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Abstract

Today, the overall goal of energy transition planning is to seek an optimal strategy for increasing the share of renewable

sources in existing power networks, such that the growing power demand is satisfied at manageable short/long term invest-

ment. In this paper we address the problem of PV penetration in electricity networks, by considering both 1) the spatial issue

of site selection and size, and 2) the temporal aspect of hourly load and demand satisfaction, in addition with the investment

and maintenance costs to guarantee a viable and reliable solution. We propose to address this spatio-temporal optimization

problem through an integrated GIS and robust optimization model, that allows handling of the ubiquitous dependencies be-

tween resource and demand time variability and the selection of optimal sites of renewable power generation. Our approach

contributes to the integration of the multi-dimensional and combinatorial aspects of this problem, gathering geographical

layers (regional or national scale) and temporal packing (hourly time stamp) constraints, and cost functions. This model com-

putes the optimal geographical location and size of PV facilities allowing energy planning targets to be met at minimal cost in

a reliable manner. In this paper, we illustrate our approach by studying the penetration of large-scale solar PV in the French

Guiana’s power system. Among the results, we show for instance that: 1) our approach performs geographical aggregation

with real contextual data, i.e. balances the intermittency of RE sources by spreading out the corresponding installations (loca-

tion + size) across the territory; 2) the total installed PV capacity can be doubled by removing the 35 % penetration limit on

intermittent power without exceeding hourly demand; 3) the safest investment scenario is below 30 MW of new PV facilities

(≈ 45 Me and 2 plants), though it is theoretically possible to install up to 45 MW (>120 Me and 11 plants).
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Nomenclature

Bi Boolean variable equal to 1 if site PS i is selected, 0 otherwise

Ccapi Capital cost for implementation of a new PV power plant (e)

Cconi Connection cost for each new PV plant, transmission lines and substation (e)

Clan Transmission line unit cost (e/m)

Copi Annual fixed operational cost per new PV plant (e)

Csta Substation power unit cost (e/kW)

Cstai Capital cost for new substation (e)

Demh Estimated hourly power demand (kWh)

Dgi Minimum distance from the grid to the centroid of a candidate (m)

Einth Current hourly production from intermittent sources (kWh)
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Eph Current hourly production from non-intermittent sources (kWh)

h hour of the year

i Site index

m Final number of solar PV plants

n Number of candidate sites derived from GREECE

P Set of selected candidate sites

Ppvh,i Estimated hourly production per PV unit for each site (kWh/m2)

PS Set of potential candidate sites

Rit Resource time series corresponding to potential site PS i

S Ai Surface to consider for a candidate site PS i that is selected (m2)

S maxi Maximum area for each candidate site (m2)

S min Minimum area for each candidate site (m2)

1. Introduction and related work

Enhancing the share of renewable-based generation in power networks is today one of the main objectives in countries’

energy planning policies [1]. The need for mitigating our carbon footprint in combating climate change has initiated and

accelerated this growth over the past 30 years. Many countries, political and economic unions or organizations have therefore

established their own renewable energy policy frameworks [2] (e.g. in the European Union [3]). Typically, various targets have

been implemented by government policies in order to increase the share of renewable energy (RE) sources in power networks

[2]. But integration of those facilities, such as solar PV [4] or wind turbines [5], is not straightforward: geographical dispersion

and intermittency have often imposed grid adaptations in order to avoid causing instability [1], and forecasting the energy

potential can be a modelling challenge on its own in the absence of expert knowledge [6]. It therefore requires to develop

specific energy planning strategies and tools allowing objectives to be met without jeopardizing the existing infrastructures.

Most of RE sources vary with time (intermittency) and space (geographical dispersion) due to climate patterns, weather

conditions, day-night alternation, terrain features, etc. Depending on the location where corresponding facilities are set up,

resulting power supply will affect electrical network’s dynamics [7], and thus the balance between production and demand.

Strategic energy planning must therefore account for geographical restrictions as well as the resource potentials whose fine

temporal patterns are location dependent. In other words, a key question for us is: what is the optimal geographical distribution
of renewable power stations allowing specific energy and economic targets to be met given the spatio-temporal variability of

the resources at hand? By geographical distribution we mean a set of power stations established in a region and defined

by their location, type, size and capacity. In particular, for investors and decision makers, seeking the optimal land size is

an essential component in terms of investment and energy production. Regarding energy planning targets, common ones

may be to reach 100 % of renewable-based electricity within 10 years [8], or to balance power from intermittent energies at

any time. However, we may also propose various scenario solutions of energy planning strategy by tuning a set of possible

parameters and forecast data [1]. Those scenarios might take into consideration different combinations of resources, various

land management strategies, growth of the population, climate change impacts, etc.

Today, strategic energy planning relies on system modeling tools with a strong growths of systems involving spatio-

temporal modeling at different scales and with different objectives and study purposes [9]. In the case of identifying suitable

sites for intermittent RE sources (solar, wind) parks, which we are interested in, there is a focus on local scale study approaches

summarized below.

At local scale (urban, roof tops), different studies have combined geographic information systems (GIS) with the time

dimension in order to retrieve the location and size of small RE power system units. Some approaches such as, Kucuksari et

al. [10] combine a GIS approach with linear optimization in order to plan long-term PV installation on a campus environment.

Potential sites are selected based on a GIS assessment of yearly radiation and building’s rooftop suitability. Optimal location

and size of the PV systems to be installed in the campus over 20 years are then retrieved so that yearly PV generation

constraint target is reached and the total system long-term net profit is maximized. This approach considers an annual time

scale, and does not take into account the temporality of satisfying the electricity demand. Also, Mavromatidis et al. [11]
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propose a step-by-step framework in order to meet the local electricity demand of a village with solar PV and storage. In

their problem definition, the generated energy could meet the aggregated hourly electricity demand, be stored in batteries or

exported to the national grid. The hourly solar radiation profiles for each building are derived from a DEM approach (ArcGIS

Solar radiation tools). They also create and aggregate synthetic electricity demand profiles to get the total hourly demand

of the village. Finally, optimal building’s rooftops for PV panels installation are determined by minimizing total costs and

maximizing renewable share through a mixed-integer linear program (MILP). In this approach, there is no issue of land sizing

nor of handling the data uncertainty in future costs, demand or resource potentials. A static rooftop planning approach is

considered.

Similarly but at a municipal scale, Ramirez-Camargo and Stoeglehner [9] present a spatio-temporal GIS model for RE

planning, including solar PV. Potential sites are selected based on rooftop areas also, that have been previously identified and

classified according to PV usage. Size and location of those sites are therefore directly defined by the rooftop-based geometric

constraints of the problem. The authors then use a decision tree in order to find the best match between corresponding RE

generation and the electricity demand of the municipality. Relative costs are not considered nor uncertain data for forecasting

trends in energy and demand.

Recently, Alhamwi et al. [12] have developed a GIS-optimization to match electricity demand by adding storage instal-

lation at urban level. The authors use a cellular approach whereby the city or district is divided into several interconnected

energy cells in which demand and supply are balanced at hourly scale. For each energy cell, new power and storage are

added so that total system costs are minimized and local electricity demand is met, according to different scenarios. Results

show optimal storage capacity and configuration of power supply systems for each energy cell. The authors finally propose

a post-processing GIS-based heuristic approach in order to achieve sizing and siting of storage elements. In that approach,

sizing and siting do not directly intervene in the simulation and optimization. The authors rather propose a systemic method

combined with a post-processing heuristic strategy that attempts to optimize placement of given RE capacity amounts within

each sub-system (i.e. energy cell).

Regarding urban districts, Huang et al. [13] propose a GIS assisted method to assess optimal location and number of

renewable powered electric vehicle charging stations, with respect to existing charging stations and solar PV generation. The

authors first use GIS techniques to discretize a city district into a mesh, and then evaluate roof-mounted solar PV yearly

generation within each grid cell according to available roof area. Partition theory and genetic algorithms are then used

respectively to generate different alternatives for distributing charging stations among locations in the city district and to

maximize global coverage area for each design. Feasible design alternatives meeting user-defined coverage ratio are finally

chosen and the one with the minimum life cycle cost is selected as the optimal solution. The authors have applied their

method to the Kowloon district of Hong Kong. In that case, the authors use static solar radiation data combined with mesh-

based spatial optimization. Siting restrictions for implementing charging stations are not considered due to the very small size

of the devices.

