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Fractal processes have recently received a growing interest, especially in the domain of rehabilitation. More precisely, the evolution of
fractality with aging and disease, suggesting a loss of complexity, has inspired a number of studies that tried, for example, to entrain
patients with fractal rhythms. )is kind of study requires relevant methods for generating fractal signals and for assessing the
fractality of the series produced by participants. In the present work, we engaged a cross validation of threemethods of generation and
three methods of analysis. We generated exact fractal series with the Davies–Harte (DH) algorithm, the spectral synthesis method
(SSM), and the ARFIMA simulation method. )e series were analyzed by detrended fluctuation analysis (DFA), power spectral
density (PSD) method, and ARFIMA modeling. Results show that some methods of generation present systematic biases: DH
presented a strong bias toward white noise in fBm series close to the 1/f boundary and SSM produced series with a larger variability
around the expected exponent, as compared with other methods. In contrast, ARFIMA simulations provided quite accurate series,
without major bias. Concerning the methods of analysis, DFA tended to systematically underestimate fBm series. In contrast, PSD
yielded overestimates for fBm series. With DFA, the variability of estimates tended to increase for fGn series as they approached the 1/f
boundary and reached unacceptable levels for fBm series. )e highest levels of variability were produced by PSD. Finally, ARFIMA
methods generated the best series and provided the most accurate and less variable estimates.

1. Introduction

)e repeated measurement of physiological or behavioral
events (stride durations, heartbeat intervals, and intertap
intervals) is typically characterized by a marked variability.
For a long time, this variability has just been considered a
random perturbation, without any functional signification.
However, a number of authors, during the last two decades,
showed that these biological series presented a typical long-
range correlational structure over time and especially a
statistical self-similar (fractal) pattern [1–4]. Fractal pro-
cesses have recently received a growing interest, especially in
the domain of rehabilitation. More precisely, the evolution
of fractality with aging and disease, suggesting a loss of
complexity [5], has inspired a number of studies that tried,
for example, to entrain patients with fractal rhythms [6–8].

In this domain, authors are confronted with two main
methodological problems: )e first one concerns the eval-
uation of the level of long-range correlations in physiological
series. A number of different methods have been proposed,
and their respective qualities were systematically assessed in
comparative studies [9–12]. )e second one refers to the
generation of exact fractal signals necessary of providing
experimental devices (metronomes and virtual environ-
ments) with controlled long-range correlation properties. A
number of methods have been proposed for simulating such
series [13–15].)e assessment of estimation methods, on the
one hand, and simulation methods, on the other hand, raises
a typical problem of circularity, performances, and biases in
the former being analyzed on the basis of the latter, and vice
versa [11]. When a bias is identified, it remains difficult to
attribute the problem to the method of simulation or to the
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method of assessment. In order to overcome this problem,
we propose in the present paper a cross-validation study,
combining three methods of generation and three methods
of analysis.

We first propose a formal introduction of the three main
domains of definition of long-range correlated processes: the
fractional Brownian motion framework [16], the spectral
domain [17], and the autoregressive fractionally integrated
moving average (ARFIMA) processes [18].

2. Theoretical Models

2.1. /e fBm/fGn Model. )e fractional Brownian motion
(fBm) denoted as BH(t) is a mathematical model of con-
tinuous stochastic process introduced by Mandelbrot and
Van Ness [16] as a generalization of the Brownian motion,
where increments do not need to be independent. BH(t) is
characterized by the Hurst parameter (H), which can take
any real value within the interval ]0, 1[. )is value gives
information about the nature and the strength of the cor-
relation between successive increments in the process. IfH is
below 0.5, BH(t) is underdiffusive, and its increments are
anticorrelated. In contrast, if H is above 0.5, BH(t) is
overdiffusive, and its increments are positively correlated. In
the case that H equals 0.5, B0.5(t) is an ordinary Brownian
motion (normal diffusion), and its increments are an un-
correlated Gaussian white noise.

fBm has some fundamental properties. )e first one is
that its variance grows as a power function of the length of
the time interval observed, with an exponent 2H:

VBH
∝Δt2H

. (1)

)e second is that fBm is a fractal process, characterized by
statistical self-similarity:

BH(at) ≡ a
H

BH(t), ∀a and t> 0. (2)

By definition, BH(t) is fully described by its autocovariance
function cBH

(t, s):

cBH
(t, s) � cov BH(t), BH(s)( 

�
VBH

2
|t|

2H
+ |s|

2H − |t− s|
2H

 .

