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Abstract:	
The	 complexity	 matching	 effect	 supposes	 that	 synchronization	 between	 complex	
systems	could	emerge	 from	multiple	 interactions	across	multiple	 scales,	 and	has	been	
hypothesized	 to	 underlie	 a	 number	 of	 daily-life	 situations.	 Complexity	 matching	
suggests	 that	 coupled	 systems	 tend	 to	 share	 similar	 scaling	 properties,	 and	 this	
phenomenon	 is	 revealed	 by	 a	 statistical	matching	 between	 the	 scaling	 exponents	 that	
characterize	 the	 respective	 behaviors	 of	 both	 systems.	 However,	 some	 recent	 papers	
suggested	 that	 this	 statistical	 matching	 could	 originate	 from	 local	 adjustments	 or	
corrections,	 rather	 than	 from	a	genuine	 complexity	matching	between	 systems.	 In	 the	
present	 paper	 we	 propose	 an	 analysis	 method	 based	 on	 correlation	 between	
multifractal	 spectra,	 considering	 different	 ranges	 of	 time	 scales.	 We	 analyze	 several	
datasets	 collected	 in	 various	 situations	 (bimanual	 coordination,	 interpersonal	
coordination,	walking	 in	 synchrony	with	 a	 fractal	metronome).	 Our	 results	 show	 that	
this	method	 is	 able	 to	 distinguish	 between	 situations	 underlain	 by	 genuine	 statistical	
matching,	and	situations	where	statistical	matching	results	from	local	adjustments.		
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Introduction	

The	 concept	 of	 complexity	 matching	 (West	 et	 al.	 2008)	 states	 that	 the	 exchange	 of	
information	between	two	complex	networks	is	maximized	when	their	complexities	are	
similar.	 This	 particular	 property	 requires	 both	 networks	 to	 generate	 1/f	 fluctuations,	
and	has	been	interpreted	as	a	kind	of	“1/f	resonance”	between	networks	(Aquino	et	al.	
2011).	In	such	a	situation,	a	complex	network	responds	to	a	stimulation	by	another	as	a	
function	of	 the	matching	of	 their	measures	of	complexity,	 i.e.	 the	matching	of	 their	1/f	
fluctuations.	 In	contrast,	 the	response	of	a	complex	network	to	a	harmonic	stimulus	 is	
very	weak	as	compared	with	that	obtained	with	another	network	of	similar	complexity	
(Aquino	et	al.	2010;	Mafahim	et	al.	2015).		
A	 direct	 conjecture	 exploiting	 the	 complexity	 matching	 effect	 is	 when	 two	 complex	
systems	 become	 coupled,	 they	 should	 attune	 their	 complexities	 in	 order	 to	 optimize	
information	exchange.	This	conjecture	has	been	initially	tested	by	Stephen	et	al.	(2008),	
in	a	task	where	participants	had	to	synchronize	finger	taps	with	a	chaotic	metronome.	
Results	showed	that	despite	the	unpredictable	nature	of	the	stimuli	participants	where	
roughly	 able	 to	 synchronize	with	 the	 chaotic	metronome,	 with	 a	mix	 of	 reaction	 and	
proaction.	 As	 expected	 the	 authors	 observed	 a	 close	 matching	 between	 the	 scaling	
properties	 of	 the	 inter-beat	 interval	 series	 of	 chaotic	 signals	 and	 those	 of	 the	
corresponding	inter-tap	interval	series	of	participants.		