Another set of approaches seek to match power generation and energy demand at utility scale. For instance, applied to

Malaysia, Sabo et al. [14] propose an analytical model for assessing implementation of utility-scale solar PV plants into the

power grid. Their study provides a set of temporal and spatial factors such that matching of power generation from solar

PV plants with the global energy demand is facilitated. After having first selected optimal sites (size + location) based on

a GIS spatial selection, they compare power generation from those sites to electricity demand on an hourly basis through a

set of static indicators. It virtually allows them to evaluate the impact of increasing levels of PV penetration onto the power

network. In this case, matching static indicators are derived from spatially pre-selected sites, i.e. corresponding sites (spatial

dimension) are not selected from their match (temporal dimension) with the electricity demand. Hence site selection does

not take into account the existing interdependence between spatial and temporal variability of both the solar radiation and the

energy demand satisfaction.

In a different line of work and objectives, bottom-up engineering approaches focus on time simulation and optimization

of given energy system configurations. Their main objective is to guide energy policy road map often at a national scale and

longer time horizon [1]. This holistic approach gives a significant insight into the potential contribution of RE sources [15],

but does not aim at identifying physical parcel locations. Instead, these studies determine optimal RE capacity amounts for

the whole system (i.e. region) or sub-systems (i.e sub-regions) according to given objectives (e.g. maximizing RE generation

and minimizing net present cost) [16].

An insightful example of guiding energy policy road maps is the recently published study by Zappa et al. [17]. In this

paper, the authors look at the feasibility of a 100 % renewable European power system by 2050. Europe is modeled as a single

integrated power system including sharing of capacity between countries, and seven scenarios for a fully RE-based power
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system are analyzed. Intermittent resources (wind, solar) are estimated using available profiles from ERA-interim. Hourly

simulation is run at one week per month for year 2010 in order to mitigate CPU time. A MILP optimization approach is

proposed to minimize the net present cost of the whole system over lifetime.

Luz and Moura [18] have used a multi-objective non-linear optimization framework to plan scenarios for the 100 %

renewable transition road map for Brazil. Their model aims at minimizing the net present value of total system expansion

costs and maximizing complementarity between demand and generation among regions and RE sources, at hourly scale. Solar

irradiation and wind speed were taken from 27 automatic weather stations, and water inflow was retrieved from 10 hydropower.

To assess complementarity between regions, the country’s territory is beforehand divided into 3 to 5 regions for each resource.

Their results show how wind and solar PV integration may reduce hydro dependence and reservoir requirements.

At a national scale, GIS-based studies, often combined with different multi-criteria decision making (MCDM) methods

such as analytical hierarchy process (AHP) [19], fuzzy logic [20], etc. are particularly used to retrieve suitability maps. Those

maps allow suitable areas for RE deployment to be identified and therefore give decision makers the necessary knowledge

about where to invest. Typically, these studies first derive potential areas from an overlay analysis, by removing constraint and

buffer layers from a given territory [21]. A refinement is then performed using multi-criteria analysis, in which relevance of

the available zones is ranked according to predefined weighted decision criteria [22]. Criterion selection and ranking is mostly

based on literature consensus and opinion from local expertise [23]. As these studies are not focused on energy demand

management, the methodology is based on static data, i.e. resource temporal variation is not considered, and energy demand

satisfaction is not taken into account. It does not aim at providing the exact location and size of the sites whose temporal

power generation satisfies the hourly demand according to predetermined scenarios. Instead, it generates a cartography of

the areas where RE source development appears technically and economically suitable with respect to selected criteria. We

describe below some of the latest studies.

Al Garni et al. [24] have achieved the first GIS-MCDM study in Saudi Arabia for selecting the best sites for large-scale

solar PV plants. They first derive potential areas from a restriction overlay analysis, and then achieve AHP to weigh the seven

criteria they selected, that is 1) yearly solar irradiation and air temperature, and 2) slope, land aspects, distance to urban area,

distance to roads distance to power lines. Accordingly, they generate a land suitability index (LSI) to assess the relevance of

the potential sites through 5 classes, from least to most suitable.

Applied to the country of Nigeria, Ayodele et al. [25] analyze wind farm selection by combining GIS and multi-criteria

type-2 fuzzy analytic hierarchy process (IT2-FAHP). The use of fuzzy sets in addition to AHP is achieved to represent expert’s

linguistic judgement in order to address uncertainty in decision making. Yearly averaged wind speed at 10 m hub height was

retrieved from 28 ground stations. Most significant selected criteria are respectively wind speed (50 % weight), proximity

to grid lines (24 %) and slope (17 %). Suitability is eventually classified according to a score from 0 (not suitable) to 4

(extremely suitable). A suitability map is finally computed based on the previous approach and a GIS-based constraint map

where unsuitable areas have been removed.

Yang et al. [21] propose an innovative GIS-based study over China, where they bridge the gap in the scientific knowledge

on distribution and size of large scale PV potential under geographical and technical constraints in the country. From geo-

graphical constraints, the authors derive suitable areas for utility-scale solar PV plants and then use land conversion factors

under different geographical and technical conditions to estimate PV technical potential at high resolution. They also assess

the life-cycle CO2 reduction potential from the use of large-scale solar PV in China.

Compared to other studies, Also, Jung et al. [26] provide topographic and shading effects criteria into the selection of

suitable sites on highway fill slopes from digital numerical maps. The authors aggregate solar radiation over the year, estimate

shaded areas from contour-based topographic data, and rasterize the highway network so that high solar energy grid cells

within fill slopes are finally clustered into suitable sites. They apply their method near Gongju in South Korea to rank 10

potential installation sites.

In summary, studies at urban scale are not implementable at broader scale as it is, not only regarding the predefined

geometric constraints of the problem (rooftop areas) but also according to the new spatiotemporal scenarios and topics the

utility scale brings out, such as climate and weather variations throughout the territory, intermittence (no storage), terrain

issues (slope, land use, etc.) or even the size of the study area. On the other hand, widely used bottom-up engineering models

allow techno-economic feasibility of energy system configurations to be assessed, and aim at providing optimal RE capacity

amounts per region (system) or sub-regions (sub-systems), with respect to given objectives (for instance a 100 % renewable-

based power system). Their main objective is to guide energy policy road maps at global scale and at long time horizon, hence

they do not link temporal scenarios with the geographical constraints and costs of a given territory. Finally, at the national

scale, GIS-based MCDM approaches address the issue of giving information to the decision makers about suitable locations
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for RE source development. As their objective is not related to the energy demand side, these studies are based on static

resource data and do not aim at determining optimal scenarios of geographical sites for future RE systems. Finally it is also

important to note that in all these studies (local scale, bottom-up, GIS MCDM), handling of the data uncertainty in future

costs, demand or resource potentials is generally not considered.

Essentially, to date we are not aware of computational approaches that tackle the spatiotemporal optimization problem

consisting of identifying the best parcels that increase solar energy penetration into the network at minimal cost, while satis-

fying a region or country’s specific constraints (terrain, resource, infrastructures, etc) and related costs. Hence we propose an

integrated computational approach that handles this problem in terms of spatial placement and a resource planning problem.

It addresses both land site selection and sizing from geographical constraints, and resource planning to satisfy the demand

at minimal cost from an hourly temporal pattern viewpoint. This approach stands for a novel framework based on GIS spa-

tiotemporal data and constraint processing, connected to a robust optimization (RO) knapsack model to plan renewable energy

scenarios. Since our problem looks at future strategic planning most data at hand are uncertain (costs, demand, radiation

potential), a robust approach is proposed to mitigate uncertainty of anticipated forecast values. The combination GIS-RO

generates an excellent decision support system that allows for the planning of parcel scenarios (locations and areas) that will

best increase the RE power into the network at minimal cost, according to the decision maker risk adversity. A GIS can

handle very large volumes of data, including remote sensing images for solar radiation indicators, land use maps, and various

networks maps (electrical, roads, water). The application of global and multi-layers geographical constraints and various con-

trol parameters allows for an effective deterministic pruning of the region, to determine suitable candidate parcels, and their

relevant properties without impairing the optimization problem.

Summary of contributions. Our contributions can be summarized as follows: 1) The design and implementation of the

GREECE prototype, Geographical REnewable Energy Candidate Extraction that tackles the extraction of potential PV sites

over a regional or national land, by computing sets of polygons (potential RE areas) from different constraint layers (protected

areas, urban zones, etc.) and control parameters (buffers, distance and surface thresholds); it also characterizes the region’s

spatiotemporal features and associated costs by providing for each candidate parcel de-spatialized attributes (shortest distance

to the grid, maximum area, shape, average slope, land use, etc.) and temporal resource patterns; 2) the specification and

implementation of a robust optimization system and Pareto frontier, that derives from these candidates different scenarios of

optimal RE sites, satisfying hourly energy demand and overall photovoltaic (PV) grid penetration constraints, geographical

network connection and installation costs, such that the RE production is maximized at minimal cost. Given the uncertainties

present in all the forecast data (radiation measures, energy demand, RE costs per KM2, etc.) we propose a robust optimization

model that offers a reliable modeling of uncertain data from real data sets, and enables different solution scenarios based on

the decision maker’s attitude to uncertainty.

