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Abstract

In this paper we study the problem of optimal fishing for regime switching,
which may be regarded as sequential optimal problem with changes of regimes.
The growth dynamics of a given fish species is described by the differential
stochastic logistic model in which we take into account two states: prior or
during floods and after. The resulting dynamic programming principle leads to
a system of variational inequalities, by means of viscosity solutions approach,
we prove the existence and uniqueness of the value functions. Then numerical
approximation is used to answer the question: what is the optimal fishing effort
for a sustainable fishery?
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1 Introduction

The simplest population model commonly used in fisheries is the logistic
growth model extended to include catch:

dB B
— =rB(l-—)-C (1)

where B is the biomass of the stock, r is the intrinsic rate of growth, K(the
carrying capacity) is the biomass the stock would tend toward if unfished, and
C is the catch rate.

The catch C' is constant in quota management. Normally the catch is as-
sumed to be proportional to fishing effort and to stock size, which results in the
model proposed by (I :

dB B

where F is the fishing effort and ¢ is a parameter describing the efficiency of the
fishing gear

However, the environment is subject to significant random fluctuations that
affect the population per capita natural growth rate. The effect of these fluc-
tuations can be approximated by a white noise oe(t), where €(t) is a standard
white noise and ¢ > 0 measures the strength of environmental fluctuations see
(2). Therefore, the above ODE Eq. must be updated to the stochastic
differential equation (SDE) which can be written in the standard format:

dB(t) = rB(t)(1 - %)dt — qE(t)B(t)dt + o B(t)dW (t) (3)

where W (t) is a standard Wiener process. We will assume that r — ¢FE > 02/2,
otherwise the population will rendered extinct (see (3)) ).

Environmentally driven long-term changes in fish populations, which can
play a major role in determining how such populations respond to fishing pres-
sure, are rapidly being recognized as a critical problem in fisheries science ((4)).

The life cycle of African fish species of river is closely related to the seasons

- reproduction almost always occurring just prior to, or during, floods ((5)), (6),

@, @))-
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Floods appear to be essential for the completion of their reproductive cycle
for most species: the absence of floods due to the drought in the Sahel has
caused a decline in fish reproduction in the central Niger Delta, the Senegal
River and Lake Chad (Stauch, personal communication).

There is some evidence that flood intensity acts in favor of reproduction, as
it has been observed that the structured age class related to the high floods in
the Kafu were more varied ((9)).

In our study we consider only two seasons: the dry season with intensive
fishing and reduced reproduction, the flood period with reduced fishing and
intensive reproduction.

A regime switching model provides an alternate approach to capturing non-
constant drift and volatility terms for the stochastic process followed by the
biomass of fish. Therefore, the above SDE Eq. must be updated to the

another stochastic differential equation that captures the regime swithing :

B(1)

AB(t) = ra B)(1 = Z2)dt = qEa(O) Bt + 00 BOAW (@) (4)

where «(t) refer to regimes and there are 2 regimes, i.e, a(t) € {1,2}

Certainly, there is some evidence that uncertainty in price parameters leads
to changes in the optimal policy ((10)), and the number of studies that in-
clude uncertainty in both the biological stock dynamics and the price dynamics
is steadily increasing. The models in (I1]) have considered stochastic mean-
reverting prices and when compared with the typical geometric Brownian mo-
tion model, a mean-reverting price better reflect basic, microeconomic ideas
about supply behavior (see (12))).

Let the instantaneous profit from the harvest of the stock biomass m(Bg, hy)
be given as:

W(Bt, ht) = Ptht — C(Bt, ht) (5)

where, h; denotes the volume of harvest, B; the stock of the resource,
¢(By, ht) is the cost function, both at time t and P; the mean-reverting (ac-

tual or spot) price of the harvest at the time of decision making. This can be
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modeled by the following process:
dP; = 0(pp — pr1h — Py)dt + opdWp(t) (6)

The parameters are positve constants, # is the reversion speed, pg is a maximum
price, P is the slope of the inverse demand curve and op is the volatility of the
spot price (see (I1)).

Many works set the problem, in the infinite horizon time, as follows:
“+oo
maxp, / e Pla(By, hy)dt (7)
0

Previous work finds, almost without exception, that all fishers are risk-averse
((13), (I4), and (I5)). Under an expected-utility theory (EUT) specification of
choice under uncertainty, we assume a constant relative risk-aversion (CRRA)

1—~
utility function defined as U(x) = f

where z signifies the lottery prize and
~ is the CRRA coefficient to be estimated: with v = 0 denoting risk neutrality,
~ > 0 indicating risk aversion, and v < 0 denoting risk loving ((I6l)).

In recent years, further emphasis has been put on developing models for op-
timal management of these stochastic natural resources ((17); (18); (19)). Al-
though the number of studies in bioeconomic modeling that include the stochas-
tic dynamics are increasing, they are still not adequate.

The time horizon also plays a crucial role in optimal policies and the usual
infinite horizon framework problem requires the existence of linear growth con-
ditions on drift part of the logistic process for our solution to hold, raising the
question of whether another solution may exist or not. In this paper, we consider
the finite time horizon T with utility on both profit and remaining biomass.

The outline of this paper is as follows. In Section II we formulate a stochastic
optimal control problem. Section III the optimal strategies to the utility maxi-
mization problem are derived. In Section IV we present examples to illustrate

the results. Finally, in section V we end with some summarizing comments.
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2 Mathematical model

2.1 Stochastic logistic growth model

Throughout this paper we let (2, F, {F:}+>0,P) be a complete probability
space with a filtration {F;},;>¢ satisfying the usual conditions (i.e. it is increas-
ing and right continuous while Fy contains all P-null sets). Let W (¢) and Wp(t),
t > 0, be scalar independant Brownian motions defined on this probability space.

After specifying a stochastic model for biological growth that we use in this
paper. The valuation of the biomass can be described in terms of the following

variables:
t is time, t € [0;T] and T is finite-horizon of time.

a(t) is a right-continuous-time Markov chain, Fi-adapted with finite state
space S = {1;2} and generator @ = (g;;) € R* x R? such that ¢;; > 0
for i # j and 2521 ¢ij = 0. We assume that the Markov chain af(.) is

independent of the Brownian motions Wp(.) and W (.)
B(t) stock of fish biomass at time t. Whith initial condition B(0) > 0
To(¢) intrinsic rate of growth in regime a(t)
E.@) 1is the fishing effort which depends on the current regime o(t)
Oq(t) 1s volatility in regime «(t). In any time rq) — ¢ > Ji(t)/Q

We set an SDE under regime switching of the form:

dB(t) = f(t, B(t),a(t))dt + g(t, B(t), a(t))dW (t) (8)

on t > 0 with initial value B(0) = b €]0; K[, where
fiRi xRy xS—=R and g:Ry xRy xS =R (9)
This equation can be regarded as the result of the following 2 equations:

dB(t) = f(t, B(t),i)dt + g(t, B(t),i)dW (t); i=1,2 (10)
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switching from one to the other according to the movement of the Markov chain.
Recalling that

B(t)

[, B(t),i) = riB(t)(l K

) —qE:(t)B(t) and g(t, B(t),i) = o:B(t) (11)

B(t) is an unknown stochastic process, that is, the solution to Eq. satisfying
the initial condition B(0) = b such that 0 < b < K. The logical requirement is
that B(t) must be positive. The resulting stochastic differential equation does
not satisfy the standard assumptions for existence and uniqueness of solutions,
namely, linear growth and the Lipschitz condition. Nevertheless, for any positive
initial condition, the solution exists and is unique under a hypothesis that both

f and g satisfy the local Lipschitz condition and in any time rq ;) —qE > cri( /2

The solution of this equation is.(For more details see [Appendix Al)

By — Kexp[(r; — qF — (1/2)02»2)15 + o, W] i=1.2.