Marmelat	 and	 Delignières	 (2012)	 evidenced	 similar	 results	 in	 an	 inter-personal	
coordination	 task	 where	 participants	 oscillated	 pendulums	 in	 synchrony.	 Results	
revealed	low	local	correlations	between	the	series	of	oscillation	periods	produced	by	the	
two	participants	of	each	dyad.	The	authors	analyzed	the	scaling	properties	of	the	series	
of	 periods	 produced	 by	 participants,	 and	 evidenced	 a	 very	 close	 correlation	 between	
fractal	 exponents.	 Similar	 results	 were	 evidenced	 by	 Abney,	 Paxton,	 Dale,	 and	 Kello	
(2014),	in	the	analysis	of	speech	signals	during	dyadic	conversations.		
However,	 the	 idea	 that	 the	 matching	 of	 scaling	 exponents	 could	 be	 considered	 an	
unambiguous	 signature	 of	 complexity	matching	 remains	 questionable,	 and	 it	 could	 be	
necessary	to	distinguish	between	the	statistical	matching	(i.e.,	the	convergence	of	scaling	
exponents)	 and	 the	 genuine	 complexity	 matching	 effect	 (i.e.,	 the	 attunement	 of	
complexities).	 For	 example	 Fine	 et	 al.	 (2015),	 in	 an	 experiment	 on	 rhythmic	
interpersonal	coordination,	observed	as	 in	previous	experiments	a	 typical	matching	of	
scaling	 exponents,	 but	 suggested	 that	 this	 statistical	 matching	 could	 just	 result	 from	
local	phase	adjustments,	and	not	from	a	global	attunement	of	complexities.	Delignières	
and	 Marmelat	 (2014)	 analyzed	 series	 of	 stride	 durations	 produced	 by	 participants	
attempting	to	walk	in	synchrony	with	a	fractal	metronome.	They	tried	to	simulate	their	
empirical	results	by	means	of	a	model	based	on	 local	corrections	of	asynchronies,	and	
showed	 that	 this	 model	 was	 able	 to	 adequately	 reproduce	 the	 statistical	 matching	
observed	in	experimental	series.	The	authors	concluded	that	walking	in	synchrony	with	
a	fractal	metronome	could	essentially	involve	short-term	correction	processes,	and	that	
the	 close	 correlation	 observed	 between	 scaling	 exponents	 could	 in	 such	 a	 case	 just	
represent	 the	 consequence	 of	 local	 correction	 processes.	 Torre	 et	 al.	 (2013)	 also	
supported	 this	 hypothesis	 in	 a	 tapping	 task	 where	 participants	 synchronized	 with	
different	 non-isochronous	 auditory	 metronomes.	 They	 evidenced	 that	 inter-tap	
intervals	could	be	modeled	based	on	the	previous	inter-beat	interval	of	the	metronome	
and	a	correction	of	previous	asynchronies	to	the	metronome,	independently	of	the	level	
of	1/f	fluctuations	of	the	metronome	(i.e.	white	noise	or	pink	noise).		
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Our	 goal	 in	 the	 present	 paper	 is	 to	 seek	 for	 statistical	 signatures	 that	 could	
unambiguously	 distinguish	 between	 genuine	 global	 complexity	 matching	 and	 local	
corrections	 or	 adjustments.	 To	 date,	 most	 papers	 that	 tried	 to	 evidence	 complexity	
matching	effects	worked	on	the	basis	of	monofractal	analysis.	Here	we	propose	to	adopt	
multifractal	analyses	because	they	allow	for	a	more	detailed	picture	of	the	complexity	of	
time	series,	and	the	tailoring	of	fluctuations	that	is	typical	of	complexity	matching	could	
be	 considered	 as	 the	 product	 of	multifractality	 (Stephen	 and	Dixon	 2011).	One	 of	 the	
most	 appealing	 hypotheses	 about	 the	 origin	 of	 fractal	 fluctuations	 in	 the	 behavior	 of	
