,-v(t, b, p, i) (94 
  I 0 0 I   ≤   M δ 0 0 -N δ   ≤ 2   I -I -I I   (96) It follows that (b δ , p δ )M δ   b δ p δ   -(b δ , p δ )N δ   b δ p δ   = ((b δ , p δ ), (b δ , p δ ))   M δ 0 0 -N δ             b δ p δ     b δ p δ           ≤ ((b δ , p δ ), (b δ , p δ ))   2   I -I -I I               b δ p δ     b δ p δ           ≤ 2 |(b δ , p δ ) -(b δ , p δ )| 2 (97)
Furthermore, the definition of the viscosity subsolution u i and supersolution v i implies that

min βu i0 (t δ , b δ , p δ ) -d - t 2 δ -λδe λ(T -t δ ) (|(b δ , p δ )| 2 + |(b δ , p δ )| 2 ) + inf E∈Ai 0 -r i0 b δ 1 - b δ K -qEb δ 1 (b δ -b δ ) + 2δe λ(T -t) b δ -θ(p 0 -p 1 qEb δ -p s ) 1 (p δ -p δ )+2δe λ(T -t) p δ - 1 2 (σb δ ; σ P )(M δ +2δe λ(T -t) I)   σb δ σ p   -q i0j [u j (t δ , b δ , p δ ) -u i0 (t δ , b δ , p δ )] -l( i0 , t δ , b δ , p δ , E t δ ) ; u i0 (T, , b δ , p δ ) -κ γ B 1-γ T 1 -γ ≤ 0 i 0 = j (98)
and

168 min βv i0 (t δ , b δ , p δ )-d+ inf E∈Ai 0 -r i0 b δ 1- b δ K -qEb δ 1 (b δ -b δ )+2δe λ(T -t) b δ -θ(p 0 -p 1 qEb δ -p s ) 1 (p δ -p δ )+2δe λ(T -t) p δ - 1 2 (σb δ ; σ P )(N δ -2δe λ(T -t) I)   σb δ σ p   -q i0j [v j (t δ , b δ , p δ ) -v i0 (t δ , b δ , p δ )] -l( i0 , t δ , b δ , p δ , E t δ ) ; v i0 (T, , b δ , p δ ) -κ γ B 1-γ T 1 -γ ≥ 0 i 0 = j (99)
Let us define operators A E (x, v, φ, X, Z) and B E (x, v).

A E (t, b, p, w, X, Y Z) = r i0 b 1 - b K -qEb X + θ(p 0 -p1 qEb -p s )Y + 1 2 wZw (100) B E (t, b, p, v) = q i0j [v j (t, b, p) -v i0 (t, b, p)] (101) 
by Subtracting these last two inequalities and remarking that min(x; y)-min(z; t) ≤ 0 implies either x -z ≤ 0 or y -t ≤ 0, we divide our consideration into two 170 cases:

Case 1

β u i0 (t δ , b δ , p δ )-v i0 (t δ , b δ , p δ ) + t 2 δ +λδe λ(T -t δ ) (|(b δ , p δ )| 2 +|(b δ , p δ )| 2 ) ≤ sup E∈Ai 0 l( i0 , t δ , b δ , p δ , E t δ ) -l( i0 , t δ , b δ , p δ , E t δ ) + sup E∈Ai 0 A E t δ , b δ , p δ , (σb δ ; σ P ), 1 (b δ -b δ )+2δe λ(T -t δ ) b δ , 1 (p δ -p δ )+2δe λ(T -t δ ) p δ , M δ + 2δe λ(T -t δ ) I -A E t δ , b δ , p δ , (σb δ ; σ P ), 1 (b δ -b δ )+2δe λ(T -t) b δ , 1 (p δ -p δ )+2δe λ(T -t δ ) p δ , N δ -2δe λ(T -t δ ) I + sup E∈Ai 0 B E (t δ , b δ , p δ u) -B E (t δ , b δ , p δ v)] ≡ I 1 + I 2 + I 3 (102)
In view of condition ( 27) on l and from estimate (3.1), we have the classical estimates of I 1 and I 2 :

I 1 ≤C|(b δ , p δ ) -(b δ , p δ )| (103) 
I 2 ≤C( 1 |(b δ , p δ ) -(b δ , p δ )| 2 + 2δe λ(T -t δ ) (1 + |(b δ , p δ )| 2 + |(b δ , p δ )| 2 ) (104) 
Using the Lipschitz condition for u and v, we have