(3)

As previously indicated, the successive increments of
BH(t) can be correlated and the Hurst exponent informs
about the nature of this correlation, and thus, the derivative
of BH(t) should be a stationary correlated noise. However,
this derivative cannot be calculated because in theory
Brownian motion describes an infinitely broken continuous
trajectory. In other words, nondifferentiability is a funda-
mental property of BH(t). One can still estimate this de-
rivative using a discrete version of BH(t) where increments
are defined on a time interval m. )is estimate is a discrete
process called fractional Gaussian noise (fGn), denoted as
Gm(i):

Gm(i) � BH(t)−BH(t−m). (4)

As for the fBm, the fGn is fully described by its auto-
covariance function, which is easily derived from equation
(3) with m� 1:

cG1
(τ) � cov G1(i); G1(i + τ)( 

�
VG1

2
|τ + 1|

2H − 2|τ|
2H

+ |τ − 1|
2H

 .

(5)

2.2./e Spectral Model. Stochastic fractal processes can also
be defined in the frequency domain, on the basis of a scaling
law that relates power (i.e., squared amplitude) to frequency
according to an inverse power function, with an exponent β
[9, 10]. For an fGn process with exponent H, the power
spectrum can be expressed as follows [12, 19]:

S(f)∝
1

f2H−1, (6)

and for the corresponding fBm process [12, 20]:

S(f)∝
1

f2H+1. (7)

)en the power spectrum of fGn/fBm processes has the
general form:

S(f)∝
1

fβ , (8)

with β ∈ ]−1, 1[ for fGn and β ∈ ]1, 3[ for fBm.)is suggests that
fGn and fBm could be considered as a continuum, with both
families being characterized in the time domain by a scaling
exponent α, α�H for fGn and α�H+1 for fBm. )is as-
sumption has been exploited by Peng et al. [4] in the conception
of the detrended fluctuation analysis (see Section 3).)e scaling
exponent α is linearly related to the spectral exponent β over the
whole fGn/fBm continuum by α � (β + 1/2) [21]. )e case
β� 1 defines the so-called “1/f noise,” which represents the
boundary between fGn and fBm processes.

2.3. /e ARFIMA Model. A third approach to long-range
correlated processes is provided by the autoregressive
fractionally integrated moving average (ARFIMA) models
[18]. )is approach is an extension of the ARIMA (for
autoregressive, integrated, moving average) framework,
introduced by Box et al. [22], which intended to represent a
variety of short-term relationships in time series. ARIMA
models are potentially composed of three components. )e
autoregressive component suggests that the current obser-
vation y(t) is determined by a weighted sum of the p pre-
vious observations, plus a random perturbation ε:

y(t) � 

p

k�1
ϕ(k)y(t− k) + ε(t). (9)

)e moving average component supposes that the
current observation depends on the value of the random
perturbations that affect the q preceding observations, plus
its own specific perturbation:
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y(t) � 

q

k�1
θ(k)ε(t− k) + ε(t). (10)

Finally, the differencing parameter d indicates the
number of differencing that should be applied to the series
before modeling. An ARIMA model is the combination of
these three components and can be designated by the re-
spective orders of the three processes as (p, d, q). ARIMA
modeling has been used either for generating time series
with specified p, d, q parameters or for determining the best
p, d, q combination for accounting for a given series
[22, 23].

ARIMA models could be more conveniently expressed
using the so-called backshift operator, defined as

Bx(t) � x(t− 1). (11)

)e generic ARIMA (p, d, q) model can then be rewritten
as

ϕ(B)(1−B)
d
x(t) � θ(B)ε(t), (12)

where ϕ(B) and θ(B) are, respectively, the autoregressive and
the moving average operators, represented as polynomials in
the backshift operator: ϕ(B) � 1−Bϕ(1)−B2ϕ(2)− · · ·

−Bpϕ(p) and θ(B) � 1 + Bθ(1) + B2θ(2) + · · · + Bqθ(q)

[24]. In the initial formulation of the model, the d parameter
was an integer [22]. Granger and Joyeux [18] showed that it
was possible to provide this model with long-range de-
pendence properties by allowing the differencing parameter
d to take on fractional values, thereby obtaining an ARFIMA
model.