To illustrate our approach, we apply our model to French Guiana. According to the 2015 Energy Transition Act, France’s

energy policy has included the following targets for overseas regions: 50 % of renewable in final energy consumption in 2020,

and full energy self-sufficiency by 2030 [27]. In French Guiana, it is hence planed to double or triple the installed capacity

of biomass, wind, solar PV and small hydro between 2018 and 2023 [27]. French Guiana typically combines significant 1)

geographical constraints with most of the landscape made up of primary forest we must protect [28], and 2) power constraints

with low capacity for integration of intermittent RE sources due to a small isolated electrical network [29]. Reaching de-

partment’s renewable share targets cannot therefore be decoupled from land management planning. In this paper we focus

particularly on solar PV, as it shall share 75 % of the intermittent capacity and one third of the whole renewable power to be

installed by 2023 [27]. Eventually, by using our integrated model, we show how and where large-scale solar PV should be

exploited in French Guiana to ensure balance between landscape preservation, grid stability, and cost effectiveness.

This paper is structured as follows: we define the general problem and our approach to solve it in section 2; we then

explain in detail the two parts of our integrated model in section 3 (GIS) and section 4 (optimization); the case study (French

Guiana) for which we have applied this framework is presented in section 5; finally, we discuss the corresponding results and

present the further developments in section 6.

2. General problem and proposed approach

This paper considers the following strategic energy planning problem: How to determine location and size of the best sites
for solar PV plant installation 1) at utility scale (regional or national), such that 2) the energy supply into the grid satisfies the

regulation for intermittent sources, and 3) the forecast hourly electricity demand is satisfied 4) at minimal cost, for a future
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horizon 2030. Meanwhile, this problem has 5) no predefined geometric boundaries for site selection (such as rooftop areas,

administrative boundaries, etc.), and should allow for 6) risk adversity and safest investment scenarios to be known to the

decision maker.

A key element of our contribution is that we take into account the interdependence between the temporal and spatial

variability of the solar radiation, thus we characterize the intermittence in a three dimensional scale (temporal radiation

patterns distributed at a regional scale). If we ignore the temporal dimension, the problem is reduced to the selection of

suitable sites according to average and global penetration load into the grid network. The variability of radiation in time

and space does however impact the hourly penetration over cost ratio (proximity to the grid, site dimensions) as well as the

maximum PV penetration per hour (as an intermittent RE source). Hence the proposed framework tackles these essential and

interdependent dimensions of the problem through a two-stage approach: one GIS based model, and a robust optimization

model.

One common challenge when coping with spatiotemporal analysis of RE sources is the need for high computational capac-

ities [9]. We have handled this issue by favoring a procedural approach where the GIS model reduces the search space passed

on to optimization. Essentially, our approach takes benefit of the existing geographical constraints to discretize the space and

eventually mitigate the set of feasible solutions. It ensures the global complexity of the problem to remain circumscribed:

for the case study (see section 5.1.1), execution CPU time for the GREECE module was 460 s (candidate sites extraction) +

340 s (solar GHI extraction + time series generation), handled as a one off spatial placement preprocessing; CPU time of each

optimization run was then between 23 and 47 s depending on the bound set on the constrained objective function.

The GIS-model, we call GREECE, takes as input different spatial layers of data, a set of parameters that can be tuned

by the user, and generates a set of candidate sites with their respective features, including maximum associated PV capacity,

attributes (slope, shape, land use) and the hourly resource time series distribution per candidate site. The solar resource is

identified from remote sensing radiation maps, and varies in time t and space. Thus for each given tuple of coordinates1

(x, y, t) within the territory corresponds one value r of the resource. The objective of GREECE is, by considering all data and

geographical constraints, to prune and partition the territory into potential areas for PV sites alongside their corresponding

solar radiation, as hourly time series. That is, eventually, to each element PS i of the set of potential sites PS is associated

one time series of resource values Rit. This leaves the issues of determining optimal sites and size to the optimization module

according to hourly power demand constraints (tailored for PV and for global coverage) and the objective functions at hand.

The optimization model is a robust optimization model [30], and has been published recently in a computer science

conference [31]. This means that all forecast data are represented as intervals instead of a stochastic distribution [32]. The

satisfaction of the interval linear constraints involving such data (energy demand projections and costs projections), guarantees

that the solutions produced are such that consistent values that hold for such constraints are kept, and only inconsistent ones

are removed. This model takes as input the set of candidate sites and their attributes from GREECE output, the hourly load

penetration constraints, and global demand satisfaction constraints and derives an optimal set of sites with their computed size

such that the constraints are satisfied using a Pareto optimization approach. The two objectives at hand are the maximization

of the production and minimization of the total cost.

An energy conversion model might also be used between both GREECE and optimization model in order to rather retrieve

system’s output power from resource. In the case of solar PV, it consists in converting solar radiation into AC power with

respect to endogenous features (PV cell type, PV field inclination and orientation, inverter’s efficiency, PV rack mounting,

etc.) and exogenous factors (ground albedo, wind speed, air temperature, diffuse fraction, etc.). Instead of using simplis-

tic conversion from resource during optimization, the use of such an in-between model ensures accurate and realistic site

selection.

The models are described in the following sections. Figure 1 depicts the architecture of the proposed framework to

determine the best locations, size and capacities of PV sites for long-term installations in selected areas. This framework

has been implemented and evaluated for the French Guiana region. The data layers for this region were provided by world

databases [33], local administration (e.g. ONF, National Forests Office [34] and IGN, National Geographic Institute [35]),

France’s electric utility [36] (EDF, Électricité de France) and previous solar radiation studies from Albarelo et al. [37] and

Fillol et al. [38]. All forecast data on demand, and installation and maintenance costs are based on standard projection data.

PV site deployment for French Guiana is planned for the horizon 2030, to complement the current PV facilities, as well as

hydro and biomass. A hybrid PV and biomass study is underway but we focus on the PV component in this article. The

1Theoretically energies such as wind and solar also vary with altitude z but we will not consider it in this study.
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implementation shows the effectiveness of accounting fully for the different temporal patterns of solar radiation in different

areas, in this strategic planning of PV sites.
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Figure 1: Schematic view of the proposed integrated GIS-optimization framework.

3. PV sites extraction and spatial data discretization problem: The GREECE model

The first stage problem computes a set of candidate geographical sites such that a set of geographical, topographic, and

land usage constraints are satisfied, enriched with digitalized features to characterize each candidate site. We propose the

GREECE model to achieve this goal, in a GIS environment, by handling the different spatial data layers sequentially. The

computed candidate sites, or polygons, are then de-spatialized, meaning identified independently of their coordinates, and

passed on with computed characteristic features of relevance to the optimization module. Typically, those features exhibit

the geometry of the corresponding polygon, the land and terrain attributes, maximum energy load potential, and distances to
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geographical objects of interest (such as road or grid networks). These characteristics may be used to derive cost values and

as selection criterion in the optimization stage. The outcome is a set of available land plots with their respective features.

The GREECE model takes as entry 1) Geographical data layers (territory, constraints, networks, terrain, resource), and

2) Adjustable geometric parameters (buffers, distance thresholds, land surface area). Layer data are specific to a territory

and have been previously obtained by any institution for the given territory (e.g. the IGN institute in France) and by remote

sensing with respect to the resource. They depend on the territory’s own particularities and might be selected with respect

to expert opinion, planning objectives and literature. The set of range control parameters has been defined to allow some

candidate extraction to be tuned according to the user own requirements. Different land management scenarios might in fact

be implemented by playing with the corresponding parameter values. Indeed, depending on buffer, threshold and surface area

values set by the user, the resulting set can differ, and be tailored to specific expert knowledge in a deterministic manner. This

guarantees a deterministic pruning of inadequate sites, that reduces the complexity of the combinatorial optimization process

while remaining consistent, i.e. not removing potentially valuable sites. GREECE is implemented in Python and has been

developed using various open-source geographic and data structure libraries (gdal [39], geopandas [40], numpy [41], rtree,

shapely, networkx).

3.1. Geographical data layers

As depicted in Figure 1, input data layers correspond to the boundaries of the study area (base layer), restricted areas,

specific objects for which distance to resulting polygons must be computed (e.g. road, grid), terrain features (land use and

topography) and the resource of interest (here solar radiation maps). Restricted areas (in red) stand for the land where facilities

cannot or should not be established. Typically, those are urban areas, ecological zones, watercourses, military sectors, cultural

heritage, etc. [24]. They may also represent zones too far from specific objects (e.g. electrical grid) [23]. Geographic elements

for which distance must be computed (in yellow) can be of any kind but are generally related to connection and accessibility

costs such as road and grid networks. Topography and land use (in blue) allow terrain to be characterized within each polygon.