I 3 ≤ 2C|(b δ , p δ ) -(b δ , p δ )| (105) 
Writing that Ξ(t, (b, p), (b, p), i) ≤ Ξ(t δ , (b δ , p δ ), (b δ , p δ ), i) for i ∈ S and using the inequality (102),

u i (t, b, p) -v i (t, b, p) - t -2δe λ(T -t) |(b, p)| 2 ≤ v i (t δ , b δ , p δ ) -u i (t δ , b δ , p δ ) - t δ -2δe λ(T -t) |(b δ , p δ )| 2 ≤ 1 β I 1 + I 2 + I 3 - βt 2 δ - λ β δe λ(T -t δ ) (|(b δ , p δ )| 2 + |(b δ , p δ )| 2 ) (106) this implies u i (t, b, p) -v i (t, b, p) - t -2δe λ(T -t) |(b, p)| 2 ≤ 1 β I 1 + I 2 + I 3 - λ β δe λ(T -t δ ) (|(b δ , p δ )| 2 + |(b δ , p δ )| 2 ) (107)
Sending ↓ 0, with the above estimates of (I 1 ) -(I 2 ) -(I 3 ), we obtain:

u i (t, b, p)-v i (t, b, p)- t -2δe λ(T -t) |(b, p)| 2 ≤ 2δ β e λ(T -t0) C(1+2|(b 0 , p 0 )| 2 )-λ|(b 0 , p 0 )| 2 (108) 
Choose λ sufficiently large positive (λ ≥ 2C) and send , δ → 0 + to conclude that u i (t, b, p) ≤ v i (t, b, p)

Case 2 the second case occurs if

u i0 (T, , b δ , p δ ) -v i0 (T, , b δ , p δ ) ≤ 0 (109) 
and

finally that u i (t, b, p) ≤ v i (t, b, p)
This completes the proof.

The following corollary follows from Theorems 3.1 and 3.2.

Corollary 3.1. The value function v is a uniques viscosity solution of (47) that has at most a linear growth.

Monotone Finite Difference and Simulation

The determination of the effort value requires numerical computations. Thus, instead of arbitrary parameters values, we have decided to use realistic values.

We found a quite complete set of parameter values in (2) and [START_REF] Kvamsdal | Harvesting in a fishery with stochastic growth and a mean-reverting price[END_REF]. The time horizon was set at T i = 5 years. The complete set of parameter values is listed in Table 1.

Sample Realisations of Price and Stock

We chose the maximum fishing effort value for these sample realisations. is the unique viscosity solution of the associated system of HJB equations. As an application, the optimal effort is deduced by using Howard's algorithm.

These methodologies can be applied to similar comparison studies and other fishery models. This will be the subject of a further paper.

Appendix B Proof of lemma 3.1

1. Let k ∈ [0; 2] and h = s -t.

According to Hölder inequality Eη k ≤ Eη 2 k/2 for ∀k ≥ 0, E|P 

) 1 .

 1 Using elementary inequality | sup A -sup B| ≤ sup |A -B|, Lipschitz con-dition (27) on l ; m and from estimate (3.1), with k=1,

se

  -βt dt + e -βτ 1 {τ <θ} (69) Now the estimate of the term E bs,ps,i0 (θ∧τ ) s e -βt dt + e -βτ 1 {τ <θ} .There exist a positive constant C 0 such that E bs,ps,i0 (θ∧τ ) s e -βt dt + e -βτ 1 {τ <θ} ≥ C 0 1 -E bs,ps,i0 e -βτα (70)

3 . 2 .

 32 superjet and subjet defined by Crandall, Ishii and Lions [19] is particularly useful. Thus, we begin by Definition Given v ∈ C o ([0; T ]×R×R×S) and (t; b; p; i) ∈ [0; T )×R×R×S,

Definition 3 . 4 .