[(K/BO) + 7 fg exp[(r; — ¢E — (1/2)02)s + U¢Ws]ds]

2.2  The Mean- reverting spot price

The version of the Ornstein-Uhlenbeck (OU) process we employ here is de-
scribed by
dP; = 6(;60 —p1h — Pt)dt + O’dep(t) (13)

where the parameters are positve constants, 6 is the reversion speed, pg is a
maximum price, p; is the slope of the inverse demand curve and o, is the
volatility of the spot price. Note that the mean (or long-term) price po — p1h
may depend upon the harvest level. Wp(t) is standardized Brownian motion as

before. Its solution for an initial condition P(0) = p is
t
P, =pe % + (po — pr1h)(1 — e %) + a/ e 0= qw, (14)
0

One of the most convenient properties is that

o 02 _
P,~N (po —prh+ (p+ po — prh)e™, sg(1—e 2“)) (15)



2.8 The optimization problem

The cost of harvest per unit time is assumed to depend on effort and to have

a quadratic form given by
C(Bt, Et) = (C] + CQE(t))E(t) (16)

s where ¢, co > 0 are constants. The quadratic cost structure incorporates the

case where the fishermen need to use less efficient vessels and fishing technologies

&2 or pay higher overtime wages to implement an extraordinary high effort (see
20), (210)).

By substituting the values in equation [5 the profit function can be rear-

ranged as:

7T(Bt7pt, E) = (thPt —C1 — CQE(t))E(t) (17)

s where, ¢; and co are positive parameters.

For a time ¢ in the horizon [0, T], we define a performance criterion for each

1 €S as:
T (B, Ps, By, i)' ]

V%(t,bt,pt) :Ebt,pt,i / e*ﬂ(sft) ) - ) ,y’ ds+e*ﬁ(Tft)V;(BT)
" _

(18)

[ T
=Eb, p..i / e*ﬂ(sft)l(s,BS,RS,ES,i)ds+675(T*t)m(T,BT)

t

(19)

We will start the optimization at time t = 0. Let bg = b, po = p with b, p €

]0; +00], we have

T N]—
BS7 P87 ES) v —
Vi(0,b,p) =Epp.; / e : D et PTV(Br) (20)
0 -7
T
=Ebp,i / e ?*l(s, By, Py, E,i)ds + ¢ ?"m(T, Br) (21)
0
86 Here Ey, ;i is the conditional expectation given B(0) = b, P(0) = p and

a(0) = ¢ under P, where T is the finite time horizon 8 > 0 is a discount factor.
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We say that the control process F(t) is admissible if the following tree con-

ditions are satisfied:
1. the SDE for the state process B(t) has a unique strong solution;

2. the SDE ([6) for the state process P(t) has a unique strong solution;

ﬂ-(Bta Pt7 Et7i)1

-
1 |dt 4 |e=PTV (Br)|| < co.

T, _
3. Ebpi fo le At

Write A for the set of admissible controls. The number of tools, gears, hours,
vessels and manpower is finite and limited, so we require the set A4 in which the
controls take values to be bounded. The stochastic control problem is to find

an optimal control E* € A; such that:

vi(b,p) = Sup Vi(b, p) (22)

3 Main results

The Hamilton-Jacobi-Bellman equations associated with this problem is a
variational inequality involving, at least heuristically, a nonlinear second order

parabolic differential equations :

ov; By, P, B
l(tvbt,pt) + sup {_/B’Ui(tabtapt) + u + Evi(tvbt7pt)} = 07
(23)
By
Ui(Tvbtvpt):H’Ylj;,y for i€{0;1}; k>0 (24)
where L is an operator defined by:
_ _ 6’01‘ 8%
Lv;(t, B, P) = 0(po — p1gEB — P) o (t,B,P)+ J‘(B,Ei)%(t7 B, P)
1 2 821}2' 1 2 821}1‘
+§UPTZ)2(t,B,P)+§g (B,E) 8b2 (t,B,P)—FqU(’UJ(t,B,P) —Ul(t,B,P))

(25)

As it is well-known, there is not in general a smooth solution of the equation

hence we find the solution in the viscosity sense, as introduced by (22)), in
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subsection Recall that E7,., is the optimal solution of equation The

optimal harvest rule E*(t) can be described as follows

0 it Bf (1) <0
E*(t) =14 Ei.(t) if 0<E; () < Emax (26)
Erax if Ef..(t) > Emax
In addition to these, we know that the fishery is valueless if the stock goes
extinct and therefore add the condition V;(0, P;) = 0, which must hold for all
P; and 1.

3.1 On the regqularity of value functions

In this section, we study the growth and continuity properties of the value
functions.
We shall make the following assumptions: there exist p > 0 such that for all
s,t €[0;T],0,b' €ERi,p,p’ R and F € A

|l(t,b,p, E) - l(S,b/,p/,E)| + |m(b,p) —m(b/,p/)| < th - 5‘ + |b - b,| + ‘p 7p/|]
(27)

and the global linear growth conditions:
(£, 0,p, E)| + [m(b, p)| < p[1+ [b] + Ipl] (28)

Lemma 3.1. Let and (28) hold. For any k € [0;2] there exists C =
C(k; K;T) > 0 such that for all h,t € [0;T], b,p, b, pt € Ry:

E[BLYF < C(1+ |b|"); E[PLP* < C(1+ |pe]*) (29)

E|BLY — by[F < C(1+ [be")h%; E[PLP — pif® < C(1+ |pe]*)h

E
2

(30)

E‘Bz’bt’ _ Bf;bé‘k < C‘bt o b;|2; E|P:L7pt’ _ P’tL;P;|k < C|pt _p;|2 (31)

E[ sup [BLY(]" < C(1+|be)h%; B[ sup [PPP)]" < C(1+ |pfF)h? (32)
0<s<h 0<s<h

10



w2 Proof 3.1. See[Appendiz B

Proposition 3.1. For any i € S, the value function denoted by v;(s,b,p) sat-
isfies a linear growth condition and is also Lipschitz in (b,p) uniformly in t.

There exists a constant C > 0, such that

0 < wi(s,bs, ps) < C(1+ |bg| + |ps]),

V(S7bs7ps) S [O,T] X R+ X R+ (33)

|U¢(S,bs,ps) - Ui(57big7p;)‘ S C(|bs - b;‘ + |ps _pg|)7

Vs € [0; 77, bs, b, € Ry, ps, s ERy (34)

Proof 3.2. We first show that v is Lipschitz in (b,p), uniformly in t and its

linear growth condition.

Ui(sabsaps) =sup E

EcA s

(35)

1. Using elementary inequality | sup A —sup B| < sup |A — B|, Lipschitz con-

11

T
/ e P4, u, Bybe, PEP By )du + e AT m(Byb, PpPe)



dition onl ; m and from estimate , with k=1,

‘Ui(sﬁ bS’pS) - ’Ui(S, b./gvp.ls)|

< sup

T ’ !
EU e’ﬁ(“’s)(l(i,u,Bi’bS,Pj’pS,Eu)fl(i,u,BZ’bS,Pi’pS,Eu))du
EcA; s

e T (m(By, Py — m(By", Pé”’;))} ‘

(Z(Lu, Bt PSP B — (i, BZ’b;,Pj’p;,Eu)) du

| () ey )|
T b/ ’ b/
<swE{/(wfumwmeum%WM%w#tﬁw

r s,b S7b./e
< sup E(|Bu s— By

[04(5, b0, s) — w5, B 7)) < C (b, — L1 + s — ph])  (36)

| PoPe - PP |>}

+E|PsP: —Pj’p; +E|PLP: _P;mé

)du+ <E|B;’bS—B;’b;

)

2. from linear growth condition @ onl ; m and from estimate , with
k=1,

T
|vi(s,bs,ps)| < sup E / ‘l(i,u,BZ’bs7P5’ps,Eu)
S

du+ |m(B}", Py"*)

EcA,;
(37)
T
[vi(s. bs, ps)| < p sup E V (14 1B2" |+ 1Py#])du+ (14 1By | + |Pr)
EeA; s
(38)
T
[0i(s: be, )| < p sup [/ (1+BIBs" |+ EIP#|)du+ (1+ BB} +E|P;7”S)]
i S
(39)
[vi(s, b5, ps)| < C (14 [bs| + [ps]) (40)

Proposition 3.2. Under assumptions (@) and (@) the value function v €
C°([0; T] x Ry x Ry). More precisely, there exists a constant C' > 0 such that

12



fO?" all t? s € [0§T]u btabs € R+7 Dt,Ps € R+7

0t 1, ) = 0105, b, )| < C [(1+ Tl + el = 1%+ b0 — bu] + Ipe = 4]
(41)

Proof 3.3. Let 0 <t < s <T. To prove continuity property in time t, we use

the dynamic programming principle.

