U. Giga and B. Liège, Avenue Hippocrate 13, 4000 Liège, Belgium. 2 Genomics Platform, Pathology Tour, +4 level, Building, vol.23

J. P. Richard, Mechanism for the formation of methylglyoxal from triosephosphates, Biochem Soc Trans, vol.21, issue.2, pp.549-53, 1993.

T. W. Lo, M. E. Westwood, A. C. Mclellan, T. Selwood, and P. J. Thornalley, Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alphaacetylcysteine, and N alpha-acetyllysine, and bovine serum albumin, J Biol Chem, vol.269, issue.51, pp.32299-305, 1994.

N. Rabbani and P. J. Thornalley, Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome, Amino Acids, vol.42, issue.4, pp.1133-1175, 2012.

D. E. Maessen, C. D. Stehouwer, and C. G. Schalkwijk, The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases, Clin Sci (Lond), vol.128, issue.12, pp.839-61, 2015.

N. Rabbani and P. J. Thornalley, The dicarbonyl proteome: proteins susceptible to dicarbonyl glycation at functional sites in health, aging, and disease, Ann N Y Acad Sci, vol.1126, pp.124-131, 2008.

R. H. Nagaraj, I. N. Shipanova, and F. M. Faust, Protein cross-linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal, J Biol Chem, vol.271, issue.32, pp.19338-19383, 1996.

B. Chiavarina, M. J. Nokin, F. Durieux, E. Bianchi, A. Turtoi et al., Triple negative tumors accumulate significantly less methylglyoxal specific adducts than other human breast cancer subtypes, Oncotarget, vol.5, issue.14, pp.5472-82, 2014.

B. Chiavarina, M. J. Nokin, J. Bellier, F. Durieux, N. Bletard et al., Methylglyoxal-mediated stress correlates with high metabolic activity and promotes tumor growth in colorectal cancer, Int J Mol Sci, vol.18, issue.1, pp.5472-82, 2017.

M. J. Nokin, F. Durieux, J. Bellier, O. Peulen, K. Uchida et al., Hormetic potential of methylglyoxal, a side-product of glycolysis, in switching tumours from growth to death, Sci Rep, vol.7, issue.1, p.11722, 2017.

A. Bellahcene, M. J. Nokin, V. Castronovo, and C. Schalkwijk, Methylglyoxal-derived stress: an emerging biological factor involved in the onset and progression of cancer, Semin Cancer Biol, vol.49, pp.64-74, 2017.

L. Zender, W. Xue, J. Zuber, C. P. Semighini, A. Krasnitz et al., An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer, Cell, vol.135, issue.5, pp.852-64, 2008.

M. J. Nokin, F. Durieux, P. Peixoto, B. Chiavarina, O. Peulen et al., Methylglyoxal, a glycolysis sideproduct, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis. eLife, vol.5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02298698

T. Oya, N. Hattori, Y. Mizuno, S. Miyata, S. Maeda et al., Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal-arginine adducts, J Biol Chem, vol.274, issue.26, pp.18492-502, 1999.

J. L. Scheijen and C. G. Schalkwijk, Quantification of glyoxal, methylglyoxal and 3-deoxyglucosone in blood and plasma by ultra performance liquid chromatography tandem mass spectrometry: evaluation of blood specimen, Clin Chem Lab Med, vol.52, issue.1, pp.85-91, 2014.

C. A. Lambert, E. P. Soudant, B. V. Nusgens, and C. M. Lapiere, Pretranslational regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces, Lab Invest, vol.66, issue.4, pp.444-51, 1992.

P. Chen, M. Cescon, and P. Bonaldo, Collagen VI in cancer and its biological mechanisms, Trends Mol Med, vol.19, issue.7, pp.410-417, 2013.

Y. Nomura, H. Tashiro, and K. Hisamatsu, In vitro clonogenic growth and metastatic potential of human operable breast cancer, Cancer Res, vol.49, pp.5288-93, 1989.

I. K. Guttilla, K. N. Phoenix, X. Hong, J. S. Tirnauer, K. P. Claffey et al., Prolonged mammosphere culture of MCF-7 cells induces an EMT and repression of the estrogen receptor by microRNAs, Breast Cancer Res Treat, vol.132, issue.1, pp.75-85, 2012.

Y. Kondaveeti, G. Reed, I. K. White, and B. A. , Epithelial-mesenchymal transition induces similar metabolic alterations in two independent breast cancer cell lines, Cancer Lett, vol.364, issue.1, pp.44-58, 2015.

K. R. Levental, H. Yu, L. Kass, J. N. Lakins, M. Egeblad et al., Matrix crosslinking forces tumor progression by enhancing integrin signaling, Cell, vol.139, issue.5, pp.891-906, 2009.