complex	systems	refers	to	the	idea	that	the	interactions	between	system’s	networks	are	
governed	 by	 multiplicative	 cascade	 dynamics	 (Ihlen	 and	 Vereijken	 2010).	 Such	
dynamics	is	supposed	to	generate	multifractal,	rather	than	monofractal	fluctuations,	and	
indeed	 Ihlen	 and	 Vereijken	 (2010)	 showed	 that	 it	 was	 the	 case	 in	 most	 previous	
analyzed	 series	 in	 the	 literature.	 Stephen	 and	 Dixon	 (2011)	 consider	 that	 complexity	
matching	should	be	conceived	as	a	product	of	multiplicative	cascade	dynamics,	entailing	
a	coordination	of	fluctuations	among	multiple	time	scales.		
While	monofractal	 processes	 are	 characterized	by	 long-term	 correlations	 and	 a	 single	
scaling	 exponent,	 in	multifractal	 time	 series	 subsets	with	 small	 and	 large	 fluctuations	
scale	 differently,	 and	 their	 description	 requires	 a	 hierarchy	 of	 scaling	 exponents	
(Podobnik	 and	 Stanley	 2008).	We	 propose	 to	 assess	 statistical	 matching	 through	 the	
point-by-point	 correlation	 function	 between	 the	 sets	 of	 scaling	 exponents	 that	
characterize	the	coordinated	series.		
In	the	present	paper	we	used	the	Multifractal	Detrended	Fluctuation	analysis	(MF-DFA)	
introduced	 by	 Kantelhardt	 et	 al.	 (2002),	 which	 is	 an	 extension	 of	 the	 Detrended	
Fluctuation	Analysis	 (DFA,	Peng	et	al.	1993).	 Just	as	DFA,	MF-DFA	allows	 to	select	 the	
range	 of	 intervals	 over	 which	 exponents	 are	 estimated.	 Usually	 authors	 considers	
intervals	 from	8	or	10	data	points,	 in	order	to	allow	a	proper	assessment	of	statistical	
moments,	up	to	N/4	or	N/2	(N	representing	the	length	of	the	analyzed	series),	in	order	
to	 get	 at	 least	 four	 or	 two	 estimates	 of	 these	 moments.	 Quite	 often,	 however,	 series	
present	different	scaling	regimes	over	the	short	and	the	long	term,	and	authors	perform	
separate	estimates	over	different	ranges	of	 intervals	(Delignières	and	Marmelat	2014).	
Here	we	propose	 to	 estimate	 the	 set	 of	multifractal	 exponents	 in	 first	 over	 the	 entire	
range	of	available	intervals	(i.e.,	 from	8	to	N/2),	and	then	over	more	restricted	ranges,	
progressively	excluding	the	shortest	intervals	(i.e.,	from	16	to	N/2,	from	32	to	N/2,	and	
then	 from	 64	 to	 N/2).	 We	 expect	 to	 find	 in	 both	 cases	 (local	 corrections	 or	 global	
matching),	 a	 strong	 correlation	 pattern	 between	 exponents	 when	 considering	 long	
length	intervals	(i.e,	64	to	N/2).	If	synchronization	is	just	based	on	local	corrections,	we	
consider	that	this	close	statistical	matching	in	long	intervals	 is	 just	the	consequence	of	
the	 short-term,	 local	 coupling	between	 the	 two	 systems.	As	 local	 corrections	between	
unpredictable	 systems	 remains	 approximate,	we	 hypothesize	 that	 correlations	 should	
dramatically	decrease	when	intervals	of	shorter	durations	are	taken	into	consideration.	
In	 contrast,	 in	 the	 case	 of	 genuine	 complexity	matching,	 the	 synchronization	 between	
systems	 is	 supposed	 to	 emerge	 from	 interactions	 across	 multiple	 scales.	 We	 then	
hypothesize	 to	 find	 in	 this	 case	 close	 correlations,	 even	 when	 considering	 the	 entire	
range	of	intervals,	from	the	shortest	to	the	longest.		
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Methods	