T
vi(t,b,p) = sup E / e P=(i,u, B PLPt, B, )du + e P T D (B PRPY)
FEecA; t

(42)

=sup E / e P01, u, BZ’bt,Pi’pf,Eu)du—ke’B(St)v(s,Bz’bf,Pst’bt,i)}
EcA; t

(43)
s—t
= sup E [/ e PU(iyt +u, B, PR By du + e P Vy(s, BUY phPe i)}
EcA; o
(44)

s—t
0 < v;(t, by, pr) — vi(s, bs,ps) = sup E {/ efﬁ(u)l(i,u, ijbt,Pﬁ’Pt, E,)du
EcA; 0
4 B0 (4, BEL, P4, 0) — 0(s, b))
—+ (675(570 — 1) '0(87 bsap57i):| (45)

Applying linear growth condition onl, noting that 0 < 1—e A=t < B(s—t)

13



and v satisfies , we deduce that:

[vi(t, bs, pe) — vi(8, bs, s)]

s—t
< sup E[/ ‘l(i,u,ijb‘,Pﬁ’p‘,Eu)‘du—l—‘e_ﬂ(s_t) (v(s,Bz’f;,P;f;,i)—v(s,bs,ps,i))‘
0

n ‘(e—ﬁ(s—t) _ 1)v(3,bs,ps,z’)u

1

s—t 2
<0t ([ sup Bl B pt B )+ s B
0

e Pls—t) (U(S,Bi’_binyffvi) - U(vaS7PS7i)> ’
EeA, EcA;

+ sup E
EcA;

(675(57” - 1) IU(S7 b87p87 Z)
1 T, t,b t,ps |\ 2 : tby pt
< (s—t)2 (/ p? sup (1+E|BLY| + E|phPe)) du) +sup E (v(s,BS;;,PSf’t‘,i) - v(s,bs,ps,i)> ’
0 EcA; EcA;

+ ﬁ|5 — tl sup E ‘U(Sybszp&i)'
EcA

s—t
< ‘S—t|% (/ p sup (1+E|B%| +E|PL7)) du)-i- sup E (v(s,Bz’f;,P;f{,i)—v(s,bs,ps,z’))‘
0 EcA; EcA;

+ Bls — 1] sup E|u(s, by, ps, )
EcA;

s—t
<0 (o=t [ BB BIPL Dt (b bl o= g+ B+ 0]+ s ]
0

< C (1 Jbul + Ipil)ls = 13 + o = b + e = sl| - (46)

3.2  FErxistence of viscosity solution
104 In this section we will first define what we mean by viscosity solutions. Then

we will prove that the value function is a viscosity solution.

From the optimization problem , we derive the Bellman equations as

follows:
. 1—v .
%(t,B,PH— sup 4 — Bu(t, B, P)+ — +9(po—p1qEB—P)%(t,B,P)
B c%i 1 2 62’01‘ 1 2 282’01'

+ ¢ (v(t,B, P) — vi(t,B,P))} =0 (47)

14
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The corresponding Hamiltonian has the following form:

H<Z’S’B’P’ui’8s’8b’8p78bz’8pz>

7 Bsa P57 Es 1=y
= ai(g,B,P)—i— sup {—Bui(s,B,P)—i—ﬂ( ) +£ui(s7B7P)} =0
83 EcA,; 1- v
(48)
We have the following systems:
H <szvapauiaas78b78paab278p2) =0 for (i,s,B,P)€Sx[0;T;] x Ry xRy
w(T,B,) = kY [i;__,: for i, €{0;1} k > 0.
(49)
we recall that
7(Bs, Ps, Es) = (¢BsPs — ¢1 — coE(s)) E(s) (50)

In order to study the possibility of existence and uniqueness of a solution of

([49), we use a notion of viscosity solution introduced by (22).

Let denote the set of measurable functions on [0;7] x Ry x Ry with polyno-

mial growth of degree ¢ > 0 as,

Cy([0;T) x Ry x Ry)
={¢ : [0;T] x Ry x Ry, measurable | 3C' > 0, |¢(t,b,p)| < C(1+ |b|?+ |p|D)}.
(51)
Definition 3.1. We say that u; € C°([0;T] x Ry x Ry) is called
1—v
1. a viscosity subsolution of if for any i € S, u;(T,b,p) < fﬂ%, for

allb € Ry, p € Ry and for all functions ¢ € CH22([0;T] x R x Ry) N

C2([0; T) xRy xRy) and (t,b,p) such that u; — ¢ attains its local mazimum

>0

do(t,b,p) 0¢(t,b,p) 9¢(t,b,p) 0*¢(t,b,p) 82¢(t‘,b,p>)
s ~  Ob 7 op T oz T Op?
(52)

15
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1—vy
i1. a viscosity supersolution of if for anyi € S, u;(T,b,p) > /ﬂ%, for
allb € Ry, p € Ry and if for all functions ¢ € CH*2([0;T] x Ry x Ry) N
C2([0; T) xRy xRy ) and (t,b, p) such that u; —¢ attains its local minimum

at (t,b,p),

dp(t,b,p) 0d(t,b,p) 9p(t,b,p) 0*°¢(t,b,p) 8%¢(t,b,p)

H <Z7 ta Qv B7 (b(ta Qv 2)7 35 ) ab ’ ap ) abg ) 6]72

(53)

1. a viscosity solution of (@) if it is both a viscosity sub- and a supersolution
of equation (@
Theorem 3.1. Under assumptions , the value function v is a viscosity

solution of .

Proof 3.4. We establish the viscosity super- and sub-solution properties, re-

spectively in the following two steps.

Step 1. v;(t,by,pt), i = 1;2 is a viscosity super-solution of .
We already know that v € C°([0;T] x Ry x Ry). We first note that

satisfied. Let (s,bs,ps) € [0;T] x Ry x Ry, i € S and ¢ € CH*2([0;T)] x
Ry x Ry) NCa([0;T] x Ry x Ry) such that v(.,.,.) — &(.,.,.) has a local

-
vi(T,b,p) = KY ElgT J so, the boundary condition at time t = T 14s clearly

minimum at (s,bs,ps). Let N(bs,ps) a neighborhood of (s,bs,ps) where
vi(ey ) — @(.,.,.) take its minimum, we introduce a new test-function 1
as follows:
X d)('wv')—i_[vi(sabs,ps)_QS(vasvps)}» ij:Z
V(s nd) = (54)
’Ui(.,.,.), ’Lf ]752

This helps us to suppose without any loss of generality that this minimum
1s equal to 0.
Let 7o be the first jump time of a(t)( = a(t)’=P=?), i.e. 7, = min{t >
s:at) #1i}. Then 14 > s, a.s. Let 05 € (s,7,) be such that the state

16
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(B PP=") starts at (bs,ps) and stays in N(bs, ps) for s <t < 0,. Apply-
ing the generalized It6’s formula to the switching process e Pt (t, By, Pr, a(t)),
taking integral fromt = s tot = 05\ h, where h > 0 is a positive constant,

and then taking expectation we have

Eb, p,.i [e‘““’lwws A h, Bo, an, Po, sy (05 A h))]

61/)(ta Bt7Pt7 Oé(t))

0sAh
= d)(sa BS7 PS7 i)+Eb51pS7i [/ eﬁt{—/&/’(ta Bt7 Pta Oé(t))+

ot
B a tyB ;P, t _ _ a th ’P7 t
+{riBt<1_ft>—qEBt} L t@b t ol ))+9(p0—p1qEBt—Pt) W t@p L a(t)

1 QBtz 82’112(t, BhPt,Oé(t)) + 1 2 a2¢(t,Bt,Pt7O[(t))

T30 90?2 27P a2

+ qoz(t)j(w(t7 Bta Ptaj) - 1/J(t7 Btu Pt7 a(t)))}dt‘| ) a(t) 7&] (55)