Finally, resource (in green) is a dataset of rasters or vectors defined over as many time steps as available. Typically, all these

data might be retrieved from national and international geographic databases as well as specialized agencies.

3.2. Control parameters

Range control parameters allow different land management scenarios to be taken into account. Buffers surrounding ge-

ographic objects depend both on their type and on the kind of power station, e.g. wind [23], biomass [42] or solar PV [24].

Distance thresholds to given layers (e.g. road network, electrical grid) stand for the limit beyond which establishing a facility

gets economically irrelevant and so corresponding plots must be excluded [23]. Depending on the values defined for buffers

and thresholds, corresponding restricted areas will be more or less significant. Finally, land surface area allows different

strategies for land management by setting minimum and maximum surface thresholds. Typically, resulting plots may be too

small or too large with respect to the kind of power plants to be set up within. According to selected values, smaller and larger

plots might respectively be excluded from the study and partitioned.

Though all control parameters affect the size of the set of available sites passed to optimization, buffers and land surface

area mainly depend on existing regulations and on the size of selected applications. On the other hand, distance thresholds

stand for economic relevance of the corresponding sites. Accordingly, when assigning values to those thresholds, we may

either limit the set of potential sites, by considering smaller values, in order to reduce optimization time, but at the expense

of accuracy (economic assumptions made a priori); or give more authority to optimization, by considering higher values and

extending the set of potential sites, in order to enhance accuracy at the expense of computing speed.

3.3. Generating the set PS of suitable polygons

3.3.1. Pruning areas from the base and constraint layers
The GREECE model first computes the intersection between the territory base layer and restricted area layers using

given buffer values. The computation relies on optimized methods to split largest polygons [43], and finally re-aggregates all

contiguous results. The result is a set of available plots where facilities could be set up (step (1) in Figure 1).
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3.3.2. Bounding plot sizes using tuned parameters
The model then integrates some surface bounding strategies as parameterized by the expert. There are two possible

thresholds. Basically, when a surface area is below a minimum threshold specified by the user, the model will remove

corresponding plots from the final set. Similarly, when the user stipulates a maximum area threshold, the model will split

the corresponding plots according to simple cut or partition rules that can not be below the minimum threshold as well. The

simple cut is similar to the method described previously for fast polygon intersection [43]. It does not consider how a parcel

should be split but instead provides a set of square-like smaller parts whose area is necessarily below the maximum threshold.

The partition method is more complex but provides deeper insight into the surface management. This is the one we used.

We apply graph partitioning theory through the METIS package originally developed by Karypis and Kumar [44]. A polygon

is first split into smaller parts, either square-like polygons or hexagons, now representing a graph of interconnected nodes

(sub-plots) weighted by their area. A k-way partitioning scheme is then performed so that the original plot is divided into k
parts, each one being an aggregate of various nodes. By minimizing the number of edge cuts and forcing contiguous partitions

[45], the model ensures aggregating parcels with correct geometry. As nodes are weighted by their areas (surface constraint),

it guarantees that each parcel finally covers the area corresponding to the maximum threshold defined at first. The output is

a set of n polygons of acceptable surface (step (2) in Figure 1). Thus, the total area of the final set of polygons is smaller or

equal to the one computed in step (1).

Figure 2 illustrates this process for a 16-way graph partitioning of a 781 km2 polygon into plots of 50 km2, using an

hexagonal honeycomb mesh. The algorithm derives 15 plots between 49 km2 and 51 km2 plus one (marked with an asterisk)

which fills the leftover space (≈ 32 km2). The output is a finite set of polygons of acceptable surface (below the maximum

threshold).

*

Figure 2: Surface partitioning using a honeycomb mesh

Note that, in this work, we have more particularly focused on surface management, but it should be noted that other

strategies are possible. For instance, graph partitioning allows implementation of multiple constraints [45]. It is therefore

possible to perform partitions meeting other objectives in addition to equal areas. Typically, we may want to divide the land

with respect to similar terrain features or land use attributes. However, the number of constraints also limits the chance of

reaching a satisfactory solution. It should therefore be used with caution while thoroughly knowing what kind of compromise

we intend to meet, and not impact the optimization module with too restrictive candidate sites.

3.3.3. Removing polygons beyond distance thresholds
Based on distance computed from their centroid and thresholds specified by the user, furthest plots from specific objects

such as road (accessibility costs) and electrical networks (connection costs) might be excluded.

3.3.4. Adding quantifiable features to the plots
The second part of the GREECE model enriches the set of candidate sites with additional features whose main purpose

is to feed the optimization model such that all aspects involving a cost or resource potentials are handled in the optimization

module. To do so we use the remaining spatial data layers. Distance from power facilities to specific geographic objects

or locations gives information on related costs [46]. For instance, distance to the grid or to substations is convertible into

connection costs and distance to the road into accessibility costs. GREECE computes minimal (euclidean) distance from

potential candidates’ centroid or boundary to any selected layer. In general, we shall prefer the centroid method, as it makes

cost comparison more fair: every distance will be retrieved from one unique reference point.
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For each polygon, the model will derive geometry (area, shape) as well as topography statistics, based on Digital Elevation

Models (DEM), and land use share. Those characteristics might in fact decide of the usability of a parcel. As pointed out by

Al Garni and Awasthi, terrain slope is for instance one critical criterion when regarding the installation of any power facility

[47]. In the case of wind and solar, available polygon surface also limits how much nominal capacity might eventually be set

up [24]. In the same way, final cost for establishing a power station might also be affected by land type and land use.

Regarding terrain, GREECE extracts the DEM-based distribution of the main descriptors (slope, aspect, elevation) and

then computes corresponding mean and standard deviation (std). Typically, the std indicates how hilly a land plot is, while

the mean slope and aspect tell us about its main inclination and orientation. Eventually, all these features (shape, land use

and terrain) might be converted into the corresponding installation costs or used as exclusion thresholds in the optimization

module.

Finally, GREECE computes how much energy (maximum) can be derived within each polygon. We will see in section 5

that in the case of solar PV in French Guiana, we have derived the resource from a dataset of satellite-based solar radiation

maps. Typically, resource is aggregated within a given polygon and for each available time step by averaging all raster cell

values it intersects with. In the case of very large parcels or rough spatial resolution, the result might also be weighted

according to corresponding cell surfaces. If temporal resolution is too low, the model may use stochastic methods such as [48]

or [49] for generating synthetic downscale data from average global records. The result is a time series of resource values for

the polygon of interest (e.g. global horizontal irradiation – GHI – in the case of solar energy). Furthermore, energy conversion

models can easily be implemented at the end of the chain in order to retrieve the system’s final output energy potential (e.g.

PV output rated energy from GHI and other parameters).

3.4. Output

As a GIS-based model, GREECE generates 2 outputs: one geographical layer and its corresponding dataset of attributes.

Only the dataset is passed on to optimization, while the geographical layer ensures optimal candidate sites to be eventually

located. To each candidate PS i in output set of potential sites PS (step (3) in Figure 1) corresponds static (area, shape,

land use, etc.) and dynamic (time series of resource values Rit) digitalized attributes. Table 1 depicts an example of dataset

generated by the GREECE model.

Table 1: Example of feature attributes per polygon generated by GREECE.

Polygon id Area Shape Distance to Land use share Elevation (m) Slope (%) Aspect1(◦) Resource

(ha) the grid (km) Grass Savanna Farming mean std mean std mean std time series

Polygon 1 45 0.71 2.3 0.2 0.5 0.3 11.1 1.6 2.9 1.3 190.1 91.1 R1t
Polygon 2 30 0.42 3.6 0.8 0.2 0 33.8 8.2 3.7 1.9 125.4 93.3 R2t
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Polygon n 35 0.55 5.8 0.0 0.0 1.0 7.2 2.1 1.6 0.8 193.3 75.9 Rnt

1 Aspect of 180◦ means south-facing orientation.

4. Optimal planning and sizing of PV parks (OPSPV)

This section describes the optimization problem, its modelling and our approach to solve it. Let PS be the set of candidate

PV sites obtained from the GREECE model, i.e. areas satisfying all the geographical and expert requirements and enriched

with de-spatialized and discretized features. The core outputs of the OPSPV problem are 1) a subset of sites to be installed to

satisfy the energy demand, 2) the dimensions of those sites and associated costs. The complexity of this problem lies in the

ubiquitous data uncertainty at hand (forecast energy demand, costs, and solar radiation) and the flexible PV site dimensions

(thus production capacity) to be determined, and whose corresponding installation costs follow a non linear function relative

to the area. In this section we formalize this problem, and describe our model and approach.