 34 For any usc (upper semi-continuous ) function U : R m → R and any lsc (lower semi-continuous ) function V : R m → R, we set
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 32 (comparison principle): If u i (t, b, p) and v i (t, b, p) are continuous in (t, b, p) and are, respectively, viscosity subsolution and supersolution of the HJB system (47) with at most linear growth then

2 ≤

 2 p),(b ,p ) φ(t δ , (b δ , p δ ), (b δ , p δ )) + ζ D 2 (b,p),(b ,p ) φ(t δ , (b δ , p δ ), (b δ , p δ )) + ζ(2 + 4δ e λ(T -t) ) 2δ+4ζδ 2 e λ(T -t) )e λ(T -t)

  

  

  The logical requirement is that B(t) must be positive. The resulting stochastic differential equation does not satisfy the standard assumptions for existence and uniqueness of solutions, The solution of this equation is.(For more details see Appendix A )

namely, linear growth and the Lipschitz condition. Nevertheless, for any positive initial condition, the solution exists and is unique under a hypothesis that both f and g satisfy the local Lipschitz condition and in any time r α(t) -qE > σ 2 α(t) /2.

  and (t, b, p) such that u i -φ attains its local minimum

	at (t, b, p),										
	H i, t, b, p, φ(t, b, p),	∂φ(t, b, p) ∂s	,	∂φ(t, b, p) ∂b	,	∂φ(t, b, p) ∂p	,	∂ 2 φ(t, b, p) ∂b 2	,	∂ 2 φ(t, b, p) ∂p 2	≤ 0
										(53)	
	iii. a viscosity solution of (49) if it is both a viscosity sub-and a supersolution	
	of equation (49)										
	Theorem 3.1. Under assumptions (27), the value function v is a viscosity	
	solution of (47).										

  bs,ps,i , i.e. τ α = min{t ≥ s : α(t) = i}. Then τ α > s, a.s. Let θ s ∈ (s, τ α ) be such that the state ) starts at (b s , p s ) and stays in N(b s , p s ) for s ≤ t ≤ θ s . Applying the generalized Itô's formula to the switching process e -βt ψ(t, B t , P t , α(t)), taking integral from t = s to t = θ s ∧ h, where h > 0 is a positive constant, and then taking expectation we have E bs,ps,i e -βθs∧h ψ(θ s ∧ h, B θs∧h , P θs∧h , α(θ s ∧ h)) = ψ(s, B s , P s , i)+E bs,ps,i

	(B bs,i t	, P ps,i t					
							s	θs∧h	e -βt -βψ(t, B t , P t , α(t))+	∂ψ(t, B t , P t , α(t)) ∂t
	+ r i B t 1-	B t K	-qEB t	∂ψ(t, B t , P t , α(t)) ∂b	+θ(p 0 -p 1 qEB t -P t )	∂ψ(t, B t , P t , α(t)) ∂p
		+	1 2	σ 2 B 2 t	∂ 2 ψ(t, B t , P t , α(t)) ∂b 2	+	1 2	σ 2

P ∂ 2 ψ(t, B t , P t , α(t)) ∂p 2 + q α(t)j (ψ(t, B t , P t , j) -ψ(t, B t , P t , α(t))) dt ; α(t) = j (55) From hypothesis, for any t ∈ [s, θ s ∧ h] v i (t, B bs t , P ps t ) ≥ φ(t, B bs t , P ps t )+v i (s, b s , p s )-φ(s, b s , p s ) ≥ ψ(t, B bs t , P ps t , i)

  b s , p s ) + E bs,ps,i+ q ij (v j (t, B t , P t ) -v i (t, B t , P t )) dt (57) By Bellman's principle ψ(s, b s , p s , i) = v i (s, b s , p s ) = sup

									θs∧h
									E∈Ai	E bs,ps,i	s	e -βt l(i, t, B s,bs t	, P s,ps t	, E t )dt
					+ e -β(θs∧h) v i (θ s ∧ h, B s,bs θs∧h , P s,ps θs∧h )
								θs∧h
			≥ sup E∈Ai	E bs,ps,i	s	e -βt l(i, t, B s,bs t	, P s,ps t	, E t )dt
								+ e -β(θs∧h) ψ(θ s ∧ h, B s,bs θs∧h , P s,ps θs∧h , i)	(58)
	Setting τ = E(θ s ∧ h) combining (57) and (58) and multiplying both sides
	by 1/(τ -s) > 0 , we obtain
	sup E∈Ai	E bs,ps,i	1 τ -s		
		-	1 2	σ 2 B 2			∂b 2	-	1 2	σ 2
							s	θs∧h	e -βt -βv i (t, B t , P t ) +	∂ψ(t, B t , P t , α(t)) ∂t
	+ r i B t 1-	B t K	-qEB t	∂ψ(t, B t , P t , α(t)) ∂b	+θ(p 0 -p 1 qEB t -P t )	∂ψ(t, B t , P t , α(t)) ∂p
		+	1 2	σ 2 B 2 t	∂ 2 ψ(t, B t , P t , α(t)) ∂b 2	+	1 2	σ 2 P	∂ 2 ψ(t, B t , P t , α(t)) ∂p 2