From hypothesis, for any t € [s,05 A h]

vi(t, By, PP) 2 6(t, By, PY")+0i(5,bs,ps) =65, bs, ps) 2 9(t, By, P )
(56)
Recalling that (BY, PPs) = (b, p,) and using Equations and @, we

have

Ev, p..i {eﬁ"”%(es A h, Bo,an, Po,an, (s A h))] >
t7 Bta Pta Oé(t))
ot

OY(t, By, Py, at))
dp

OsA\h aw(
+vi(87b57ps)+Ebs,ps,i / e_Bt{ —B’Ui(t,Bt,Pt)—f—

oY(t, By, Py, a(t o
L tabt o ))+9(po—p1qEBt—Pt>

82¢(t,Bt,Pt,04(t)) 10_2 82w(t,Bt,Pt,a(t))
b2 2°F op?

n [riBt (1—%) —qEBt}

1
+ 50’23152

+ qi;(vj(t, By, Pr) — vi(t, Btypt))}dt] (57)
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By Bellman’s principle

OsAh
1/1(3’ bsapsa Z) = ”Ui(S, bsaps) = sup Ebsyps;i |:/ eiﬂtl(ﬁ t, Bts’bsapts’psaEt>dt
EcA; s
+ e POy (0, A b, By P;ﬁh)]

0sAR
> sup Ep_ i [/ e—ﬂtl(i,t,Bf»bs7Pts,ps’Et)dt
EcA; s

N e—ﬁ(es/\h)w(es A h, B;;b/\sh, P;ff\ghv ’L):| (58)

Setting T = E(6s A h) combining and (58) and multiplying both sides
by 1/(t —s) >0, we obtain

1 Osnh O (t, By, Py, alt
Sup Ebmps’i 7/ e_ﬁt{ﬂvi(t’Bt’Pt) - 1/1( : b t7a( ))
E‘eAi S s ((ﬁ

‘ B, OY(t, By, P,a(t)) OY(t, By, P, a(t))
- {th (1—f) —qEBt} 5% —0(po—p1gEB;—P;) o
_ 10_232 62¢(t’ Bt7 Pt7 a(t)) _ 10_2 82w(t, Bt’ Pt7 a(t))
27 Tt b2 2P op?

— Gij [Uj(tv Bt7 Pt) - Ui(ta Bt7 Pt)] - Z(Z7 tv B:7b'§aPtS7PS7Et)}dt] 2 0 (59)

letting T | s and using the dominated convergence theorem, it turns out

that

_ (s, bs, ps, 1) .
Bs| _ ZH\2Us 18y °) . _
e l B +El?£i Bui(s, bs, ps)

) bs aw(S,bs,psvi) _ — 8w(svbsvpsvi)
[nbs (1 - ?> - qus} — 0(po — Pr1qEbs fps)T

1 2 252¢(3,55,P5,i) 1 2 a2w(57bsvpsai)
——obi——m———— - —op—————=
2 ob? 2 op?
- (]ij['Uj(S, b87ps) - vi(87 b87p5)] - l(Z, S, bsvpsv ES)} >0 (60)
118 This shows that the value function vi(t, by, pt), i = 1;2 satisfies the viscos-

ity super-solution property .

Step 2. vi(t,be,pt), ¢ = 1;2 is a viscosity sub-solution of .

We argue by contradiction. Assume that there exist an ig € S, a point

18



120

(s,bs,ps) € [0;T] x R%. X R%. and a testing function ¢;, € C+*2([0;T] x
R% x R%)NCo([0; 7] x R x RY) such that v, (., .,.) — ¢i, (-, .,.) has a local
mazimum at (8,bs,ps) in a bounded neighborhood N(bs, ps), vi, (8, bs,Ds) =
(z)io (vasvps); and

. ad)io(svbsvps) s
o latugﬁm Pl bep)

[righs (1-22) —qus}M ~ 0~ PraBb, —pa) =

b
1 2b232¢i0(37bs7p5) 10_2 82@0(57()37273)

97 b2 Tor ap?

—igj [vj (S’ bS’ ps)_v’io (87 bS,ps)]

1—y

B
- l(ioasabsapsaEs)}; Uio(Ta bsaps) - "{YlT/_y‘| >0 i 7&] (61)

By the continuity of all functions involved in (Vig, iy Py s Qiis Ly ---),

10

there exist a 6 > 0 and an open ball Bs(bs, ps) C N(bs,ps) such that

7a¢i0(t7bt7pt) 4 lnf {ﬁvio(t7bt,pt)

ot EEA;,
by 0, (t, by, pr) _ 0, (t, by, pr)
|:7'10bt (1 - ?) - qut] - 9(290 — p1qEby — pt)T
1 a2¢1 (t7b y D ) 1 82¢1 (tvb » P )

750’21)3 08()2 ! L 750123 Oap2 ! ! 7q10] [Uj(tv btvpt)ivio (t; btapt)]
- l(ioatabhptvEt)} > 4] iO 7é .7’ (tabtvpt) S Bé(bs;ps) (62)

and

By

i (T, by, pt) — Fﬂﬁ >0 (t,be,pt) € Bs(bs, ps) (63)

Let 65 = min{t > s : (t,B, P;) & Bs(bs,ps)} be the first exit time of
(t, By, Py) (= (t, BE" PPP*)) from Bs(bs, ps). Let 0 = 05 A 7o where 74 is

the first jump time of a(t)*Ps®. Then 6 > 0, a.s.. For 0 <t <60, we

19



have

8¢io (ta Bt7 Pt)
ot

~[riobe (1) g, 3] 22l B ) 5 g, p)

02bza2¢io(t7Bt7Pt) 1 2 62¢i0(t;Bt7Pt)

b2 _iapa—pz—qm[vj(t7 By, Pi)~vio(t, Be, )]

- l(iovta Bt7Pt7Et) >4 io # jv (t7BtaPt) S Bﬁ(bSaps) (64)

Bvio (ta Bt7Pt) -

a¢io (ta Bt7 Pt)
dp

1
2

and
By
Ul'o (Ta btapt) - K,‘/ 1 L > 5 (t7 bt7pt) S B(S(bsvps) (65)

As previously, we can replace ¢;, by a new test-function i defined as

follows:

By =4 P I (66)
Uio('wu')a Zf .77&@0

For any stopping time T € [s;T]. Applying Ité’s formula to the switching
process e Pt (t, By, Py, at)), taking integral from t = s tot = (05 A T)—

and then taking expectation yield

Ebs,ps,i [6ﬁ0/\71/)(9 A T, BO/\Ta Pt?/\‘rv a(9 A T)):|
8¢(t, Bt, Pt, a(t))
ot

817[}(2‘:7 Bt7 Pt7 O((t))
dp

(OAT)—
= V4, (57 bstS)“”Ebs’PS,i l/ e_ﬂt{_ﬁw(ta By, P, a(t))+
) Bt ) aw(t,Bth,Oé(t))
+ [rlBt (1_f> —qE,Bt} .

82¢(taBt7Pt7a(t)) 10_2 82w(t7BtaPt7a(t))
o> 2" op?

+0(po—p1gEB:—F)

1
=+ 50’233

+ Ga(t)j [Uj (t» By, Pt) - 7»/1(ta By, Py, oz(t))] }dt] ; Oé(t) #J (67)

in which we used Ey,_ ;,_ ; {eﬂeATw(G/\T, Bopr, Poprr, a(@/\T))} = Eb, p..i |:6695/\T’(/J(9/\

7, Boars Ponr, (0 A T)—):| due to continuity. Noting that the integrand in
the RHS of (67) is continuous in t. Using (64), (65) and that v, (t, By, P;) <

20



122

®iy(t, By, P,) in (67). Also noting that a(t) = ig for 0 <t <0, it follows

Vi (57 bS7pS)

2 Ebs,ps,io |:e_ﬂa/\7—¢i0 (9 A T, Bo/\T7 P@/\T, 06(9 A T))

(0A7) d¢i, (t, By, P,
- / e-ﬂt{ﬂvm(th,Pt>—¢’0( B )

B 0, (L, By, P, o Oy, (t, By, P
- {riBt (1_%> _quBt] M—@(po—plqEBt—Pt)%

0b
]- 2 2a2¢io(tht)Pt) o 1 2 82¢i0(tht)Pt)
27 B o 2P o2

; do#J (68)

~ ginslv (s Bus Pr) — viy (1, By, )] }dt

i.e

Vi (57 bS7pS)
> Bb. peio [6_’&% (7, Bry Pry (1)) e <oy ¢~ 705y (8, Bo, Po, a(6)) 1720y