In	the	present	paper	we	re-analyze	a	set	of	experimental	series	which	were	previously	
used	 by	 Delignières	 and	 Marmelat	 (2014),	 in	 a	 first	 attempt	 to	 derive	 statistical	
signature	 of	 complexity	 matching	 from	 monofractal	 analyses.	 All	 studies	 have	 been	
approved	 by	 the	 local	 ethics	 committee	 and	 have	 therefore	 been	 performed	 in	
accordance	with	the	ethical	standards	laid	down	in	the	1964	Declaration	of	Helsinki.	All	
participants	gave	 their	 informed	consent	prior	 to	 their	 inclusion	 in	 the	study.	We	 first	
briefly	present	the	three	sets	of	series	submitted	to	analysis.		
Bimanual	coordination.		

The	 first	 set	 of	 series	 was	 collected	 in	 an	 experiment	 where	 twelve	 participants	
performed	 bimanual	 oscillations	 (Torre	 and	 Delignières	 2008a;	 Torre	 and	
Wagenmakers	 2009).	 This	 kind	 of	 bimanual	 coordination	 task	 has	 been	 extensively	
studied	 in	 the	 dynamical	 systems	 approach	 to	 coordination,	 in	 order	 to	 evidence	 the	
emergent	properties	that	underlie	the	macroscopic	behavior	of	complex	systems	(Haken	
et	al.	1985;	Schöner	et	al.	1986).	The	two	limbs	are	considered	as	a	system	of	coupled	
oscillators,	and	bimanual	coordination	represents	a	nice	example	of	close	coordination	
between	 complex	 (sub)systems,	 embedded	 to	 form	 a	 global	 functional	 system.	 In	 the	
present	context,	this	first	set	of	series	represents	a	limit	case,	where	coordination	should	
be	achieved	by	complexity	matching	processes.		

Participants	 were	 instructed	 to	 perform	 smooth	 and	 regular	 forearm	 oscillations	
holding	 two	 joysticks,	 synchronizing	 the	 reversal	points	of	 the	motion	of	 the	 joysticks	
(in-phase	 coordination).	 This	 experiment	 used	 the	 synchronization-continuation	
paradigm:	during	30	sec	participants	synchronized	their	movements	with	a	video	model,	
inducing	an	initial	frequency	of	1.5	Hz	in	a	first	condition,	and	2.0	Hz	in	a	second.	Then	
the	model	 was	 removed	 and	 participants	 had	 to	 continue	 following	 the	 initial	 tempo	
during	600	cycles.		
For	each	hand,	we	computed	the	series	of	periods,	defined	as	the	time	intervals	between	
two	successive	reversal	points	in	maximal	pronation.	The	mean	period	of	oscillations	of	
the	 effectors	was	 665.24	ms	 (+/-	 63.01)	 in	 the	 1.5	 Hz	 condition,	 and	 524.05	ms	 (+/-	
66.52)	 in	 the	 2.0	 Hz.	 The	 standard	 deviation	 of	 asynchronies	 (i.e.,	 the	 time	 intervals	
between	the	respective	pronation	reversal	points	of	the	two	hands)	was	18.65	ms	(+/-
5.26)	 in	 the	 1.5	 Hz	 condition	 and	 14.45	 ms	 (+/-	 2.62)	 in	 the	 2.0	 Hz	 condition,	
corresponding	 to	 a	 mean	 relative	 phase	 was	-	6.33°	 (+/-	 3.76),	 and	 -5.27°	 (+/-	 6.01),	
respectively.		
Interpersonal	synchronization	

The	second	set	of	series	were	collected	in	an	experiment	on	interpersonal	coordination	
(Marmelat	 and	Delignieres	2012).	 In	 contrast	with	 the	previous	 example,	 these	 series	
represent	 coordination	 between	 two	 physically	 independent	 systems	 that	 interact	 for	
achieving	 a	 common	goal.	 Twenty-two	participants	were	 randomly	paired	 into	 eleven	
dyads.	Participants	 in	each	dyad	were	 instructed	 to	perform	synchronized	oscillations	
with	 pendulums,	 in	 the	 sagittal	 plane,	 following	 an	 in-phase	 pattern	 of	 coordination.	
They	were	instructed	to	oscillate	at	the	preferred	frequency	of	the	dyad,	as	regularly	as	
possible.	The	task	was	performed	in	three	conditions,	characterized	by	increasing	levels	
of	coupling	between	participants.	 In	the	weak	coupling	condition,	audition	was	limited	
with	earplugs,	and	participants	were	instructed	to	visually	fix	a	target	in	front	of	them	
on	the	wall.	In	the	normal	coupling	condition,	visual	and	auditory	feedbacks	were	fully	
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available,	and	participants	were	 invited	to	visually	 fix	their	partner’s	pendulum.	In	the	
strong	coupling	condition,	participants	were	instructed	to	cross	their	free	arms	(arm-in-
arm),	in	order	to	add	haptic	information	to	visual	and	auditory	feedbacks.	Series	of	512	
oscillations	 were	 collected	 in	 each	 condition.	 For	 each	 participant,	 we	 computed	 the	
series	of	periods,	defined	as	the	time	intervals	between	two	successive	reversal	points	in	
maximal	extension.		