Here we focus on the most simple model ARFIMA(0, d,
0), which is supposed to only contain long-range correla-
tions. Using the backshift operator notation, this model is
expressed as follows [25]:

(1−B)
d
x(t) � ε(t), (13)

with

(1−B)
d

� 

∞

k�0

d

k
 (−1)

k
B

k
. (14)

Granger and Joyeux [18] derive a filter A(B) from
equations (13) and (14) and demonstrate that the process can
be rewritten as

x(t) � A(B)ε(t) � 
∞

k�0
a(k)ε(t− k), (15)

a(k) �
Γ(k + d)

Γ(k + 1)Γ(d)
. (16)

where d is a measure of the intensity of long-range corre-
lations in the series. Note, however, that ARFIMA models
account only for stationary series, d being bounded within
the interval ]−0.5; 0.5[. In other words, ARFIMA models
remain limited to fGn series. d is related to the spectral
exponent β and the scaling exponent α by the following
linear equations:

β � 2d,

α �
2d + 1

2
 .

(17)

Each of these theoretical frameworks provided specific
methods for generating fractal signals or for assessing the
fractality of empirical series. In the present work, we engaged a
cross validation of three methods of generation and three
methods of analysis. We selected one simulation method and
one estimationmethod in each previously presented domain of
definition. Our rational is that biases that are revealed by the
three analysis methods should be attributed to the generation
method and conversely biases that appear whatever the gen-
eration method should originate in the analysis method.

3. Methods

In order to explore the whole fGn/fBm continuum, we first
generated series from α� 0.1 to 0.9, by steps of 0.1, and from
1.01 to 1.9, by steps of 0.1. )ese values were used in most
previous similar studies [9, 10, 26]. Additionally, in order to
analyze more closely the behavior of simulation and analysis
methods around to the 1/f boundary, we generated a series
from α� 0.91 to 1.09, by steps of 0.01.)is range of exponents
was rarely considered in the literature (for a noticeable ex-
ception, see [27]). However, this focus on the 1/f boundary
seems of particular interest, because the problems of fGn/fBm
classification are concentrated within this interval [10] and
also because one could have some doubts about the hy-
pothesis of continuity around the 1/f boundary [28].

We used three methods of generation: the Davies–Harte
algorithm, the spectral synthesis method, and the ARFIMA
simulation method. )ese methods are detailed below. For
each selected α value and with each method, we generated
120 series of 1024 data points. In this section, all methods are
written in the discrete time and frequency domain; for
reading convenience, we keep the variable t for discrete time
domain and f for discrete frequency domain.

3.1. Davies–Harte Algorithm (DH). We used the algorithm
proposed by Davies and Harte [13], for generating fGn series
of lengthN (N being a power of 2). As previously indicated, an
fGn process is fully described by its autocovariance function
(see equation (5)). )en, one can deduce the exact spectral
power S expected for this autocovariance function, from the
discrete Fourier transform of the following sequences of
covariance values cG1 defined by equation (5): cG1(0), cG1(1),
. . ., cG1((N/2)−1); cG1(N/2), cG1((N/2)−1), . . ., cG1(1):

S(f) � 

(N/2)−1

τ�0
cG1

(τ)e
−i2πf(τ/N)

+ 
N−1

τ�N/2
cG1

(N− τ)e
−i2πf(τ/N)

,

(18)

where f� 0, 1, . . ., N− 1. It is important to check that
S(f)≥ 0 for all f. Negativity would indicate that the sequence
is not valid.
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Let Wgn(f), where f� 0, . . ., N− 1, be a white Gaussian
noise. )e randomized spectral amplitudes, V(f), are cal-
culated according to the following equations:

V(0) �
������
NS(0)


× Wgn(0),

V(f) �

������
NS(f)

2



× ( Wgn(2f− 1) + iWgn(2f),

for 1≤f≤
N

2
,

V
N

2
  �

�������

NS
N

2
 



× Wgn(N− 1),

V(f) �

������
NS(f)

2



× ( Wgn(2N− 1− 2f)

− iWgn(2N− 2f), for
N

2
+ 1≤f≤N− 1.