(OnT)
+/ e P1(iy.t, By, Py, Ey) +5}dt]

By
> Eb, poio [eﬁTWlT + )1 <oy + € P03, (0, By, Py, (0))1 (750}

(OAT)
+/ e P (iy.t, By, Py, Ey) +5}dt]

(OAT)
> Ebs,pmio |:+/ e*Bt{l(io, t, Bt, Pt, Et)}dt+37691)10 (0, Bg, Pg, Ot(e))l{ng}

Blf’Y (6AT)
+ Eiﬁ’r [KJ’Y . T ]1{T<9}:| —+ 5Ebs,Ps,io |:/ e*ﬁtdt + eBT].{T<9}:|

-7
(69)

Now the estimate of the term Ey_ p,_ i, {f;em) e_ﬁtdt+e_ﬁ71{7<9}:| .There

ezist a positive constant Cy such that

(OnT)
Eb. p.io {/ e Ptdt + 6_5T1{‘r<0}:| > Co(1 = Ep, p.io [e77™]) (70)
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124

126

128

130

132

For details see (23). It follows that

Vig (87 bsvps)

(ONT)
>  sup  Ep_pio [+ / e P (igst, By, Py, By) }dt
TE[s;T);E€EA s

By
+ e‘ﬁevio (0, By, Py, a(&))l{ng} + G_BT[I{Y 1 i ’Y]I{T<9}

+ Co6(1 = En, p.io [e ™) (T1)

which is a contradiction to the DP principle since Ey, . i, [e7#7] < 1.
Therefore the value function v;(t,bs, pt), © = 1;2 is a viscosity sub-solution

of the system (2.8).

This completes the proof of Theorem [3.]]

3.8  Comparison principle: uniqueness of the viscosity solution

In this section, we prove a comparison result from which we obtain the
uniqueness of the solution of the coupled system of partial differential equations.
In proving comparison results for viscosity solutions, the notion of parabolic
superjet and subjet defined by Crandall, Ishii and Lions [19] is particularly
useful. Thus, we begin by

Definition 3.2. Givenv € C°([0; T|xRxRxS) and (¢;b; p;i) € [0; T)XxRXRXS,

we define the parabolic superjet:
P2 Yo(t, b, p,i) = {(c,q,M) € R x R? x S :v(s,b,p,i) < v(t,b,p,i)
+els =) + ¢.((t) = b), 0 —p)) + %((b’ =), (' —p))-M((t = b), (p —p))
+o(|(V =b), (0 =p)*) as (s:0/,p) = (t; b,p)} (72)
and its closure:
P2 Tu(t,b,p,i) = {(c,q,M) = nli_{go(CQOMn)
with (Cn, qn, Myp) € P> 0(ty, by, pnyi) and

i (1B s o B i) = (009080 0) | (73
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Similarly, we define the parabolic subjet P>~ v(t,b,p,i) = —P>T(—v)(t,b, p,1)
e and its closure P>~ v(t, b, p,i) = —P>T(—v)(t,b,p, 1)

It is proved in (24]) that

P2 (t,b,p, i) = {(g;u,b,p,o,p@,pw,b,p, i), D}, , (¢, b,p, i)

and v — ¢ has a global maximum (minimum) at (¢,b,p, z)) } (74)
The previous notions lead to new definition of viscosity solutions.

i3 Definition 3.3. u; € CY([0;T] x R%. x R%) satisfying the polynomial growth
condition is a viscosity solution of
s if

(1) for any test-function ¢ € CH*2([0;T] x R% x R%) if (t,b,p) is a local
mazimum point of w;(.,.,.) — ¢(.,.,.) and if (c,q,L1) € P>V u(t,b,p,i)
with ¢ = 0¢(t,b,p)/0t; ¢ = D@ o(t,b,p) and Ly < D(Qb’p)(b(t, b,p), then

. . . 2, . 2, .
(15, Gt e G T S8 ) <0 (75)

in this case u is a viscosity subsolution,
(2) for any test-function ¢ € CH*2([0;T] x R% x R%L) if (t,b,p) is a local

minimum point of u;(.,.,.) — ¢(.,.,.) and if (¢,q,La) € P> u(t,b,p,i)
with ¢ = 8¢(t, b,p)/@t, q= D(b,p)¢(t7 b7p) and La > D? )¢(t7 bap)7 then

(b,p
. 8UZ Bul 8”1' 82ui 82ui
H<Z7S’b’p’ui’8s’6b’8p’8b2’6pQ >0 (76)
140 in this case u is a viscosity supersolution,

It is proved in (25)) that this new definition and the previous one are equiva-
2 lent. We refer the reader to the mentioned paper for a proof. The last definition
is particular suitable for the discussion of a maximum principle which is the

us  backbone of the uniqueness problem for the viscosity solutions theory.

146 Before state next lemma, we first introduce the inf and sup-convolution

operations we are going to use.
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148

150

152

154

156

158

160

Definition 3.4. For any usc (upper semi-continuous ) function U : R™ — R

and any lsc (lower semi-continuous ) function V : R™ — R, we set

RUUNem) = sw {U(Z) —r(Z—z) - 'ZQ;Z| } (77)
RQ[V](Z,T)lZing{V(Z)+T-(Zz)+|ZQOKZ} (78)

R*[U](z,r) is called the modified sup-convolution and Ry[V](z,r) the modified
inf-convolution. Notice that Ry[V](z,r) = —R*[-U](z, )

Lemma 3.2. (nonlocal Jensen-Ishii’s lemma (25))

Foranyi € S, letu;(.,.,.) andv;(.,.,.) be, respectively, a usc and lsc function
defined on [0; T] xRy xRy and ¢ € C1*2([0; T] xRL xRL)NCo([0; T x RE x R%)
if (1, (131,]31),(132,]32)) € [0;T] x R x R is a zero global mazimum point of
wit,b,p) —vi(t,,p') = (¢, (b,p), (¥, p)) and if c—d := Dy@(E, (br, pr), (b2, P2)),
q = D yyo(t, (b, 1), (b2, p2)), 7 := =Dy pyd(E, (b, 1), (b, p2)) , then for
any K > 0, there exists a(K) > 0 such that, for any 0 < a < «o(K), we
have: there exist sequences ty, — t, (br,pr) — (51,131), (%, p%) — (132,132),
qx — q, T — 1, matrices My, N, and a sequence of functions ¢y, converging
to the function ¢o := R*[¢](((b,p), (', D)), (¢,7)) uniformly in R% x R%. and in
C2(B((L, (by, 1), (ba, P2)), K)), such that

ui(tkv (bk’pk)) — ul(tAv (817151))’ vi(tkv ( ;c?p;c)) — vi<£7 (62’132)) (79)

(tka (bkapk)a (b;c7p;q)) is a glObal mazimum Ofui('> ('7 '))*vi('v ('a ))*d)(a ('v ')a ('7 ))

(chs s M) € P*Hu(ty, (b, pi)) (80)
(—dg, 5, Ni.) € P> v;(tg, (0, 0})) (81)
1 I 0 M, 2 W
“a 0 I < 0 N < D(b,p),(b/,pf)éb(tk’ (brs pr), (by, Pr))  (82)
—Ng
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164

Here cp —dp = Vid(tr, (br, pr), (0, 0%))s @k = Vo,p) 0tk (brs Pr), (b, 0%)), The =
V(b’,p’)(b(tkv (bk7pk)7 (b;c7p;<;)) and ¢O¢(E7 (817ﬁ1)7 (627252)) = ¢(£7 (617251)7 ((;27252))7
v¢a(£v (517]31)7 (Z;QaﬁZ)) = V(rb({a (Blaf)l)a (623132))

Now we can state our comparison result.