Results	showed	that	dyads	were	able	to	perform	adequately	this	coordination	task,	with	
a	mean	relative	phase	of	-2.15°	(+/-	8.64)	in	the	low	coupling	condition,	-1.67°	(+/-	7.50)	
in	the	normal	coupling	condition,	and	-2.36°	(+/-	7.15)	in	the	strong	coupling	condition.		

The	mean	period	of	oscillations	of	the	effectors	was	1035.06	ms	(+/-	130.59),	1018.47	
ms	 (+/-	 126.70),	 and	 989.35	 ms	 (+/-	 51.95),	 respectively.	 The	 standard	 deviation	 of	
asynchronies	was	 46.51	ms	 (+/-	 7.50),	 34.78	ms	 (+/-	 9.10)	 and	 37.71	ms	 (+/-	 6.06),	
respectively.		
Walking	in	synchrony	with	a	fractal	metronome	

In	 this	 experiment	 participants	 had	 to	 walk	 in	 synchrony	 with	 a	 fractal	 metronome.	
Eleven	participants	were	involved	in	this	experiment.	They	walked	on	a	treadmill,	and	
had	to	synchronize	the	right	heel	strikes	with	metronome	signals	administered	through	
an	earphone.	Metronome	signals	presented	fractal	fluctuations	with	a	mean	α	exponent	
of	 about	0.9,	 a	mean	value	of	1135	ms,	 and	 their	 standard	deviation	was	adjusted	 for	
obtaining	 a	 coefficient	 of	 variation	 of	 2%.	 Series	 of	 512	 strides,	 defined	 as	 the	 time	
intervals	between	two	successive	right	heel	strikes,	were	collected.	Results	showed	that	
participants	 were	 able	 to	 maintain	 synchrony	 with	 the	 metronome,	 with	 a	 mean	
asynchrony	of	about	-52.8	ms	(+/-	46.9).	The	mean	stride	duration	was	1135.53	ms	(+/-	
51.95),	and	the	standard	deviation	of	asynchronies	was	46.94	ms	(+/-	11.68).		

Multifractal	Detrended	Fluctuation	analysis	(MF-DFA)	

In	the	present	paper	we	used	the	MF-DFA	method,	initially	introduced	by	Kantelhardt	et	
al	(2002).	Consider	the	series	x(i),	i	=	1,	2,	…,	N.	In	a	first	step	the	series	is	centered	and	
integrated:	

 X k( ) = x i( )− 1
N

x i( )
i=1

N

∑⎡
⎣⎢

⎤
⎦⎥i=1

k

∑   (1) 

Next,	the	integrated	series	X(k)	 is	divided	into	Nn	non-overlapping	segments	of	length	n	
and	in	each	segment	s	=	1,	...,	Nn	the	local	trend	is	estimated	and	subtracted	from	X(k).	