(19)

Finally, the first N elements of the discrete Fourier
transform ofV are used to compute the simulated series x(t):

x(t) � I
−1

V(f)  �
1
N



N−1

f�0
V(f)e

i2πf(t/N)
, (20)

where t� 1, 2, . . ., N.
We first generated fGn series for H values ranging from

0.1 to 0.9, by steps of 0.1. In order to explore more precisely
the performance of DFA close to the 1/f boundary, we also
generated fGn series for H values ranging from 0.91 to 0.99,
by steps of 0.01. A second set of fGn series was generated, for
H values ranging from 0.1 to 0.9, by steps of 0.1, and was
integrated for obtaining fBm series for each corresponding
H value (i.e., for α values ranging from 1.1 to 1.9). Finally, we
generated fGn series for H ranging from 0.01 to 0.09 and
integrated them for obtaining fBm series close to the 1/f
boundary (i.e., for α values ranging from 1.01 to 1.09).

3.2. Spectral Synthesis Method (SSM). )e spectral synthesis
method is designed to produce fBm and fGn series x(t) based on
the characteristics of the power spectral density S(f) of these
signals. In other words, the idea of SSM is to generate a right
kind of S(f) that gives rise to fBm or fGn with an exponent
0<H<1.

Since S(f ) is obtained as the square of the modulus of the
Fourier transform of the signal and its proportional to f−β

(see equation (8)),

S(f) � |X(f)|
2∝f
−β

. (21)

Weneed to generate a complex seriesX(f) with amodulus
r(f) proportional to 1/f β/2. r(f) is obtained as follows:

r(f) �
Wgn(f)

fβ/2 , (22)

where Wgn is a white Gaussian noise and f is the frequency
ranging from 1 to N/2.

To generate the X(f), we also need to generate a random
phase in radian:

ϕ(f) � 2πWun, (23)

where Wun is a white noise with uniform distribution.
We can create the complex coefficients:

a(f) � r(f)cos ϕ(f),

b(f) � r(f)sin ϕ(f).
(24)

)ese coefficients are extended to the whole range of
expected values (in respect of the Shannon theorem), a(f )
from (N/2) + 1 to N being equal to a(f) from (N/2) to 1 and
b(f) from (N/2) + 1 to N being equal to b(f) from (N/2)to 1.
)en, the complex series X(f ) are generated as follows:

X(f) � a(f) + ib(f). (25)

Finally, the inverse Fourier transform of this complex
number is computed to obtain the time series:

x(t) � F
−1

X(f)  �
1
N



N

f�1
X(f)e

i2πf(t/N)
, (26)

where t� 1, 2, . . ., N.

3.3. ARFIMA SimulationMethod. We used the Matlab code
proposed by Fatichi [14], based on equation (12), and in the
present case, as we limited ourselves to ARFIMA (0, d, 0)
models, on equation (13). )is code just bounds the sum-
mation in equation (15) to k� 100. We used this procedure
for generating fGn series (d ∈ ]−0.5, 0.5[). In order to obtain
the whole set of series we needed, we computed fBm series by
cumulated summation.

We now present the three estimation methods we used.
Note that for a better readability, the exponents of the
simulated series and the estimates are expressed or con-
verted in αmetrics. Estimates are denoted with a circumflex
(α, β, d).

3.4. Detrended Fluctuation Analysis. )e DFA algorithm
works as follows, for a series x(t) of lengthNwhere t� 1, 2, . . .,
N. )e series is first integrated, by computing for each t the
accumulated departure from the mean of the whole series:

X(t) � 
t

i�1
(x(i)−x). (27)

)is integrated series is then divided into k non-
overlapping intervals of length n. )e last N − kn data
points are excluded from analysis. Within each interval, a
least squares line is fitted to the data. )e series X(t) is
then locally detrended by subtracting the theoretical
values Xth(t) given by the regression. For a given interval
length n, the characteristic size of fluctuation for this
integrated and detrended series is calculated by the fol-
lowing equation:
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F(n) �

������������������������

1
N− kn



N−kn

t�1
X(t)−X

Th
(t) 

2




. (28)

In the original algorithm, this computation is repeated
over all possible interval lengths, for example, from n� 10 to
n�N/2 [9]. In the present paper, we applied the evenly
spaced averaged version of DFA [29], which significantly
reduces the variability of estimates. )is procedure consists
in dividing the (log) abscissa into P bins of length
(log10(nmax/nmin))/P, starting from log10(nmin). )e P bins
are defined as follows:

bin(p) � ⎡⎣log10 nmin(  +
p− 1

P
  log10

nmax

nmin
  ;

log10 nmin(  +
p

P
log10

nmax

nmin
  ⎤⎦,

(29)

where p� 1, 2, . . ., P. In the present analyses, we set
nmin � 10, nmax � 512, and P� 18.

Within each bin p, the average interval length n(p) and
the average fluctuation size F(n(p)) are computed. A power
law is expected as

F(n(p))∝ (n(p))
α
. (30)

)e exponent estimate (α) is obtained as the slope of the
double logarithmic plot of F(n(p)) as a function of n(p).

3.5. Power Spectral Density Analysis (PSD). )is method
works on the basis of the periodogram obtained by the fast
Fourier transform algorithm and exploits the power law
given by equation (8). β is estimated by calculating the
negative slope (−β) of the line relating log (S(f )) to log f.

In the present paper, we used the improved version
proposed by Fougere [30] and modified by Eke et al. [10],
designated as lowPSDwe. )is method uses a combination of
preprocessing operations: first, the mean of the series is
subtracted from each value, and then, a parabolic window is
applied—each value in the series is multiplied by the fol-
lowing function:

W(t) � 1−
2t

N + 1
− 1 

2
,

xw(t) � x(t) × W(t),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(31)

where t� 1, 2, . . ., N.
Secondly, a bridge detrending is performed by sub-

tracting from the data the line connecting the first and last
point of the series:

l(t) �
xw(1)− xw(N)(  ×(t− 1)

N− 1
+ xw(N),

xw,l(t) � xw(t)− l(t),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(32)

where t� 1, 2, . . ., N.

)e Fourier transform is applied on the modified series
xw,l, and the fitting of β excludes the high-frequency power
estimates (f> 1/8 of maximal frequency). )is method was
proven by Eke et al. [10] to provide more reliable estimates of
the spectral index. For allowing a direct comparison between
methods, β was then converted into α metrics by a simple
linear transform (α � (β + 1)/2).

3.6. ARFIMA Modeling. )e d parameter was estimated by
fitting an ARFIMA(0, d, 0) model to the series using Whittle
approximation of the maximum likelihood estimator. We
used the ARFIMA(p, d, q) estimator package for Matlab
proposed by Inzelt [31] on the Matlab central file exchange
platform.

As previously explained, ARFIMA modeling holds only
for fGn series and d is bounded within the interval ]−0.5, 0.5[.
For fBm series, Diebolt and Guiraud [32] proposed to apply
ARFIMA modeling to the corresponding fGn (obtained by
differentiation) and then to estimate the theoretical fractional
parameter of the fBm series by adding 1 to the d value ob-
tained from the fGn. )is strategy, however, requires an a
priori assessment of the fGn/fBm classification of series. Some
solutions, based on the preliminary application of methods
working indifferently on fGn and fBm, such as DFA or PSD,
have been proposed but yielded important percentages of
misclassification around the 1/f boundary [9, 10].

In order to apply ARFIMAmodeling indifferently on fGn
and fBm series, as DFA and PSD, we used the following
strategy: the algorithm consists in finding the best Whittle
approximate of the maximum likelihood estimator by con-
strained optimization. According to ARFIMA properties, the
output parameter is bounded, yielding the parameter value
d � 0.4999 if the algorithm did not converge on the upper
bound. When do, obtained from the original series, was equal
to 0.4999, the series was considered as fBm and the algorithm
was applied on the differentiated time series in order to obtain
ddiff estimate. In this nonstationary case, d � ddiff + 1 else
d � do. )is parameter estimate d was then converted into α
metrics by a simple linear transform (α � (2d + 1)/2).