Theorem 3.2. (comparison principle):
If w;(t,b,p) and v;(t,b,p) are continuous in (t,b,p) and are, respectively,
viscosity subsolution and supersolution of the HJB system with at most

linear growth then
w;(t,b,p) < wv;(t,b,p) for all (t,b,p,i) €[0;T] x Ry xRy xS (83)

Proof 3.5. For g,€,6,\ > 0, we define the auziliary functions ¢ : (0;T] x R% x
R2 = R and Z: [0;T] x RZ xR% x S by

Bt (6,), (1)) = 24 010, ) = (¥, 9P 45X T0( b, p)P 10, 9)?) (84)

and

E(t’ (bap)’ (b/ap/)’ Z) = 'Ui(ta bvp) - ui(tv blvp/) - ¢)(ta (b,p), (b/,p/)) (85)

By using the linear growth of v; and u;, we have for eachi € S
im E(t, (b,p), (V' ,p),i) = —c0 86

|(b,p) |1V p) | 00  (8,2), (5,9),9) (86)

Then, since v; and u; are uniformly continuous with respect to (t,b,p) on each

compact subset of [0; T] xRy xRy xS and that S is a finite set, Z attains its global

mazimum at some finite point belonging to a compact K C [0;T] x Ri X Ri xS

say, (téea (b16€7p15€)7 (b2667p26e)7 0456) . ObSGTUing that 22 (t667 (b1567p166)7 (b2567p25e)7 0566)

E(tse, (b16e, P1se)s (bases P2se), o) + E(tse, (brses Prse), (b2se, P2se)s ase) and using

the uniform continuity of v; and u; on K we have

1
E | (b1567 plée) - (b26e7p266) |2

§ (%3 (tém (b1567 plée)) —V; (tAém (b26e7p265)) +u; (t667 (b1§e7 pl&e)) —U; (t567 (b2567 p2§e))

é QC|(b156,p156) - (b2567p256)‘ (87)
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Thus,
|(b16es P1se) — (D2se, P2se)| < 2Ce (88)

where C' is a positive constant independent of o,¢€,0, . From the inequality,

2= (Tv (Oa O)a (07 O)a a5e) S 2= (téea (bléeaplée)a (b256ap25e)a a56) (89)

and the linear growth for v; and u;, we have:

5(|(b1se, p1se))|* + | (base, pase|?) < e T tse) ['Ui (tse, bise; prse) — vi(T,0,0)
+ ;i (T,0,0) — u; (tse, b2657p256)]

< e ATy (1 + [(bise, proe)| + [ (base, pase)|)  (90)

It follows that

(| (b1se, p1se))1? + |(b2se; pasel?)

<C 91
(14 |(bise, p1se)| + |(b2se, p2se)|) ? (1)

Consequently, there exists C's > 0 such that
|(b1se; P1se)| + [(b2se, p2se)| < Cs (92)

This inequality implies that for any fized § € (0,1), the sets {(bise, P1sc), € > 0}
and {(base, p2sc), € > 0} are bounded by Cs independent of €. It follows from in-
equalities (@) and (@) that, possibly if necessary along a subsequence, named
again (t(;e, (b15e, P15¢),s (bggﬁ,pggﬁ),a&) that there ezist (biso, p1s0) € R%, tseo €
(0, T] and asep € S such that: leig)l(bwﬂplge) = (b1s0,P160) = leiﬁl(blge,pwe),
leijgl tse = tso0, leiﬁ)l A§e = Qg0

[ft5s =T then ’LUT’Zthg thatE(ta (bap)7 (bap)7 a5e) < E(T7 (616671)166)7 (b2567p256)7 az;e)f
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we have

wi(t,b,p) = vit,b,p) = § = 2620 (b.p) )

< (T, (buses p1se)) = vi(T, (basesp2se)) —
1
- £|(b1éeyp1(se) — (b2se, P25e) [* — 0| (b1ses Prse)|* + |(D2se, P2se) )

< ui (T, (b1ses p1se)) — vi(T, (base, P2se))
= [ui(T, (b1se, P1se)) — vi(T, (bise, P1se)))
+ [0i(T, (b1ses P1se)) — vi(T, (base, P2se))]
)

< Ct|(bise, p1se) — (base, p2se)|  (93)

where the last inequality follows from the uniform continuity of v; and by as-

.
sumption that w;(T, (bise, P1se)) = f{y% = v;(T, (b1se, P15e)) Sending 0,€,5 1 0

and using estimate , we have: u;(t,b,p) < v;(t,b,p) . Assume now that
tse < T.

Applymg Lemma with U, Uy and ¢(t7 (bap)7 (b/7p/)) at the pomt (t567 (b1667p156)7 (b2567p256)7 0456) S
(0;T) x RZ x RZ xS, for any ¢ € (0,1) there are d € R, Mse, Ns. € S such
that:

0 - 1
<d i AT (| (bse, pse)|* + | (Bses D)), ;((bae»pse) — (Ve Pse))
+ 26eMT ) (bse, pse ), Mse + 256A<Tt>1> e P2Hu(t, b, p, i)

1 _ _ o _ .
(da E((béeapée)f(bgeapge))7256)\(T t)( :567pi55)3 N557256>\(T t)I> € PQ’ ’U(t, b7p7 Z)
(94)

and
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1 I 0 Mse 0 2 / /
- = < < D(bvp)»(b/,p’)as(t&v (bée;p5e)7 (béeapﬁe))
C 0 I 0 _N5e

2
¢ (DR 0y Ol (s ), (B 5.) )

MT=t) I -1 I 0
<€ +¢(2+ 42566 ) (2644¢52eeMT—D) AT

€ -1 I 0 I

Letting § | 0 and taking ¢ = %’ we obtain

1( 1 O < Ms. O 2 I I
e\ o I B 0 —Ns. e\ -1 I

|

I
INA

I

—

©

=2
=

It follows that

bﬁe /e
(béeapzSe)Mée - ( Z;E,pfsg)Née o
Dse Pse
b5e
M66 0 Dse
= ((bse, pse) (b:se,pfse))
0 7N5€ bge
Pse
bée
I -1 Pse
< (<b5€ap56)7 (b%eap%e)>
-1 I e
Pse

[\

< —I(bse, psc) — (b5e: P5)I* - (97)

Furthermore, the definition of the viscosity subsolution u; and supersolution v;
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implies that

. 4 _
min [ﬂu (tse:baespie) = (4= 55 = AT ([ (bse, psc) | + | (Ve ) ) )

de
i bse 1 / AT —t)
+ EIGI}LO — [Tiobée (1 — f) — quae} (z(bae — 55) + 2de b(se)
_ _ 1 _ 1 _ O'b(;6
—0(Po—P1qEbsc—ps) (g(pée—p35)+2ée’\(T t)pge) —§(ab5€; ap)(M56+256/\(T t)I)
Op
= Qigj[Uj(tse, bses Poe) — Wiy (Lses Dse, Poe)]
By
- zuo,tsﬂbae,pée,Et&)}; T = L
168 and
i i bse 1 ’ MNT—t) 3/
min | Bviy (tse, bse psc)—d+ inf 3 = |rigbse (1==¢ ) =aBbisc | (= (bse—bh)+20* T, )
i0
1 1 obj,
—0(po—p1qEbsc—ps) (z(pae—p36)+2éeA(T_”pﬁse) —5(obe; op)(Nse—26eMT70T) °
Op

— iy [vj (téev bgm pge) — Vig (téea bgev pge)]

1—y

B . .
- l(io7t§eabge7p:$gaEt56)}; vio(T77b56ap66) - /‘671 ‘| Z 0 20 7é ] (99)

Let us define operators A¥(z,v, ¢, X, Z) and B (z,v).
b 1
A (b, pw, X, Y Z) = [riob(l _ ?) _ qu} X +0(p0 — praEb—p,)Y + FwZu’

(100)

BE (ta bap7 U) = Gigj [U] (ta b7p) — Vi (ta bap)] (101)

by Subtracting these last two inequalities and remarking that min(z; y)—min(z;t) <
o 0 implies either x — 2 < 0 or y — ¢t < 0, we divide our consideration into two

cases:
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Case 1

6 [uiO (téﬁ’ béﬁ’p(;é)_vio (t567 b667p56)] +t%+)‘56>\(T_t66) (‘(b5€7p56)|2+|( gﬁpge)'Z)
de

< sup {l(io ) téea bée;p(;ev Etge) - l(io? ttsea b:ievp%ga Et(;e)}
EcA;,

1 1
+ sup {AE (t667 bﬁeap(ka (Ubﬁe; UP)7 g(b56_bgg)+266)\(T_t65)b567 E(p(SE_pge)+26e>\(T_t56)p56’
EEA»LO