The	variance	is	calculated	for	each	detrended	segment:	

	 F2 n, s( ) = 1
n

X k( )− Xn,s k( )⎡⎣ ⎤⎦
k=(s−1)n+1

sn

∑
2

		 (2)	

and	then	averaged	over	all	segments	to	obtain	qth	order	fluctuation	function	

	 Fq (n) =
1
Nn

F2 n, s( )⎡⎣ ⎤⎦
s=1

Nn

∑
q/2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/q

		 (3)	

where	q	can	take	any	real	value	except	zero.	In	the	present	work	we	used	integer	values	
for	q,	from	-15	to	+15.	Note	that	Eq.	(3)	cannot	hold	for	q	=	0,	because	of	the	diverging	
exponent.	A	logarithmic	averaging	procedure	is	used	for	this	special	case:		
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 F0 (n) = exp
1
2Nn

ln F2 n, s( )⎡⎣ ⎤⎦
s=1

Nn

∑⎛
⎝⎜

⎞
⎠⎟

  (4) 

Repeating	this	calculation	for	all	lengths	n	provides	the	relationship	between	fluctuation	
function	 Fq(n)	 and	 segment	 length	 n.	 If	 long-term	 correlations	 are	 present,	 Fq(n)	
increases	with	n	according	to	a	power	law:	

	 Fq n( )∝ nh(q) 		 (5)	

The	scaling	exponent	h(q)	 is	obtained	as	the	slope	of	 the	 linear	regression	of	 log	Fq(n)	
versus	 log	n.	 Note	 that	 for	 stationary	 time	 series,	h(2)	 is	 identical	 to	 the	well-known	
Hurst	exponent	H,	and	therefore	h(q)	is	called	the	generalized	Hurst	exponent.	

For	 positive	 values	 of	 q	 the	 generalized	 Hurst	 exponent	 h(q)	 describes	 the	 scaling	
behavior	of	large	fluctuations,	while	for	negative	values	of	q,	h(q)	describes	the	scaling	
behavior	 of	 small	 fluctuations.	 For	monofractal	 time	 series	h(q)	 is	 independent	 of	q	 ,	
while	for	multifractal	time	series	small	and	large	fluctuations	scale	differently	and	h(q)	
is	a	decreasing	function	of	q	.		

The	 results	 of	 the	MF-DFA	 can	 then	 be	 converted	 into	 the	more	 classical	multifractal	
formalism	by	simple	transformations	(Kantelhardt	et	al.	2002):	first,	generalized	Hurst	
exponents	h(q)	are	related	to	the	Renyi	exponents	τ(q)	defined	by	the	standard	partition	
function-based	multifractal	formalism:	

	 τ (q) = qh(q)−1 		 (6)	

For	monofractal	 signals	τ(q)	 is	 linear	 function	of	q,	 and	 for	multifractal	 signals	τ(q)	 is	
nonlinear	 function	 of	 q	 .	 Another	 way	 to	 characterize	 multifractal	 process	 is	 the	
singularity	spectrum	f(α)	which	is	related	to	τ(q)	through	the	Legendre	transform:	

	 α (q) = dτ (q)
dq

		 (7)	

	 f (α ) = qα −τ (q) 		 (8)	

where	 f(α)	 is	 the	 fractal	dimension	of	 the	support	of	singularities	 in	 the	measure	with	
Lipschitz-Hölder	 exponent	 α.	 The	 singularity	 spectrum	 of	 monofractal	 signal	 is	
represented	 by	 a	 single	 point	 in	 the	 f(α)	 plane,	whereas	multifractal	 process	 yields	 a	
single	humped	function.	

The	focus-based	approach	to	multifractal	analysis	

The	 classical	 MF-DFA	 algorithm	 was	 shown	 to	 perform	 as	 well	 as	 other	 multifractal	
methods	 (Oswiecimka	 et	 al.	 2006;	 Schumann	 and	 Kantelhardt	 2011).	 	 However,	
especially	when	applied	on	empirical	series	 it	 is	known	to	often	produce	 the	so-called	
“inversed”	spectra,	exhibiting	a	zig-zag	shapes	rather	than	the	expected	parabolic	shape	
(Makowiec	et	al.	2011;	Mukli	et	al.	2015).		
Mukli	 et	 al.	 (2015)	 have	 recently	 introduced	 a	 focus-based	 approach	which	 allows	 to	
avoid	 this	 pitfall.	 The	 standard	 method	 assesses	 the	 scaling	 exponents	 h(q)	
independently	 for	 each	 q	 value.	 This	 procedure	 can	 be	 considered	 adequate	 if	 an	
assumption	on	homogeneous	 structuring	holds	 for	 the	 scaling	 function.	This	 property	
however	may	not	always	be	present	especially	in	empirical	signals.		