4. Results

We present in Figure 1 the relationships between the true α
and the mean α values, for each simulation and estimation
method. If we consider the global shape of results around the
identity line, it seems obvious that estimation methods
performed better when series were generated by the method
belonging to the same domain (see the three graphs ranging
along the descending diagonal). )is was already observed
by Eke et al. [11].

)e first row depicts the results obtained by the three
estimation methods with the series generated by the DH
algorithm. A common bias appears in the three graphs,
with a strong underestimation of α in fBm series, close to
the 1/f boundary. )is reveals a clear disruption in the
original fGn/fBm model. )is phenomenon was not ob-
served when series were generated with the two other
methods.
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DFA tends to underestimate α for fBm series, especially
when series were generated by SSM or ARFIMA modeling.
Conversely, PSD tends to overestimate α in fBm series,
especially when series were generated by the DH algorithm
or by ARFIMA modeling.

Figure 2 represents a focus of the previous results on the
1/f boundary (i.e., from α� 0.9 to α� 1.1). )e first row
confirms the clear disruption, around the 1/f boundary, for
series generated with the DH algorithm. Additionally, it
reveals a slight overestimation in fGn series, in the vicinity of
1/f noise, for PSD and ARFIMAmodeling. In contrast, series
generated by SSM and ARFIMA simulation present a clear
continuity around the 1/f boundary, whatever the method of
estimation. DFA tends to overestimate α for series generated
by spectral synthesis, but not for series simulated with
ARFIMA. PSD tends to overestimate α in this particular

range. Finally, ARFIMA modeling slightly overestimates α
for fBm series generated by SSM.

Finally, we present in Figure 3 the variability (standard
deviation) of the α samples, for each simulation and esti-
mation method. )ese graphs are presented with the same
scale on the vertical axe, in order to facilitate comparisons
between methods. Globally, α appears less variable in series
generated by the DH algorithm or with ARFIMA simulation,
than in those obtained from SSM, which yielded the worst
results. Concerning estimation methods, DFA results show a
clear increase in α variability as true α increases.)is effect is
not present with PSD and ARFIMA modeling, in which
variability remains stable over the whole true α range. PSD
results reveal a high level of variability, and especially when
series were generated by SSM. Conversely, ARFIMA
modeling is characterized by a low variability.
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Figure 1: Relationship between true and mean estimated α values. Top row: series generated by the DH algorithm; middle row: series
generated by SSM; bottom row: series generated by ARFIMA simulation. Left column: estimations performed with DFA; center column:
estimations performed with PSD; right column: estimations performed with ARFIMA modeling. Dashed lines represent identity.
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5. Discussion

5.1. Davies–Harte Algorithm. �e most important obser-
vation with the series generated with the DH algorithm is the
strong bias for fBm series close to the 1/f boundary. �is
result, consistently obtained with the three analysis methods,
should obviously be attributed to a bias in the generation
technique. �is result was already evidenced by Stadnitski
[27], who suggested that “the observed discrepancies
probably occurred due to the incapability of the Davies–
Harte technique to provide fBm series with H close to 0.
�ese results underline the importance of a proper data
generation in simulation studies and indicate a revision of
results from studies that employed the Davies–Harte tech-
nique” (pp. 144-145).

Delignières [28] showed that this bias was not related to
the Davies–Harte algorithm, but more fundamentally to the
fGn/fBm model itself. Based on the premises of the model,
and especially on the autocorrelation of fGn (equation (5)),
the author derived an analytical expression for the auto-
correlation of fBm:

ρfBm(τ) � 1−
N(N− 1)τ2H

2∑
N−1
t�1 (N− t)t2H[ ]

, (33)

where N is the length of the series. We report in Figure 4 the
theoretical lag-1 autocorrelations, computed for fGn series
ranging from H� 0 to 1 according to equation (5) and for
fBm series ranging from H� 0 to 1 according to equation
(33), considering N� 1024. �ese results evidence a severe
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Figure 2: Relationship between true and mean estimated α values, with a focus on the 1/f boundary (0.9≤ α≥1.1). Top row: series generated
by the DH algorithm; middle row: series generated by SSM; bottom row: series generated by ARFIMA simulation. Left column: estimations
performed with DFA; center column: estimations performed with PSD; right column: estimations performed with ARFIMA modeling.
Dashed lines represent identity.
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breakdown of the correlation properties of series around the
fGn/fBm boundary, and the limit behavior of fBm, H
approaching 0, is uncorrelated white noise.