θs∧h s e -βt βv i (t, B t , P t ) -∂ψ(t, B t , P t , α(t)) ∂t -r i B t 1-B t K -qEB t ∂ψ(t, B t , P t , α(t)) ∂b -θ(p 0 -p 1 qEB t -P t ) ∂ψ(t, B t , P t , α(t)) ∂p t ∂ 2 ψ(t, B t , P t , α(t)) P ∂ 2 ψ(t, B t , P t , α(t)) ∂p 2 -q ij [v j (t, B t , P t ) -v i (t, B t , P t )] -l(i, t, B s,bs t , P s,ps t , E t ) dt ≥ 0 (59) letting τ ↓ s and using the dominated convergence theorem, it turns out that e -βs -∂ψ(s, b s , p s , i) ∂t + inf E∈Ai βv i (s, b s , p s )-

  i0j [v j (t, B t , P t )-v i0 (t, B t , P t )] -l( i0 , t, B t , P t , E t ) > δ i 0 = j; (t, B t , P t ) ∈ B δ (b s , p s ) (64)

	have						
		βv i0 (t, B t , P t ) -	∂φ i0 (t, B t , P t ) ∂t
	-r i0 b t 1-	B t K	-qE i0 B t	∂φ i0 (t, B t , P t ) ∂b	-θ(p 0 -p 1 qEB t -P t )	∂φ i0 (t, B t , P t ) ∂p
	-	1 2	σ 2 b 2 s	∂ 2 φ i0 (t, B t , P t ) ∂b 2	-	1 2	σ 2 P	∂ 2 φ i0 (t, B t , P t ) ∂p 2	-q

B t , P t ) ∈ B δ (b s , p s )} be the first exit time of (t, B t , P t ) (= (t, B s,bs t , P s,ps t )) from B δ (b s , p s ). Let θ = θ δ ∧ τ α where τ α is

the first jump time of α(t) bs,ps,i0 . Then θ > 0, a.s.. For 0 ≤ t ≤ θ, we

  in which we used E bs,ps,i e -βθ∧τ ψ(θ∧τ, B θ∧τ , P θ∧τ , α(θ∧τ )) = E bs,ps,i e -βθs∧τ ψ(θ∧ τ, B θ∧τ , P θ∧τ , α(θ ∧ τ )-) due to continuity. Noting that the integrand in the RHS of (67) is continuous in t. Using (64), (65) and that v i0 (t, B t , P t ) ≤ φ i0 (t, B t , P t ) in (67). Also noting that α(t) = i 0 for 0 ≤ t ≤ θ, it follows v i0 (s, b s , p s ) ≥ E bs,ps,i0 e -βθ∧τ φ i0 (θ ∧ τ, B θ∧τ , P θ∧τ , α(θ ∧ τ ))

			+		s	(θ∧τ )	e -βt βv i0 (t, B t , P t ) -	∂φ i0 (t, B t , P t ) ∂t
	-r i B t 1-	B t K	-qE i B t	∂φ i0 (t, B t , P t ) ∂b	-θ(p 0 -p 1 qEB t -P t )	∂φ i0 (t, B t , P t ) ∂p
		-	1 2	σ 2 B 2 t	∂ 2 φ i0 (t, B t , P t ) ∂b 2	-	1 2	σ 2 P	∂ 2 φ i0 (t, B t , P t ) ∂p 2
				(θ∧τ )	
	+	1 2	σ 2 B 2 t	∂ 2 ψ(t, B t , P t , α(t)) ∂b 2	+	1 2	σ 2 P	∂ 2 ψ(t, B t , P t , α(t)) ∂p 2

For any stopping time τ ∈ [s; T ]. Applying Itô's formula to the switching process e -βt ψ(t, B t , P t , α(t)), taking integral from t = s to t = (θ s ∧ τ )and then taking expectation yield E bs,ps,i e -βθ∧τ ψ(θ ∧ τ, B θ∧τ , P θ∧τ , α(θ

∧ τ )) = v i0 (s, b s , p s )+E bs,ps,i (θ∧τ )s e -βt -βψ(t, B t , P t , α(t))+ ∂ψ(t, B t , P t , α(t)) ∂t + r i B t 1-B t K -qE i B t ∂ψ(t,