Theoretically,	 the	 moment-wise	 scaling	 functions,	 for	 all	 q	 values,	 should	 converge	
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toward	a	common	limit	value	at	the	coarsest	scale.	Indeed,	substituting	signal	length	(N)	
to	interval	length	(n)	in	Eq.	(3)	yields:		

 Fq (N ) =
1
NN

F2 N , s( )⎡⎣ ⎤⎦
s=1

NN

∑
q/2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/q

= F2 N , s( )q/2{ }1/q = F N , s( )   (9) 

F N , s( ) 	can	then	be	considered	the	theoretical	focus	of	the	scaling	functions,	and	Mukli	
et	al.	(2015)	proposed	to	use	this	focus	as	a	guiding	reference	when	regressing	for	h(q).	
In	essence,	one	can	iterate	on	h(q)	as	the	ideal	multifractal	with	its	given	focus	and	set	of	
associated	 slopes	 best	 fitting	 to	 the	 observed	data	 of	 the	 scaling	 function.	Mukli	 et	 al.	
(2015)	 showed	 that	 this	 method	 allowed	 to	 successfully	 avoid	 the	 occurrence	 of	
inversed	spectra.		

As	explained	in	the	introduction,	we	first	applied	MF-DFA	considering	the	widest	range	
of	 intervals,	 from	 8	 to	 256	 (N/2).	 We	 then	 replicated	 this	 analysis	 by	 progressively	
focusing	on	longer	intervals:	16	to	256,	32	to	256,	and	64	to	256.		

We	finally	computed	for	each	q	value	the	correlation	between	the	individual	Lipschitz-
Hölder	 exponents	 characterizing	 the	 two	 coordinated	 systems,	 α1(q)	 and	 α2(q),	
respectively,	yielding	a	correlation	 function	r(q).	As	previously	explained,	we	expected	
to	find	in	all	cases	a	correlation	function	close	to	1,	for	all	q	values,	when	only	the	largest	
intervals	 are	 considered.	 Increasing	 the	 range	 of	 considered	 intervals	 should	 have	 a	
negligible	impact	on	r(q)	when	coordination	is	based	on	a	complexity	matching	effect.	In	
contrast,	 if	 coordination	 is	 based	 on	 local	 corrections,	 a	 decrease	 in	 r(q)	 should	 be	
observed,	as	shorter	and	shorter	intervals	are	considered.		

	
Results	

Bimanual	coordination.		

We	present	 in	Figure	1	 (upper	panels)	 the	averaged	multifractal	 spectra	of	 the	period	
series,	considering	intervals	from	8	to	256	points,	in	the	1.5	Hz	condition	(a)	and	the	2.0	
condition	(b).	The	spectra	of	the	right	and	the	left	hand	are	closely	superimposed	in	both	
conditions.	The	correlation	functions	between	the	multifractal	spectra	are	presented	in	
bottom	panels.	Correlation	coefficients	are	plotted	against	their	corresponding	q	values.	
Four	 correlation	 functions	 are	 displayed,	 according	 to	 the	 shortest	 interval	 length	
considered	during	the	analysis	(8,	16,	32,	or	64).	In	all	cases	the	correlations	functions	
displayed	 very	 high	 values,	 close	 to	 1.0	 (Figure	 1,	 c	 and	 d).	 Especially	 in	 the	 1.5	 Hz	
condition	 the	 correlations	 between	 spectra	 appeared	 maximal,	 over	 all	 q	 values	 and	
whatever	the	considered	intervals	range.	Correlations	appeared	slightly	lower	(around	
0.90),	 in	 the	 2.0	 Hz	 condition,	 for	 negative	 values	 of	 q,	 and	when	 the	 entire	 range	 of	
intervals	were	considered.		

Interpersonal	synchronization.	