4.1. Problem specification

This optimization problem is permeated with uncertainty, that resides mainly in the fact that strategic planning is based

on forecast data relative to the projected growth of energy demand and various costs, as well as the projected radiation values
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based on existing measurements. To model data uncertainty we consider a robust model, with the aim of proposing reliable

solutions that can be implemented in real life.

Robust optimization seeks a certain measure of robustness against uncertainty that can be represented as a deterministic

variability of the value of the data and the solution(s) [50]. It originates from the use of worst case analysis to treat uncertainty,

and has found applications in fields such as finance, logistics, engineering, portfolio management, etc. [51]. From a modelling

point of view we talk about robust optimization or reliability based optimization. The modelling approach encloses the

uncertain data projected within robust bounds [52]. For instance if the network energy demand in January, 2016 is of 85.26

MWh at 9am, its projected value for 2030 would be 123.46 MWh, but remains clearly uncertain. A robust model would

enclose the projected value within robust bounds such that a projected value a becomes:

a −→ ã = [a − â, a + â]

where â denotes the degree of uncertainty to adjust the robustness of the data with regard to the knowledge at hand and

projection in terms of degree of conservatism. In terms of model we consider an interval linear model for which we seek

robust optimal solutions. Basically a constraint of the form aX ≤ b where a and b are uncertain data parameters, will be

modelled as [a, a] × X = [b, b]. Extensive practical, theoretical and algorithmic work in this field allow such interval linear

models to find their equivalent linear program in terms of best case scenario, worst case and convex region of possibilities,

with the overall goal of minimizing costs:

min
∑

i

ciXi

The convex region is defined by the following equivalent set of linear constraints in terms of solution set:

S Xi =

{
Xi ∈ R+,

∑
i

[aih, aih] × Xi = [bh, bh],∀h
}
=

{
Xi ∈ R+,

∑
i

aih × Xi ≤ bh &
∑

i

aih × Xi ≥ bh,∀h
}

The best case scenario corresponds to the highest possible resources (upper bound of a), and lowest required limit (lower

bound of b), thus for one interval linear constraint we have:

∑
i

[aih, aih] × Xi ≤ [bh, bh] =⇒
∑

i

aih × Xi ≤ bh

The worst case scenario corresponds to the lowest possible resources (lower bound of a), and highest limit to reach (upper

bound of b), thus the constraint:

∑
i

[aih, aih] × Xi ≤ [bh, bh] =⇒
∑

i

aih × Xi ≤ bh

In our strategic planning problem, the model will consider the different scenarios that relate to the risk adversity of the

decision maker.

The OPSPV, energy strategy planning problem can be defined as a two-dimensional fractional knapsack problem with

additional constraints (choice of the size of the PV candidate site with bounded size). Indeed a minimal and maximal size of

a PV park has been set by the expert and geographical constraints in the GREECE model, and the installation cost is not fixed

but relative to the park size according to a non-linear function. The ratio (e/kW) is high for small parks and gets smaller as the

size grows. In this analogy, the knapsack corresponds to the maximum forecast energy to be provided by intermittent RE (in

kW/hr), and the items are the sites with their potential supply (kW/hr) plus their associated costs (installation relative to the

size (e/kW), and connection to the grid and substation (e/m)). The objective is to maximize hourly demand satisfaction while

minimizing global costs. In addition the problem is permeated with data uncertainty which adds another level of complexity.

4.2. Problem modeling

Variables. Given that two aspects are associated with each candidate site, their costs and their production (size), we consider

two sets of variables that need to be linked to each other. Boolean variables relate to the selection of a site to which various

fixed costs are attached, and the area variables ranging in an interval of real values relate to the energy production and the

variable installation cost of a new PV site according to its determined size.
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Given:
Units

Hour (per year) h ∈ H = {1, . . . , 8760}
Site index i ∈ N = {1, . . . , n}

Energy demand and production

Current hourly production from intermittent energy sources (kWh) Einth
Current hourly production from non-intermittent energy sources (kWh) Eph

Estimated global (forecasted) hourly power demand (kWh) Demh = [Demh,Demh]

Nominal power per unit area (kW/m2) Pnom
Candidates PV sites

Minimum and maximum area for each candidate parcel (m2) S min, S maxi

Potential Site PS i∈N
Estimated hourly production per PV unit (kWh/m2) Ppvh,i = [Ppvh,i, Ppvh,i]

Minimal distance from the grid to centroid of a candidate PV site (m) Dgi

Costs

Transmission line unit cost (e/m) Clan
Substation unit power cost (e/kW) Csta

Find:
The set P of sites to build a PV plant on,

The surface S Ai to consider for each candidate site i that is selected
Cost functions:

Sum of all costs of PV installation (Minimize) C =
∑

i(Ccapi +Copi +Cconi +Cstai)

Capital cost of implementation of new PV power plant (e) Ccapi

Annual operational cost per new PV plant (e) Copi

Connection costs for each new PV plant, transmission lines (e) Cconi

Capital cost for new substation (e) Cstai

Total added PV energy production (Maximize)
∑

h PVh

Unsatisfied forecast demand (Minimize)
∑

h |Demh − PVh|
Such that the following constraints hold:

PV existing and added production must be less than 35% of the total energy demand per hour

PV site size can’t exceed maximal given size

PV newly added production plus existing production can’t exceed the total hourly demand

Figure 3: OPSPV problem specification

∀i ∈ N = {1, . . . , n}, Bi ∈ {0, 1} 1 if parcel is selected, 0 otherwise

∀i ∈ N = {1, . . . , n}, SAi ∈ [0.00 . . . S maxi] Area of a solar PV plant

The first set of constraints states that the amount of intermittent energy resource into the network should be less than 35 %

of the total forecast energy demand per hour (upper bound) [27, 53]. The time stamp is the hour, so there is one constraint per

hour of the year.

∀h

∑
i

SAi × [Ppvh,i, Ppvh,i] + Einth ≤ 0.35 × [Demh,Demh]

Knapsack constraints. The second set of constraints relates to the satisfaction of the forecast energy demand, using existing

resources augmented with new PV production. It seeks to determine the capacity of new PV plants to satisfy the anticipated

demand. The time stamp is the hour. Two scenarios are considered: 2) best case scenario (highest forecast GHI and lowest

forecast demand) and 3) worst case scenario (lowest forecast GHI and highest forecast demand). This allows to study the

impact of the decision maker risk adversity in planning the creation of new PV plants.
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Best case scenario: ∀h,
∑

i

SAi × Ppvh,i + Einth + Eph ≤ Demh

Worst case scenario: ∀h,
∑

i

SAi × Ppvh,i + Einth + Eph ≤ Demh

The third set of constraints establishes a link between the size of the PV parks ad their selection as successful candidates

or not. This relationship is needed to connect the energy production and the various costs. If a plant size is not null then the

site is selected, and conversely if a site is not selected its size is forced to be null.

∀i, SAi ≤ S maxi × Bi, Bi × S min ≤ SAi

Objectives and cost functions. Overall the strategic energy planning over the 2030 horizon has two main cost functions: 1)

to maximize the total hourly energy demand production over the year through new PV energy production, 2) to minimize the

total costs related to PV installation, connection to the grid, etc. Since these functions are in different units they will not be

combined into a single weighted function that will not be meaningful, but instead solved by seeking the Pareto frontier, i.e.

optimizing each function while constraining the other one, and reciprocally.

Maximize production. The first one is to maximize the production of PV (where Ppvh,i can take the best or worst case value

depending on the scenario at hand):

∑
i

∑
h

SAi × Ppvh,i

Minimize costs: Modelling non-linear functions. This problem takes into account four cost functions that relate to each PV

plant as defined in Fig. 3. Capital and operational costs are generally approximated as linear functions such as in [54] or

in [55]. However, this approach is unrealistic as both the Capi and Copi costs are non-linear and depend on the size of the

number thus the number of PV panels [56]. Basically the less the number of panels the highest the relative cost per panel.

Accounting for the non-linearity of the costs is important when the allow for a variability in the number of panels on a site.