B t , P t , α(t)) ∂b +θ(p 0 -p 1 qEB t -P t ) ∂ψ(t, B t , P t , α(t)) ∂p + q α(t)j [v j (t, B t , P t ) -ψ(t, B t , P t , α(t))] dt ; α(t) = j (67) -q i0j [v j (t, B t , P t ) -v i0 (t, B t , P t )] dt ; i 0 = j (68) i.e 122 v i0 (s, b s , p s ) ≥ E bs,ps,i0 e -βτ v i0 (τ, B τ , P τ , α(τ ))1 {τ <θ} +e -βθ v i0 (θ, B θ , P θ , α(θ))1 {τ ≥θ} + (θ∧τ ) s e -βt l( i0 , t, B t , P t , E t ) + δ dt ≥ E bs,ps,i0 e -βτ [κ γ B 1-γ T 1 -γ + δ])1 {τ <θ} + e -βθ v i0 (θ, B θ , P θ , α(θ))1 {τ ≥θ} + (θ∧τ ) s e -βt l( i0 , t, B t , P t , E t ) + δ dt ≥ E bs,ps,i0 + s e -βt l( i0 , t, B t , P t , E t ) dt+e -βθ v i0 (θ, B θ , P θ , α(θ))1 {τ ≥θ}

Table 1 :

 1 Quadratic cost parameter 0.10 × 10 -6 SF U -2 year -1 Numerical parameters

		Parameters Description		Values	Units			
		r 1 ; r 2		Intrinsic growth rate	0.71; 0.68	year -1			
		K		Carrying capacity		80.5 × 10 6	kg			
		q		Catchability coefficient	3.30 × 10 -6 SF U -1 year -1		
		E max		Maximum fishing effort	0.7r/q	SF U			
		B o		Initial population size	0.5K		kg			
		β		Discount factor		0.05		year -1			
		p 0		Price per unit yield	1.59		kg -1			
		c 1		Linear cost parameter	96 × 10 -6	SF U -1 year -1		
		c 2										
		θ		Mean-reversion speed	0.59					
		p0		Price of the stock		1.211					
		p1		Strength of demand	0.0001				
		σ		Volatility of the stock	0.3					
		σ p		Volatility of the price	0.3					
		T		Time horizon		5		years			
		γ		risk aversion coefficient	0.3					
	188											
								1.6				
		1.7										
	price regime 1	1.5 1.6					price regime 2	1.3 1.4 1.5				
		1.4						1.2				
		0.0	0.2	0.4	0.6	0.8	1.0	0.0	0.2	0.4	0.6	0.8	1.0
				time						time		
	biomass regime 1	3.5e+07 4.5e+07					biomass regime 2	3.2e+07 3.6e+07 4.0e+07				
		0.0	0.2	0.4	0.6	0.8	1.0	0.0	0.2	0.4	0.6	0.8	1.0
				time						time		

Table 2 :

 2 Optimal Effort
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  |P t,pt h | 2 ≤ 3 |p t | 2 + ≤ C 1 + |p t | 2 (B.7)Using (B.1) and elementary inequalities (a 1 + a 2 ) k ≤ 2 k-1 (|a 1 | k + |a 2 | k ) and ( |a 1 + a 2 | ≤ |a 1 | + |a 2 |) we deduce E|P t,pt h | k ≤ C 1 + |p t | k (B.8) C|b t -b t | 2 ; E|Pt,pt C|p t -p t | 2 (B.16)

	2. We have										
	|P t,pt h -p t | 2 ≤ 2	0	h	f (u + t, P t,pt u , i)du	2	+	0	h	u , i)dw u g (u + t, P t,pt	2
												(B.10)
	t,pt h | k ≤ E|P t,pt h | 2 k/2 Similar arguments as above we deduce	(B.1)
	Given that		dP (t) = f (t, P (t))dt + g (t, P (t))dw(t) E|P t,pt 0 h -p t | 2 ≤ C 1 h 2 1 + E P t,pt u du	(B.2) (B.11)
	According to the elementary inequality | using (B.7) we deduce	M i=1 a i | 2 ≤ M	M i=1 |a i | 2 ,
					h E|P t,pt f (u + t, P t,pt u , i)du	2	+	h	u , i)dw u g (u + t, P t,pt	2
						0						0
												(B.3)
	Thus, using Ito-isometry and Fubini's theorem
	E|P t,pt										
						t,p t u , i). Then		
	E|B t,pt h -B	t,p t							0	h	f (u+t, P t,pt u , P u , i)du t,p t	2	+E	0	h	ḡ(u+t, P t,pt u , P u , i)dw u t,p t	2
	E|P t,pt h -P	t,p t					0	h	h f (u+t, P t,pt E P t,pt u u , P t,p t 2 du u , i)	2	du+E	(B.5) 0 h ḡ(u+t, P t,pt u , B u , i) t,p t	2	du
	Applying Gronwall's inequality we obtain E|P t,pt 0 h -P t,p t	0 h E P t,pt u	-P u t,p t	2	du	(B.14)
	Hence					E|P t,pt h | 2 ≤ C 1 e C1h 1 + |p t | 2	(B.6)
	i.e				E|P t,pt h	-P	t,p t		
	E|P t,pt Similar arguments as above we deduce E|B t,bt h -B t,b t h 4. Using Doob's inequality for submartingale. We get -P t,p t h | 2 The same reasoning gives.... E sup 0≤s≤h |B t,bt h | k ≤ C(1 + |b t | k )h k 2 ; E sup 0≤s≤h |P t,pt h |	k ≤ C(1 + |p t | k )h	k 2
						E|B t,bt h | k ≤ C 1 + |b t | k	(B.9) (B.17)
							40			