Mse + 256’\(T_t56)I)
1 _ 1 _
—4* <t5€7 :Sevp:567 (Ub:Se; GP)’ E(bﬁﬁ_ /65)+256A(T t)bge’ E(pée_pge)+25eA(T tJE)pgw

Nse — zaeMT—tée)I) }

+ sup {BE(t(;E, bse, pscu) — BE (tse, bge,pgﬁv)]} =01 +Z,+7Iy (102)
EEAiO

In view of condition on [ and from estimate (3.1)), we have the classical

estimates of 77 and Zs:

Ty <C|(bse, psc) — (Vses Pse)| (103)
1
o <CO(=|(bses pse) = (ser Pho)* + 26T 1) (14 | (bse, psc) [* + | (b5, p5) )
(104)

Using the Lipschitz condition for v and v, we have

Iy < 2C|(bse; Pse) — (bses Pse )| (105)

Writing that E(ta (bap)7 (bvp)a@) < E(t(ka (bée;pée)a (bée;pée)ai> fori € S
and using the inequality (102]),

0 _
ui(ta bvp) - Ul'(ta bvp) - E - 256/\(T t)|(b7p)|2 S

o _
Ui(t6€7 béeapée) - ui(téea b6e;p6€) - E - 266)\(T t)|(b§e;p6e)|2 S

l €
B

this implies

A _
— *(SGA(T t&)(|(b5e7p66)|2 + |(bgeapge)|2) (106)

[I1 +Zo+Is| — ﬂ% E
de

0 _
ui(tv b7p) - Ui(tu bvp) - E - 256A(T t)|(b7p)|2 S

1 A
5T+ T B - 50T (breos) P+ (e )) (107)
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Sending € | 0, with the above estimates of (Z1) — (Z2) — (Z3), we obtain:

_ 20 _
it )it b, )5 28>0 (b, p)* < AT [C(142 (o, po) )=l bo, o)

(108)
172 Choose A sufficiently large positive (A > 2C) and send p,6 — 0% to
conclude that w;(t, b, p) < v;(t,b,p)
Case 2 the second case occurs if
uio (T7 b b5€7p56) - Uio (T7 b b5€7p56) S O (109)

174 and
finally that w;(¢,b,p) < v;(t,b,p)

e This completes the proof.
The following corollary follows from Theorems [3.1] and

s Corollary 3.1. The value function v is a uniques viscosity solution of that

has at most a linear growth.

1o 4  Monotone Finite Difference and Simulation

The determination of the effort value requires numerical computations. Thus,
12 instead of arbitrary parameters values, we have decided to use realistic values.
We found a quite complete set of parameter values in (2) and (II). The time

184 horizon was set at T; = 5 years. The complete set of parameter values is listed

in Table 1.

ws 4.1  Sample Realisations of Price and Stock

We chose the maximum fishing effort value for these sample realisations.
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188

price regime 1

biomass regime 1

Parameters Description Values Units
15 T Intrinsic growth rate 0.71; 0.68 year™!
K Carrying capacity 80.5 x 105 kg
q Catchability coefficient 3.30 x 1078 SFU 'year—!
Erae Maximum fishing effort 0.7r/q SFU
B, Initial population size 0.5K kg
B Discount factor 0.05 year™!
Do Price per unit yield 1.59 kg1
c1 Linear cost parameter 96 x 106 SFU 'year—!
o Quadratic cost parameter 0.10 x 107  SFU2year—!
0 Mean-reversion speed 0.59
Do Price of the stock 1.211
D1 Strength of demand 0.0001
o Volatility of the stock 0.3
op Volatility of the price 0.3
T Time horizon 5 years
risk aversion coefficient 0.3
Table 1: Numerical parameters
] g <
J N

time
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190

192

194

196

4.2  The Numerical Approximation

In this section, we present a numerical solution. We consider the switching
process a(t) where a(t) € S = {1, 2} represents the season. In particular, a(t) =
1 stands for the flood period with reduced fishing and intensive reproduction.
and «a(t) = 2 the dry season with intensive fishing and reduced reproduction.

The generator of «(t) is given by

2.0367 —2.0367
—1.9821 1.9821

(110)

For our problems we need to ensure that our discretization methods con-
verge to the viscosity solution and determine the optimal effort. Using the basic
results of (26) and (27), this ensures that our numerical solutions convergence
to the viscosity solution. For this purpose, we use the fully implicit upwind

scheme which is unconditionally monotone.

To approximate the solution to we discretize variables t, p and B with
stepsizes At, Ap and AB respectively. The value of v; at a grid point (¢,,; px; B)

in the regime ¢ is denoted by vy ,(3). The derivatives of v; are approximated by
1. .
ov; UZJZF (i) — UZ,[(’)

o h n+1 At n+1’ . n+1/.
vy i () oy (6) — 207 ()
o "~ (Ab)? ’
PPv; vei1a(0) + op () = 2057 (0)
o C@p
UZil,l(Z) - UZT (4) .
. i if ©0,>0
ov; 2Ap
o g oo ™
‘ 2Ap ! i <
v () ot @)
ov; i IAD if P, >0
b~ ntl ntl ¢
ob <I>~Uk’l (i) — Uk,lﬂ(l) ” D, <0
! 2Ab ’
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Discretizing equation

S E—
k,l k,l +1
By gy (=)

At EcA,
UZ+111 - ”ZJIA U}?Tl - U}?+111
Fmax (9(150 —p1qEB—Py); o) kAL TRE in (e(po —p1qEB—Py); o) RNl ¥}
Ap Ap
B U"+1 _ Un+1 B U"+1 _ Un—‘:l
+max (riBl(l—?l)—qEBl; 0) 7k7l+1Ab Bl min (riBl(l—?l)—qEBl; 0) LU AR D izl
+1 +1 +1 +1 +1 +1
102 Ve Ut — 20 . 102 52 Vpip1 TV — 20
2°° (Ap)? 2 B! (Ab)?
qEB|P, — 1 E — coE)' 7 " .
+ af=el) i) -o ()

and rearranging the terms, we obtain

1 o, o%4B? 1 1 B +1
B2 IBPL L 2 g(50—piqEB—Py)—— (riBy(1— 2L —qEB;) ot
( Bt Bp)? (Ap)2 T Apﬁ(po P1gEB;—Py) Ab(” (1-77)—a z))vk,l
( oy | max (0(po — P1gEB; — Py);0) )v"“
: L\2(Ap)? Ap L

o N min (9(;50 — p1gEB; — Py); 0) )v

+ (2(A§))2 Ap

By
( UQBBIQ N max (TiBl(l — F> - qEBl;O)
2(Ab)2 Ab
) ( o2RB2 . min (riBl(l— —) —QEBlQO))anrl
2(Ab)? Ab e
)

GEBB B o)ty
1—7 o

1/ -
- Qijvz:;_ () +
108 In addition, we consider that:

e the optimization starts at time ¢ = 0 and ends at time t =T < +00

200 e the time interval is uniformly partitioned as 0 =ty < t; < ... <ty =T
with
202 tn+1—tn=At=%, n=0,1,...., N —1;

e the state variable of biomass takes values within the interval [0, 2K], which
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204

206

208

210

is uniformly partitioned as 0 = By < By < ... < B,;, = 2K with Bj41 —

B, =AB=2K/m, I

=0,1,....m—1;

e the state variable of prices takes values within the interval [0, pinaz], which

is uniformly partitioned as 0 = py < p1 < ... < P = Prmaz With

pmam

DPrk+1 — Pk = Ap = )
m

e we have boundary conditions, a terminal conditions v; (T, by, pt) = K7

and a initial condition v;

If we define the constants

oy At o} BEAL

k=01,...,m—1;

(0,b,p) = 0.