�is suggests that fBm series, obtained by the cumulative
summation of the corresponding fGn series, should in fact
be fGn for very low H values. On the basis of equation (33),
we computed the expected ρfBm(1) values, for H ranging
from 0.01 to 0.1, and we compared these expected values to
the mean lag-1 autocorrelations observed in the series
simulated with the Davies–Harte algorithm. �e results are
illustrated in Figure 5 and show that the correlational
structure of simulated series matched closely that expected
from the fGn/fBm model.

5.2. Spectral Synthesis Method. In contrast with the DH
algorithm, SSM provides continuity around the 1/f
boundary. �is continuity was expected, as SSM works
indi�erently over the whole range of β exponents.�is result
could be surprising, as fGn/fBm and spectral models are
often considered equivalent, representing similar properties
in the time and frequency domains, respectively.

Another important result is related to the variability of
estimates, which appears systematically higher in series
generated by SSM than that observed with other methods of
generation. �is represents an important problem with this
method, which seems unable to provide series su�ciently
close to the expected exponents.
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Figure 3: Relationship between true α and the variability of estimated α values (standard deviation). Top row: series generated by the DH
algorithm; middle row: series generated by SSM; bottom row: series generated by ARFIMA simulation. Left column: estimations performed
with DFA; center column: estimations performed with PSD; right column: estimations performed with ARFIMA modeling.
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5.3. ARFIMA Simulation. ARFIMA simulation also pro-
vides a nice continuity around the 1/f boundary. �is
result is interesting, as fBm series were in that case ob-
tained by cumulative summation of their correspondent
fGn, as for the DH algorithm. Additionally, the obtained
sets of series presented the lowest variability in exponent
estimations, whatever the used method. �ese results
suggest that one could get a good con¡dence in series
generated by ARFIMA, as compared with the two other
methods.

5.4. Detrended Fluctuation Analysis. DFA works quite well
with fGn series but presents a systematic negative bias and a
high level of variability for fBm series. For understanding
these poor results with fBm series, as compared with other

methods, it is important to keep in mind that DFA actually
works on integrated series and in this case on integrated
fBm. �is family of overdi�usive processes is not well
known, and the di�usion property exploited by DFA seems
moderately appropriate with such series [9].

DFA is a very popular method, which presents the
advantage to be indi�erently applicable to both fGn and
fBm. Some other methods gave satisfying results but are
only relevant for fGn (e.g., the dispersional analysis or the
rescaled range analysis [33]) or for fBm (e.g., the scaled
windowed variance analysis [34]). However, researchers
are often unable to know if their signals refer to any of
these families, especially if these signals are close to the 1/f
boundary. DFA allows overcoming this problem.�e poor
performances of DFA with fBm signals could be neglected,
considering that most physiological series fall into the fGn
family. In some cases, however, for example, for postural
sway or gaze £uctuations, series are clearly nonstationary
and should be considered as fBm. In such cases, one could
consider to apply DFA on di�erenced series or to omit the
integration step in the algorithm (see, e.g., [35, 36]).

It is worth noting that the present results were obtained
with the evenly spaced version of DFA, which was proven to
signi¡cantly improve the accuracy and to reduce the vari-
ability of the original method [29]. Results would have been
even worse with the original algorithm.

5.5. Power Spectral Density. Despite the application of the
re¡nements proposed by Eke et al. [10], PSD provided the
worst estimation results. In terms of accuracy, PSD tends
to overestimate α in fBm series, and results are particularly
deceptive in terms of variability. PSD remains a quite
popular method, especially because it provides appealing
graphical results. �e bilogarithmic representation of the
power spectrum, beyond the estimation of the 1/f slope,
can give essential indications about the presence and the
nature of short-term £uctuations in the series (see, e.g.,
[37, 38]). However, for the speci¡c purpose of exponent
estimation, PSD seemed clearly outperformed by other
methods.