We have thus considered an innovative approach using a piece-wise linear function such that ai is the coefficient of the slope,

and yi the value of the coordinate where the new slope begins. It is illustrated below for Capi, and Copi follows a similar

specification with different constants. Values have been set from [56]:

Capi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a1 × Pnom × SAi + y1 if 0MW ≤ SAi × Pnom ≤ 1MW

a2 × Pnom × SAi + y2 if 1MW ≤ SAi × Pnom ≤ 10MW

a3 × Pnom × SAi + y3 if 10MW ≤ SAi × Pnom

On the other hand, the unit connection cost of a PV park, and the capital cost of a new station for a park, are both linear

functions that depend respectively on the selection of a park with its distance to the grid, and the unit cost of a substation

proportional to the size of the park. We have the following functions:

Cconi = Clan × Dgi × Bi, Cstai = Csta × Pnom × SAi

5. Case study: Optimizing PV parks implantation and production in French Guiana

In this work, we have applied our model framework to strategic planning of new solar PV power facilities in French Guiana,

according to characteristics and policy targets of the region for the horizon 2030. This overseas department is located in the

northern coast of South America, and shares border with Brazil (south-east), Suriname (west) and Atlantic ocean (north-east).

It is depicted in Figure 4.
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Figure 4: Map of French Guiana with corresponding geographical features (constraint layers, networks, etc.).

5.1. Data acquisition and processing

As described in Fig. 3, this problem uses solar and land management resources, various network resources (electrical grid,

roads), as well as economical data. While the resource data are specific to the territory of French Guiana, the economical

data that contribute to defining the cost function are drawn from published generic documents. In this section we describe in

more detail how we extracted the solar and land management resources, and recall the data used for the various costs and the

definition of the cost function.

5.1.1. Geographical constraints and land management
French Guiana is typically a region with great land constraints. More than 96 % of the 83, 534 km2 of the territory is in

fact occupied by forest [57]. As pressure of human activities on this ecosystem has been increasing over the last 30 years,

various protective measures have been taken accordingly [58]. Figure 4 shows the union of all protected areas (ecological and

landscape protection, registered sites, Amazonian Park, etc.), retrieved from the world database on protected areas (WPDA)

[33], ONF [59] and IGN [35], alongside the electrical network connecting main cities between them. Power transmission lines

are limited to the north, in a narrow band along the shore, and essentially surrounded by forest [34]. South of this band lies the

Permanent Forest Estate (PFE) of Guiana which is made for forestry purposes only [34]. As no distance higher than 20 km is

generally taken into account for grid connection [46], it is clear at first glance how carefully potential sites should be targeted.

Table 2 presents the different assumptions we have made about restricted areas according to 3 different scenarios. Restric-

tion layers (protected areas, land use, networks, etc.) have been fetched from different world [33] and national geographic

databases (e.g. ONF for land use [34] and forests [59], and IGN [35]). Buffer values have been retrieved from the literature

and adapted to our problem; corresponding references are included in the table. When no value was available from the lit-

erature, we have taken the one closer to the corresponding land use properties (e.g. "orchard/rice farming" buffer has been

defined from the value corresponding to "agriculture", and "dune/sand" from "wetland"). We have considered 3 land man-

agement scenarios, from restrictive to permissive, generating 3 different sets of exploitable plots. The scenarios differ in the

buffer values considered as well as in the accounting or not for the restriction layers (a straight line in Table 2 means that the

corresponding restriction layer is not considered). For example grassland is never restricted, and agricultural lands may not

be restricted (permissive scenario), or be restricted and take different buffer values accordingly (restrictive and intermediate
scenarios).
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Table 2: Restricted areas used in this study according to land management scenarios.

Layer Buffer (m) Reference(s)

Restrictive Intermediate Permissive

Protected areas 1000 750 500 [60]

PFE/Forest/ 1000 500 200 [23]

Mangrove

Urban areas 1000 500 200 [24, 60]

Flood savanna 500 200 100 [61]

Water bodies 500 200 100 [61, 62]

Shoreline 500 200 100 [62]

Electrical grid 500 200 100 [14, 24, 61]

Road network 500 200 30 [14, 24, 61]

Wetland 200 100 0 [61]

Dune/sand 200 100 0

Orchard/rice 100 0 0

farming

Agriculture 100 0 — [23]

Arable land 0 — —

Rocky/dry 0 — — [23]

savanna

Grassland — — —

Table 3: Distance threshold.

Layer Threshold (m)

Electrical grid 20,000

Road network 20,000

In the case of the maximum distance to road and electrical networks, a common value is 10 km [23]. We have preferred to

double it in order to give priority to the optimization module for assessing the cost of the furthest zones (Table 3).

Table 4: Min/max surface area of resulting land parcels.

Criterion Plot area (ha) Reference

Minimum 1.5 [63]

Maximum 50 [53]

Table 4 shows the values set for minimum and maximum plot area, adapted from the literature. Regarding upper value,

investment into power generation shall be achieved by tranche of 20 MW in the region [53]. From Table 5, it would correspond

to a solar PV plant of about 36 ha. Therefore, we have set the maximum land surface to 50 ha, leaving some extra space for

flexibility purposes and potential future improvements. The land has eventually been partitioned with respect to this threshold

and the method depicted in section 3.3.

Scenario outputs corroborate what we previously noted about the significant constraints the territory is subject to. While

the permissive strategy resulted in 133 candidates covering about 30 km2, intermediate and restrictive gave either few (9) or

no candidates at all. In the general case, each resulting set would feed the optimization and produce as many distinct optimal

solutions left at the discretion of the decision and policy makers. Here, the specific constraints of French Guiana have resulted
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in the permissive scenario as the only relevant land configuration, that is the only scenario for which a significant number of

potential sites is generated. Hence we will focus on this scenario in the following analysis, whose geographical distribution of

the corresponding land parcels is depicted in Figure 5.

Figure 5: Set of land parcels generated by the GREECE model for French Guiana when considering the permissive scenario.

5.1.2. Solar resource and PV power generation
Solar PV has been given a significant share into French Guiana’s energy planning policy for the next 10 years: it stands

for about 75 % of the intermittent power to be installed by 2023 [27]. Our analysis has hence focused on optimizing the

distribution of those facilities throughout the territory. To be as close as possible to reality, most of the energy system models

currently provide analysis at hourly time scale [9]. In this study, we have therefore followed the same pattern for simulation

and optimization of the given PV facilities. Energy demand hourly data have been retrieved from France’s electric utility EDF

open data server [36].

We describe below how we generated hourly solar potential values within each of the polygons computed by the GREECE

model. Note that when latitude and longitude are required in GHI and PV sub-models described thereafter, we always refer to

polygon’s centroid coordinates.

5.1.3. Solar potential
Climate of French Guiana is equatorial and divided into two main seasons: dry season, from August to December, and

rainy season, from December to June [57]. It affects yearly variability of solar radiation accordingly. To assess the resulting
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solar potential within each land parcel, we have first relied on the monthly satellite-based GHI maps of the region. Those

maps were generated at 0.03◦ resolution by applying an optimized version of the Heliosat-2 method to GOES-13 satellite

images [37]. As depicted previously (see section 3.3), we have finally aggregated monthly irradiation within each polygon by

averaging all corresponding raster cell values. Finally, in order to obtain resource potential at hourly scale, we have scaled

down the previous GHI monthly time series by using an updated version [64] of the synthetic generation model developed

by Aguiar et al. [49, 65]. We have beforehand delimited cluster zones for each month with respect to GHI amount, that is

gathering of raster cells presenting close solar irradiation values. Polygons belonging to the same cluster have been given

the same pattern in daily clear-sky index sequence over the year. It actually prevents neighboring polygons from having too

different solar radiation patterns over time. Hourly GHI time series have then been derived from those daily sequences. Figure

6 shows an example of monthly cluster zones used in generating hourly GHI for each candidate site based on February solar

GHI map.

It is important to note that we have generated daily and hourly patterns only because of the original monthly temporal

resolution of solar GHI map products over the region. Ideally, one would instead directly use satellite-based radiation data at

daily or hourly scale. Our model can take full advantage of spatiotemporal remote sensing data at hourly scale.

5.1.4. PV system’s output energy
As shown in Figure 1, it is possible to integrate a conversion model between GREECE and the optimization module, in

order to obtain energy data from the previously aggregated GHI resource. Regarding this study, we have thus integrated solar

PV conversion into our model framework, by adapting the pvlib Python library from the Sandia National Laboratory (SNL)

[66]. This model makes use of the hourly GHI data described beforehand as well as both endogenous and exogenous factors.

Endogenous features correspond to system’s characteristics and are depicted in Table 5. As power plant size is regarded as

a variable in optimization, we have considered as a facility any gathering of several basic PV units. One PV unit is composed

of various strings of modules connected to an inverter, and occupies a specific amount of space (land usage). Size, nominal

capacity and electricity generation of a solar PV plant are eventually summed up over all units it is made of. Common values,

such as for PV-to-inverter ratio [67], land usage [68] or PV array tilt and azimuth [69], have been used.