h | 2 ≤ 3 |p t | 2 + h 0 E f (u + t, P t,pt u , i) 2 du + h 0 E g (u + t, P t,pt u , i) 2 du (B.4)

f' and g' satisfying the growth condition by definition, thus there exists

C 1 ∈ R such that E|P t,bt h | 2 ≤ C 1 1 + |p t | 2 + h -p t | 2 ≤ C 1 + |p t | 2 h (B.12) Hence E|P t,pt h -p t | k ≤ C 1 + |p t | k h k/2 (B

.13) 3. Let us define the process P t,pt s -P t,p t s . Put f (u + t, P t,pt u , P t,p t u

, i) = f (u + t, P t,pt u , i) -f (u + t, P t,p t u , i) and ḡ(u + t, P t,pt u , P t,p t u , i) = g (u + t, P t,pt u , i) -g (u + t, P h | 2 ≤ 3 |p t -p t | 2 +E h | 2 ≤ 3 |p t -p t | 2 +E h | 2 ≤ C |p t -p t | 2 + h | 2 ≤ C|p t -p t | 2 (B.15) h | k ≤ h | k ≤

We treat an finite-horizon optimal fishery problem in switching diffusion models. Using the viscosity solution approach, we prove that the value function
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The Numerical Approximation

In this section, we present a numerical solution. We consider the switching process α(t) where α(t) ∈ S = {1, 2} represents the season. In particular, α(t) = 1 stands for the flood period with reduced fishing and intensive reproduction. and α(t) = 2 the dry season with intensive fishing and reduced reproduction. For our problems we need to ensure that our discretization methods converge to the viscosity solution and determine the optimal effort. Using the basic results of ( 26) and ( 27), this ensures that our numerical solutions convergence to the viscosity solution. For this purpose, we use the fully implicit upwind scheme which is unconditionally monotone.

To approximate the solution to [START_REF] Liu | Optimal stopping of switching diffusions with state dependent switching rates[END_REF] we discretize variables t, p and B with stepsizes ∆t, ∆p and ∆B respectively. The value of v i at a grid point (t n ; p k ; B l ) in the regime i is denoted by v n k,l (i). The derivatives of v i are approximated by

Discretizing equation ( 23)

and rearranging the terms, we obtain

In addition, we consider that:

• the optimization starts at time t = 0 and ends at time t = T < +∞

• the time interval is uniformly partitioned as 0 = t 0 < t 1 < ... < t N = T with t n+1 -t n = ∆t = T N , n = 0, 1, ..., N -1;

• the state variable of biomass takes values within the interval [0, 2K], which is uniformly partitioned as 0 = B 0 < B 1 < ... < B m = 2K with B l+1 -

• the state variable of prices takes values within the interval [0, p max ], which is uniformly partitioned as 0 = p 0 < p 1 < ... < p m = p max with

• we have boundary conditions, a terminal conditions

and a initial condition v i (0, b, p) = 0.

If we define the constants

We can rewrite this difference equation in a more manageable form:

Writing (119) in a appropriate matrix form, sup

E∈Ai

Step 0: start with an initial value for the control E 0 . Compute the solution v 0

Optimal effort

We applied the Howard's algorithm: we compute the optimal effort in both

Appendix A Stochastic logistic growth with harvesting

Recalling the Itô's chain rules for solving the SDE dX

To linearize (A.3), set B -1 t = y t so that