F. Liu, A. Hata, J. C. Baker, J. Doody, J. Carcamo et al., A human Mad protein acting as a BMP-regulated transcriptional activator, Nature, vol.381, issue.6583, pp.620-623, 1996.

M. Kretzschmar, F. Liu, A. Hata, J. Doody, and J. Massague, The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase, Genes Dev, vol.11, issue.8, pp.984-95, 1997.

J. Yue, R. S. Frey, and K. M. Mulder, Cross-talk between the Smad1 and Ras/MEK signaling pathways for TGFbeta, Oncogene, vol.18, issue.11, pp.2033-2040, 1999.

J. Pannu, S. Nakerakanti, E. Smith, P. Ten-dijke, and M. Trojanowska, Transforming growth factor-beta receptor type I-dependent fibrogenic gene program is mediated via activation of Smad1 and ERK1/2 pathways, J Biol Chem, vol.282, issue.14, pp.10405-10418, 2007.

M. Kretzschmar, J. Doody, and J. Massague, Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1, Nature, vol.389, issue.6651, pp.618-640, 1997.

F. Pouliot and C. Labrie, Role of Smad1 and Smad4 proteins in the induction of p21WAF1,Cip1 during bone morphogenetic protein-induced growth arrest in human breast cancer cells, J Endocrinol, vol.172, issue.1, pp.187-98, 2002.

D. M. Owens and S. M. Keyse, Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases, Oncogene, vol.26, issue.22, pp.3203-3216, 2007.

B. Stratmann, B. Goldstein, P. J. Thornalley, N. Rabbani, and D. Tschoepe, Intracellular accumulation of methylglyoxal by glyoxalase 1 knock down alters collagen Homoeostasis in L6 myoblasts, Int J Mol Sci, vol.18, issue.3, 2017.

K. Nagaharu, X. Zhang, T. Yoshida, D. Katoh, N. Hanamura et al., Tenascin C induces epithelial-mesenchymal transition-like change accompanied by SRC activation and focal adhesion kinase phosphorylation in human breast cancer cells, Am J Pathol, vol.178, issue.2, pp.754-63, 2011.

T. Oskarsson, S. Acharyya, X. H. Zhang, S. Vanharanta, S. F. Tavazoie et al., Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs, Nat Med, vol.17, issue.7, pp.867-74, 2011.

P. Baumann, N. Cremers, F. Kroese, G. Orend, R. Chiquet-ehrismann et al., CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis, Cancer Res, vol.65, issue.23, pp.10783-93, 2005.

S. Troup, C. Njue, E. V. Kliewer, M. Parisien, C. Roskelley et al., Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer, Clin Cancer Res, vol.9, issue.1, pp.207-221, 2003.

J. C. Tung, J. M. Barnes, S. R. Desai, C. Sistrunk, M. W. Conklin et al., Tumor mechanics and metabolic dysfunction, Free Radic Biol Med, vol.79, pp.269-80, 2015.

L. Losi, H. Bouzourene, and J. Benhattar, Loss of Smad4 expression predicts liver metastasis in human colorectal cancer, Oncol Rep, vol.17, issue.5, pp.1095-1104, 2007.

N. Liu, C. Yu, Y. Shi, J. Jiang, and Y. Liu, SMAD4 expression in breast ductal carcinoma correlates with prognosis, Oncol Lett, vol.10, issue.3, pp.1709-1724, 2015.

L. Levy and C. S. Hill, Smad4 dependency defines two classes of transforming growth factor {beta} (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses, Mol Cell Biol, vol.25, issue.18, pp.8108-8133, 2005.

M. Kretzschmar, J. Doody, I. Timokhina, and J. Massague, A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras, Genes Dev, vol.13, issue.7, pp.804-820, 1999.

M. Suzawa, Y. Tamura, S. Fukumoto, K. Miyazono, T. Fujita et al., Stimulation of Smad1 transcriptional activity by Ras-extracellular signalregulated kinase pathway: a possible mechanism for collagen-dependent osteoblastic differentiation, J Bone Miner Res, vol.17, issue.2, pp.240-248, 2002.

Y. Guo, Y. Zhang, X. Yang, P. Lu, X. Yan et al., Effects of methylglyoxal and glyoxalase I inhibition on breast cancer cells proliferation, invasion, and apoptosis through modulation of MAPKs, MMP9, and Bcl-2, Cancer Biol Ther, vol.17, issue.2, pp.169-80, 2016.

M. O. Warmoes and J. W. Locasale, Heterogeneity of glycolysis in cancers and therapeutic opportunities, Biochem Pharmacol, vol.92, issue.1, pp.12-21, 2014.

L. B. Sullivan, D. Y. Gui, and M. Heiden, Altered metabolite levels in cancer: implications for tumour biology and cancer therapy, Nat Rev Cancer, vol.16, issue.11, pp.680-93, 2016.