Table 5: Characteristics of one PV unit used in energy simulation.

Nominal power (P∗) 6 kW

Number of modules 20

Inverter power 5 kW

PV-to-inverter ratio 1.2

Array tilt Site latitude

Array azimuth 180◦

Total module area 32.0 m2

Land usage (Amod) 106.7 m2

Pnom = P∗/Amod 0.056 kW/m2

Exogenous factors typically stand for weather and climatic parameters, that is solar radiation, ambient temperature Tair,

wind speed V or albedo A. In first approximation, the last three have been taken as constant and equal to typical values

(Tair = 25 ◦C, V = 1 m/s, A = 0.2). In order to assess irradiance in module’s plane, it was also necessary to split GHI into its

beam (DNI) and diffuse (DHI) components. To do so, we have first converted irradiation into irradiance (average solar power

over the hour). Then, we have retrieved DNI and DHI by using a diffuse fraction model. In the case of no available data, the

one developed by Erbs et al. [70] is generally recommended [71]. Using the conversion model, we finally get 8760 values of

the output average AC power from one PV unit (in Wh/h) for every polygon.

5.1.5. Costs for PV technology
The optimization model will seek a compromise solution between the maximization of the PV production and the mini-

mization of the various costs. These have been defined in the general model formally. In this section we present the actual
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Figure 6: Example of monthly solar potential cluster zones (February) derived from solar GHI raster maps elaborated by Albarelo et al. [37] and Fillol et al.

[38], and corresponding generated temporal patterns for candidate PV sites based on the permissive scenario (see section 5.1.1).

values used in our case study. Some are unitary fixed values and some depend on the power associated to a given park and its

creation.

Grid connection and substation costs. The fixed unit costs are given in Table 6 for the connection to the grid, through power

lines and creation of substations.

Table 6: PV plant fixed unit costs.

Cost type Value Reference

Grid-connection cost Clan 1000 e/m EDF

New substation cost Csta 100 e/kW [72]
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Capital and operational costs. Regarding the four cost functions, two are linear functions that relate to the above values, and

two the capital cost and operational cost for a new PV park are non-linear functions for which the coefficients of the piece-wise

linear model we considered are defined in Table 7 [56].

Table 7: PV plant capital and annual operation cost piece-wise parameters.

Capital cost of a new PV power plant (Ccapi) Annual operations cost (Copi)

Slope an yn value Slope bn yn value

a1 = 2701 y1 = 0 b1 = 19 y1 = 0

a2 = 1800 y2 = 901, 000 b2 = 16 y2 = 3000

a3 = 1200 y3 = 6, 901, 000 b3 = 10 y3 = 63, 000

5.2. Scenarios

One of the core elements in our strategic planning approach is to evaluate the impact of risk adversity of the decision

maker. To do so, we consider the approach made of best and worst case demand and production scenarios, so that we get a

range of robust solutions. As detailed in section 4.2, the best case corresponds to the lowest forecast demand in 2030 with the

highest forecast solar GHI; the worst case consider the highest forecast demand with the lowest forecast solar resource.

5.2.1. Global energy production and demand: current and forecast
In our case study we have considered the existing production and consumption data from 2016 as the baseline to draw

forecast data for the horizon 2030 [36]. The distribution for 2016 was: hydropower (48%), thermal (45%), solar PV (6%),

and biomass (1%) [53]. In order to establish forecast data for the potential PV production on each candidate site, we have

considered 3 different data sets: 1) a static projection from current GHI data, 2) a 10 % stochastic increase (mitigation) where

each site temporal pattern is enhanced (decreased) by a uniform random noise U(0, 0.1) at each hour, 3) a 20 % stochastic

increase (mitigation) where patterns are enhanced (decreased) by a uniform random noise U(0, 0.2), in the best case scenario

(worst case scenario).

Regarding our strategic planning problem of PV penetration in the Guiana’s electricity network, we made the assumption

that the current production is stable and maintained, and we considered best and worst case scenarios in the increasing power

demand based on EDF forecasting study in Guiana [53]. The best scenario assumes a 2% annual growth and the worst scenario

a 5% growth from 2016 [73]. The 2016 hourly demand data was based on the hourly production data, since demand data are

not available, but conversely the production was sufficient in 2016. Fig. 7 illustrates the daily hour variations over 2030 and

projection of the demand for the best and worst case scenarios.

Figure 7: 2030 forecast power demand over daily hours.
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6. Results and analysis

We here present the results of our integrated model for the permissive land management scenario (see Table 2). GREECE

was implemented in Python using libraries recalled in the paper, and led to the extraction of 133 candidate parcels with

their relevant features. Those de-spatialized data items were then implemented into the OPSPV module. Different numerical

experiments were run for both best and worst scenarios, so that the total PV energy production would be maximized over the

year 2030 and the total costs minimized. As it is a two-objective optimization, we have derived Pareto charts of compromising

solutions for each scenario, by computing maximum amounts of generated energy for various cost thresholds. Typically, the

computation time of one optimization run was between 23 and 47 s.

We have focused the following analysis on 4 specific points: 1) the contribution of the knapsack approach to the accuracy

of the optimal solutions (section 6.1), 2) the impact of the 35 % constraint on the number of solar PV plants, their installed

capacity and the final amount of produced energy (section 6.2), 3) the relation between solar GHI temporal patterns, location

and size of the candidate sites, and the corresponding solutions in the Pareto set (section 6.3), 4) several aspects of relevance

to the decision maker and network manager (section 6.4).

6.1. Fractional knapsack optimization
The fractional knapsack approach allows the size of a power plant within a given site to be optimized. In order to fully

apprehend the gain in accuracy of this approach, we have derived two Pareto charts for one of the scenarios (worst case),

either with or without considering it. In the second case, the size of a solar PV plant is assumed to be equal to the size of the

corresponding parcel (full land use). Both resulting Pareto fronts are depicted in Fig. 8. We can observe that the fractional

result acts as the Pareto asymptotic limit for both cases, while the full land use gives a staircase-like Pareto front hitting the

previous limit when the size of the PV plants is close to the size of the selected sites.

Figure 8: Worst case scenario Pareto solutions based on fractional (red) and full land use method (blue).

In the case of French Guiana, the difference between solar GHI patterns is not too sharpened, the permissive land man-

agement scenario results in a broad range of parcel’s sizes and the sites are not so far from one another. Hence the gain in

accuracy might be more limited than in the case of larger regions (e.g. countries) at lower or higher latitudes and with very

heterogeneous climatic conditions. Even though, in this very specific case, the difference between both Pareto limits ranges

up to about 3 GWh or 7.5 % of the energy generated in the full land use approach (around 40 Me).

6.2. Impact of the 35 % constraint
The maximum penetration limit of 35 % is related to the power generation from intermittent resources, and it is still

considered a necessary constraint to be respected for the islanded or isolated power network in order to maintain its stability

[74]. It is important for the investors to keep in contact with the network manager because if the power produced by new PV

plants is greater than this limit, the last connected PV plant to the grid will be switched off. In French Guiana, this limit is set

at 30 % of the power demand at any time [53] though, in the coming years, it is expected to increase to 35 % [27] when more

dispatchable power facilities shall be installed (e.g. biomass, solar PV with storage, etc.).

The impact of this penetration limit (here, 35 % of the total hourly power demand) is depicted in Fig. 9 in the worst case

scenario with no cost threshold (C∞). It is especially relevant for that kind of scenario as the forecast power demand is at its

maximum (5 % growth): the share of existing generation is lower, resulting in more new PV power being injected into the
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(a) With the 35 % constraint (b) Without the 35 % constraint

Figure 9: Effect of the 35 % constraint on final PV power generation

network and so more chances to get above the 35 % upper bound. It is actually observed in Fig. 9b, where 23 % of the daily

hours (1043 hours) exceed the limit when the constraint is not applied. Table 8 shows that the corresponding installed capacity

and generated energy almost double when the constraint is removed.

Table 8: Effect of the 35 % constraint on final PV generation

Scenario Total costs Total energy Nb of parks Total installed

(Me) (GWh/year) power (MW)

Figure 9a 116.44 74.32 11 45.65

Figure 9b 195.92 135.28 16 83.10

It is clear from this analysis that this threshold might be a significant drag on the growth of RE share in a given network.

Various actions could be undertaken in order to heighten this limit, such as using modern energy storage technologies to store

the extra energy, developing smart grids, improving the forecasting of intermittent RE production, performing power demand

management or supplying power from dispatchable renewable resources. Those actions would keep the balance between

power generation and demand in the region at any time, and reduce the risks of electrical failures [7].