At At
1 _ A — 2 0(P0—5 _py_=
b — oAt max (6(po — P1gEB; — P);0) At
C2(Ap)? Ap
. UIQ,At min (9(]30 —p1gEB; — Py); O) At
" 2(Ap)? Ap
B,
. U%B?At max (riBl(l — }) — qEB;; O) A
" 2(Ab)? AB !
. B
o3 BAt  TWin (TiBl(l — f) — qEB;; O) A
SATONE AB !

fi=

(qEB Py — 1 E — coE?)1™7

At

I—v

1—~

)

11—~

B,

(TiBl(l— I7a
(113)

(114)

(115)

(116)

(117)

(118)

We can rewrite this difference equation in a more manageable form:

sup
EeA;

n+1 n+1
{aika + bivk+1,l +¢;

n+1
k—1,1

n+1

n+1
v + divk,z+1 Tt eV,

AT ) + fz} ey

Writing (119)) in a appropriate matrix form,

sup

E_n+
{Ai Vi
EcA;

P AT EP - vy} =0
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4.3 Howard’s algorithm

212 We denote by vi' and V?+1 the approximations at time n and n + 1.

Step 0: start with an initial value for the control E°. Compute the solution v
214 of AiEO’w — AjiV;-LJrl =+ F?+1 — VZL = 0.

Step j — j+1: given Ui, find B7+! € A; maximizing AFw — Ajiv;-H_l +F?+1 -
216 v? = 0. Then compute the solution v " of AE Ty — Ajiv;”rl +FPH -

v =0.
Final step :if \V{H - Vf\ < ¢, then set vt = V{H
4.4 Optimal effort

220 We applied the Howard’s algorithm: we compute the optimal effort in both

regimes. As result:

Regimes Optimal effort
1 7.5303 x 1.0e 4+ 04
2 7.2121 x 1.0e + 04

Table 2: Optimal Effort

222
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Value function in regime 1

Effort value in regime 1

& .

uoRauny anjes,

Price

Biomass

Price

Biomass

224

Value function in regime 2

Effort value in regime 2

uopouny anjep

Price

Biomass

Price

Biomass

226

5 Conclusions

We treat an finite-horizon optimal fishery problem in switching diffusion

228

models. Using the viscosity solution approach, we prove that the value function
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20 is the unique viscosity solution of the associated system of HJB equations. As
an application, the optimal effort is deduced by using Howard’s algorithm.
23 These methodologies can be applied to similar comparison studies and other

fishery models. This will be the subject of a further paper.

24 Appendix A Stochastic logistic growth with harvesting

B
dB; =rBy(1 — ft)dt — qEBydt + o B;dW (t) (A1)
E B

Recalling the 1td’s chain rules for solving the SDE dX; = f(X,t)dt+g(X,t)dW;

t>0or

4V (X(1),1) = (va(t),t) LX)tV + §g2<x<t>,t>vxx) di+g(X(£). 1)V dWV (1)

Let V(By,t) = B; !

38—‘;:0 %:—B[Q 222_23;3
f(Bg,t) =rB; (1 - % - f{t) g(By,t) = 0By
dV; = [0 + 7By (1 - % — ?) (-B; %) + 50233(2353)] dt 4+ o By(—B; ?)dW,;
(A.3)
d(B;i ') = [—r (B;lu - %) - ;() + 023;1} dt — o B; tdW, (A.4)
To linearize (A.3)), set B; ' =y, so that
dy; = [r (yt(l - %) - I1(> + 02yt} dt — oy dWy (A.5)
= [% + (—r+ o? + qF) yt} dt — oy, dW; (A.6)

We are looking for a solution to (A.5)) of the form y(¢) = y1(¢).y2(t) where

dys (t) =(—r + o + qE)y1dt — oy dWy, y1(0) =1

dyz(t) =a.dt + bydWy, y2(0) = y(0) = yo
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and the process coefficients a;; b; are, at this point, unknown.

dy: =d(y1.y2)
=t1dy2 + y2dy: + dy1dys
=y1dys + yodyy + [(—7 + 02 + qE)y1dt — oy dWi[adt + byd Wy
=y1dy2 + yady, — obyydt
=y1(ardt + bpdWy) + yo[(—1 + 0% + q¢BE)y1dt — oy dW,] — oy dt

=y1 (agdt + bydWy) + (=1 + 02 4 qE)ydt — oydW, — obyy, dt
Now, select a;, by so that

%0 (a’tdt + btth) — Ubtyldt = %dt
Thus
T —
=0 =g (A7)

We integrate dy; (t) and dyz2(t) to

y1(t) =exp [/Ot —odW, + /Ot ((r +0%+qE) - ;02) ds]

1
=exp [—th + (—7“ +qF + 202> t}

t
.
y2(t) =y +/ —yi ' (s)ds
2 0 0 K 1 (

Thus
y(t) =exp [—th + (—r +qF + ;(12) t] X
g feolen (-2}
Hence
B, - exp [(r —qF — (1/2)02) t+ th] (AS)
{Bal +(r/K) fg exp[(r —qF — (1/2)02) s + o W] ds}
B, — Kexp [(r—qE — (1/2)0%) t + c W] (A9)

- [K/BO + rfot exp [(r — qF — (1/2)02) s + o W] ds}
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Appendix B Proof of lemma (3.1

1. Let k € [0;2] and h = s — t.
According to Hélder inequality En* < [En2] 2 for vk >0,

Bppm | < [Blper ] (B.1)
Given that
dP(t) = f'(t, P(t))dt + ¢'(t, P(t))dw(t) (B.2)

According to the elementary inequality | Zf\il ai|>? <M Zf\il la;|?,

h 2 h 2
|PoP 2 <3 {|pt|2 + ‘ / f(u+ tP,i’pf',i)du‘ + ‘/ g (u+ t,P,f”’t,i)dwu‘ }
0 0

(B.3)

Thus, using Ito-isometry and Fubini’s theorem

h
ElP}iapt|2 §3{|pt|2+/ E
0

h

2 2
fl(U“rtyPi’pt»i)‘ du—i—/ Egl(u+t,P£7pt7i)‘ du}
0

(B.4)
f” and g’ satisfying the growth condition by definition, thus there exists
C1 € R such that

El%ﬁWQSCH{1+ImF4‘AhEme2du} (B.5)
Applying Gronwall’s inequality we obtain
E|P, 7" < C1e®" 1+ |py|?] (B.6)
ie
E|PyP? < C[1+ [pe]?] (B.7)

Using (B.1) and elementary inequalities (a3 + a2)® < 2871(|ay|* + |az|*)
and (v/|a1 + az| < v/]a1| + /|az]) we deduce

B[Py " < O1+ |pi|"] (B-8)
The same reasoning gives....

E|By"* < C[1+ [bs]*] (B.9)
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2. We have

h 2 h 5
[Py —pi]? <2 {’ / f'ut b, PLP i)du| + \ / g (u+t, PP i)dw,
0 0
(B.10)
Similar arguments as above we deduce
h 2
BIP™ - <Gy [ [+ B[P Jdu ®B.11)
0
using (B.7)) we deduce
E[PyP —pif* < O(1+ |pil*)h (B.12)
Hence
E[Py?" = pi|F < C(1+ [pe|*) h*/? (B.13)

3. Let us define the process PIPt — PUPt. Put flu+t, Péapt,P’li‘rp;,7i) _
J'(u+t, Pffpt)i) — fl(u+t, Pi’p;,i) and g(u + t, P;}pt’ Pﬁ’pt,i) =g'(u+
t, PLoe i) — g/ (u+t, PY7 i), Then

4 h — ’ 2 h ,
EIBZ””Bi’pt|2§3(|ptp2|2+E] | Fwst P P il | [ gtuwst, Pl P iy,
0 0

)
bt £y |2 /12 "7 t,p: ptPr 2 g = t,pt [ 2
E|F)h7 _Ph ‘ <3 |pt_pt| +E ‘f(’u,—l—t’Pu’ ’;Pu ,Z)‘ du+E ‘g(u+t’Pu7 ﬁBu 72)‘ du
0 0

/ h ,
E|P£’Pt o P}tL,pt‘Q < C(|pt *pHQ Jr/ E’P;i,pt _ Plt/pt
0

Zdu) (B.14)

Hence

E|PLP* — PPP? < Clpy — pi? (B.15)

Similar arguments as above we deduce
B|B;" — By F < Ol — b BIP — By F < Clo —pi (B.16)
4. Using Doob’s inequality for submartingale. We get

E[ sup [BL"|]" < C(1+ [b[")h%; E[ sup |PE7(]" < C(1+ |pi|*)h?
0<s<h 0<s<h

(B.17)
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