5.6. ARFIMA Modeling. ARFIMA modeling has been
neglected by most previous studies comparing fractal
methods [9–11]. Rangarajan and Ding [39] developed an
integrated approach of fractal analysis associating rescaled
range and spectral analyses, but they never considered
ARFIMA as a possible alternative or complement. However,
this method provided the most accurate and less variable
estimates. As indicated in the introduction, ARFIMA mod-
eling was initially designed for accounting for stationary
series. As proposed by Diebolt and Guiraud [32], we dif-
ferentiated nonstationary series before the application of
ARFIMA modeling, and this method gave satisfying results.
We applied a very simple procedure for distinguishing sta-
tionary and nonstationary series, considering that series
yielding d estimates equals to the upper limit obtainable with
the algorithm (0.49999) should be considered nonstationary.
�is simple procedure provided good results, as evidenced by

La
g-

1 
au

to
co

rr
el

at
io

n

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 20

α exponent

Figure 4: �eoretical lag-1 autocorrelation for fGn (a), based on
equation (5), and for fBm (b), based on equation (33), for α values
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the nice continuity observed around the 1/f boundary. In the
initial steps of this work, we tested the ARFIMA package
[40, 41] for the matrix computing language Ox [42]. )is
algorithm, however, gave worse results around the 1/f
boundary. Liu et al. [43] recently proposed a first evaluation of
diverse ARFIMA programs, available on various platforms
(Matlab, R, SAS, and OxMetrics), providing solutions for
simulation, parameter estimation, and forecasting. Further
investigations should be necessary for providing effective
guidelines for the selection of the most relevant solutions.

In the present paper, we limited ourselves to the esti-
mation of ARFIMA (0, d, 0) models. ARFIMA modeling
could also account for various autoregressive and/or moving
average processes that could contaminate empirical series.
)is method allows isolating long-range correlations in series
and then to provide a better estimation of fractal exponents.
Finally, a procedure using ARFIMA modeling has been
proposed for gauging the effective presence of genuine long-
range correlations in empirical series [26, 38, 44]. Indeed,
short-term processes could sometimes mimic 1/f-like fluc-
tuations, yielding false detections of long-range correlations
with classical methods such as DFA [38]. )e method pro-
posed by Torre et al. [26] allows testing the relative likelihood
of various ARMA and ARFIMA models and finally to con-
clude to the effective presence of long-range correlations.

In order to illustrate the experimental usefulness of these
results, we applied the three estimation methods to a set of
series of stride durations, collected during 15min walking
bouts with two groups of participants: the first one was
composed of 22 young participants (28.07 yrs± 8.88) and the
second of 23 older persons (72.36 yrs± 4.88). )ese data were
collected during recent experiments performed in our lab
[45, 46], and each series had a length of 512 data points. As
indicated previously, Hausdorff et al. [47] showed that aging
was characterized by a typical loss of complexity in walking
dynamics, and one could expect to evidence significant dif-
ferences in α estimates between the two groups.We present in
Table 1 the results obtained with the threemethods, converted
in αmetrics for comparison. In accordance with our previous
results, PSD yielded a greater variability in estimates than
DFA or ARFIMA. We compared the two samples with a one-
way ANOVA, which did not evidence any difference between
the two groups on the basis of PSD estimates. In contrast, a
significant difference was found for DFA and ARFIMA es-
timates, with a stronger effect size for ARFIMA.

Beyond our observations about the superiority of ARFIMA
modeling, in terms of accuracy and variability of exponent
estimation on exact synthetic signals, this final result shows that
ARFIMA modeling provides a better statistical power than
DFA or PSD in the analysis of experimental data [48]. Further
investigations remain necessary, however, for assessing the
respective performances of these methods, especially with
shorter time series, which represent an essential challenge in
human behavioral experiments [9–12, 21, 29, 49].

6. Conclusion

)is study provides a strong support for the use of ARFIMA
methods, for simulation as well as for parameters estimation

purposes. As previously indicated, ARFIMA methods were
not considered in recent comparative studies and rarely
exploited in empirical works, at least in the physiological and
behavioral domains. )e accuracy and the low variability of
exponent estimation with ARFIMA modeling should con-
vince researchers of the advantages of this method, especially
for detecting mean differences between groups. )is method
should attract the attention of researchers, either for their
future experiments or for revisiting their previous results.
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