6.3. spatiotemporal solar GHI patterns and corresponding Pareto solutions
Each compromising solution provided by the Pareto chart for a given scenario is related to both location and size of

the selected candidate sites. When combining the available candidates from GREECE, the OPSPV module seeks to match

the power demand as well as to balance the power generation over time due to the 35 % upper limit. We illustrate this

interdependence between location of the solar PV plants and corresponding temporal solar GHI patterns by looking at how

PV sites are selected when both the amount of generated energy and the total cost grow along the Pareto. As a result, Fig.

10 depicts the geographical location of the selected PV sites alongside GHI cluster zones (see Fig. 6 for the corresponding

temporal patterns) according to different cost thresholds on the Pareto chart. Table 9 also gives the corresponding: number of

parks, total installed power and installed capacity per solar PV plant.

As expected, as we move to the right of the Pareto set in Fig. 10 (increasing produced energy and cost), the more the

number of PV parks and the higher the global installed power. Selected PV sites also remain close to the power grid as the

connection costs rise with the corresponding distance. The OPSPV looks for filling up the free energy volume, that is the

available volume between existing power production and either the power demand or the 35 % upper bound, which is initially

empty. Larger parks can therefore be built, as power generation over time does not reach any limit and cheapest solutions

will necessarily be selected, i.e. solutions with fewer plants. Then, the more the energy generated, and so the fewer the

energy volume left, the more the OPSPV looks for sites both smaller and located in different solar GHI cluster zones. The

latter ensures balancing the intermittent global output power in order to remain below any upper threshold (power demand,

35 % limit) over time. The combination of different solar GHI patterns results in geographical dispersion of the solar PV

plants when increasing their share into the energy mix. It is especially significant when no cost constraint is applied (C∞)

21



Number of parks, total installed capacity, number of GHI clusters

C10

C50
CC80

C10 C50

C80 C

Figure 10: Evolution of PV site geographical location with Pareto cost.

and the optimization only seeks to maximize the global output energy. In order to fill up the energy volume as much as

possible, the OPSPV heads for combining the temporal patterns between them. Accordingly, though the generated energy

barely grows between C80 and C∞, the number of selected sites rises dramatically, as well as their geographical dispersion

(i.e. the number of GHI clusters, see Fig. 10), while the size of the corresponding power plants naturally decreases (see Table

9). As the number of PV stations increases but total installed capacity remains unchanged, total costs start growing faster than

the produced energy and the Pareto line thus reaches its plateau (around C75).

Those results emphasize the capacity of our integrated approach to perform geographical aggregation with contextual

real data, i.e. balancing the intermittency of RE sources by spreading out the corresponding installations throughout a given

territory as shown by Haurant [75] or Jewell et al. [76].
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Table 9: Characteristics of the PV parks depicted in Fig. 10.

Cost level Generated Nb of Total installed Set of installed capacities (MW)

energy (GWh/year) parks power (MW)

C10 7.65 1 4.66
{
4.66
}

C50 49.80 2 30.50
{
1.16, 29.34

}
C80 72.64 3 44.98

{
5.36, 10.28, 29.34

}
C∞ 74.31 11 45.65

{
1.31, 1.34, 2.19, 2.22, 2.22, 2.47, 2.89, 4.38, 5.36, 6.69, 14.58

}

6.4. Towards helping decision making and network managing
In this section, we analyze specific aspects of relevance to both the decision maker and network manager (power plant

energy investors in French Guiana and EDF) that are made possible with the combination of geographical and temporal

contextual information and robust optimization: 1) the study of the risk adversity comparing best and worst case scenarios

(section 6.4.1), 2) the identification of robust planning investment scenarios where the optimal plants show to be identical

regardless of the degree of spatiotemporal uncertainty on the power resource (section 6.4.2).

6.4.1. Risk adversity: best vs worst case scenario
By comparing best and worst case scenarios, one may assess the robustness of the different energy planning investment

scenarios available to the decision maker, in spite of uncertainty on both forecast power demand and resource. To evaluate

the range of robust solutions, and their associated risk, we consider the corresponding Pareto charts shown in Fig. 11. Those

charts have been derived from the principle exposed in section 4.2 and by applying the 20 % stochastic increase (best case)

and mitigation (worst case) on the resource described in section 5.2.1.

Essentially, Fig. 11 gives information about the volume of solar PV plants one may install within the region without

threatening the power grid in the long-term, and thus allows for risk adversity to be estimated. The robust solution corresponds

to the convex region, where power generation from any selected solar PV plant can fill up the free energy volume regardless of

the scenario, but at different speeds (i.e. the slope of each Pareto curve). The best case stands for the smallest volume filled at

the highest pace, so that as long as the worst case Pareto is below the best case, the investment remains safe. The corresponding

PV sites can be explored in the limits of their maximum capacity estimated by the robust optimization. In contrast, once the

best case reaches its plateau, and so Pareto lines cross each other (around 45 Me), the leftover energy volume in that scenario

gets too low: though any park can still be selected in the worst case (larger remaining volume), only smaller ones can make

it in the best case. At this point, the more the energy generated in the worst case scenario, the more it exceeds the energy

generation limit in the best case: the risk grows as much as the gap between both lines.

Convex region

Figure 11: Best vs. worst case scenario.

6.4.2. Candidate site’s location robustness with uncertainty
For one given scenario, it is interesting to assess how uncertainty affects the location of the selected PV sites. A more

robust solution would be one where either candidate sites or corresponding temporal patterns remain the same for different
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confidence levels. To illustrate this statement, we have applied different degrees of spatiotemporal uncertainty to the resource

in the worst case scenario. Pareto charts of Fig. 12a respectively depict: i) estimated GHI, energy potential (in blue), ii) its

mitigation by a random uniform noise per hour and per parcel, between 0 and 10 % (in green) and iii) between 0 and 20 %

(in red). In that case, the safety zone lies below a cost of 70 Me (C70), meaning that the selected PV sites are the same

for all resource time series projections. Those sites are sorted by ascending parcel size area from the smallest (P1) to the

largest (P4) and are visible in Fig. 12b. The investment costs grow naturally when the optimal PV plant size grows within its

corresponding parcel area (fractional knapsack optimization).

C
70

P1 P2 P3 P4 P4
P1 P2

P4

Safety zone

(a) Pareto solution

(b) Corresponding PV sites in Guiana

Figure 12: Robustness of the worst-case scenario solution when resource is permeated with different uncertainty levels.

(a) Normalized output power (b) Yearly output power at different cost levels

Figure 13: Output power from solar PV plants of Fig. 12

Fig. 13 depicts the corresponding output power from given solar PV plants selected by the robust optimization, whose

placement is visible in Fig. 12b, in the case of estimated solar GHI. Fig. 13a depicts the resulting spatial variation of the solar

GHI patterns (derived by GREECE) on the generated power from the optimal solar PV plants (location and size). P1 and P4

sites (P2 and P3) have similar patterns for they are located in the same solar potential cluster zone (see Fig. 6). Essentially,

it shows how our integrated approach manages real site spatial arrangement so that the global output power from the optimal

solar PV plants is balanced through time: impact of their RE intermittency on future network power management is limited.

Finally, Fig. 13b shows how the robust optimization makes power generation over time gradually filling up the free energy

volume by selecting different sites and power plants’ capacity.
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7. Conclusion

In this article we have dealt with both geographical and temporal constraints for planning scenarios of intermittent renew-

able power at broad scale. We have developed a model at the interface between both GIS and holistic approaches. In addition

to GIS-based studies combined with multi-criteria analysis, we take into consideration the temporal variation of both the re-

source and the power demand for identifying suitable sites. Instead of suitability maps, we provide the exact sites, i.e. location

and size, where power plants should be built so that the share of intermittent renewable energy sources is maximized within

a given region. We also go beyond usual bottom-up energy models by adding geographical constraints, and true possibilities

granted by the territory, to the optimization problem. To that extent, our integrated approach is primarily a decision making

tool for local policy makers and network managers. It is primarily intended to provide real contextual solutions within present

and future renewable energy policies at the regional and national scale. We have contributed and shown how our integrated

model allows for retrieving real spatial distribution of power plants resulting in mitigation of global renewable energy inter-

mittency at the hour. A key contribution of our work was to bring forward the importance of seeking trade-offs between land

management and energy transition goals, especially in territories such as French Guiana where ecosystems must be protected.

In that case, only the permissive scenario allows for solar PV plants to be established. Decision-makers should therefore be

eventually advised by environmental experts so that global sustainability is achieved hand in hand with the local environment.

Future work includes the generalization of this model to cost-effectiveness of energy storage, to biomass that raises a complex

temporal issue of the renewability of the resource, and to power flow modeling in order to test the validity of each solution in

terms of grid voltage, as it has already been done at lower scale [10].
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