We	present	 in	Figure	2	 (upper	panels)	 the	averaged	multifractal	 spectra	of	 the	period	
series	in	the	low	coupling	(a),	normal	coupling	(b)	and	strong	coupling	(c)	conditions.	As	
for	the	previous	experiment,	we	observed	a	close	superimposition	of	the	two	averaged	
spectra,	 and	 the	 superimposition	 appeared	 closer	 as	 coupling	 strength	 increased.	 The	
correlation	 functions	between	 the	multifractal	 spectra	are	presented	 in	bottom	panels	
(d,	e	and	f).	In	all	cases	the	correlation	function	displayed	very	high	values,	close	to	1.0,	
when	analysis	focused	to	long	intervals	(i.e.	32	to	N/2	or	64	to	N/2).	
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Figure	1:	Bimanual	coordination.	Upper	panels:	Multifractal	spectra	for	the	right	(black	
circles)	 and	 the	 left	 (white	 circle)	 effectors,	 for	 the	 1.5	 Hz	 (a)	 and	 the	 2.0	 Hz	 (b)	
conditions.	Bottom	panels:	 Correlation	 functions	 r(q),	 for	 the	 four	 ranges	of	 intervals	
considered	(8	to	N/2,	16	to	N/2,	32	to	N/2,	and	64	to	N/2)	,	for	the	1.5	Hz	(c)	and	the	
2.0	Hz	(d)	conditions.	q	represents	the	set	of	orders	over	which	the	MF-DFA	algorithm	
was	applied.	

	

Walking	in	synchrony	with	a	fractal	metronome	

We	present	in	Figure	3	(panel	a)	the	averaged	multifractal	spectra	of	the	stride	duration	
series	(black	circles)	and	the	metronome	series	(white	circles).	In	this	experiment	a	shift	
was	observed	between	the	two	averaged	spectra,	indicating	a	lower	level	of	correlation	
in	 participants	 series,	 with	 respect	 to	 the	 corresponding	 metronomes	 series.	 The	
correlation	functions	between	the	multifractal	spectra	are	presented	in	the	right	panel	
(b).	In	contrast	with	the	previous	results,	the	considered	range	of	intervals	had	a	strong	
impact	on	the	correlation	function.	When	the	smallest	range	was	considered	(64	to	N/2),	
the	 correlation	 function	 remained	 close	 to	 1.0.	 When	 the	 range	 of	 interval	 was	
progressively	enlarged,	the	correlation	values	decreased,	especially	for	negative	q	values	
corresponding	 to	 low	 variance	 epochs	 in	 the	 series.	 When	 all	 available	 intervals	 are	
considered	(i.e.	8	to	N/2),	r(q)	presents	non	significant	values.		
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Figure	 2	:	 Interpersonal	 synchronization.	 Upper	 panels:	 Multifractal	 spectra	 for	
participant	A	(black	circles)	and	participant	B	(white	circle),	for	the	low	(a),	normal	(b)	
and	 strong	 (c)	 coupling	 conditions.	Bottom	panels:	 Correlation	 functions	 r(q),	 for	 the	
four	ranges	of	intervals	considered	(8	to	N/2,	16	to	N/2,	32	to	N/2,	and	64	to	N/2),	for	
the	low	(d),	normal	(e)	and	strong	(f)	coupling	conditions.	
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Figure	3:	Walking	in	synchrony	with	a	fractal	metronome.	Panel	a:	Multifractal	spectra	
for	 the	 participant	 (black	 circles)	 and	 the	 metronome	 (white	 circle).	 Panel	 b:	
Correlation	functions	r(q),	 for	the	four	ranges	of	 intervals	considered	(8	to	N/2,	16	to	
N/2,	32	to	N/2,	and	64	to	N/2).	
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In	order	 to	provide	a	clearer	picture	of	 the	evolution	of	correlations	with	 the	range	of	
considered	 intervals	 in	 the	 three	 experiments,	we	 present	 in	 Figure	 4	 a	 set	 of	 scatter	
plots	 representing	 the	 relationships	 between	 the	α(2)	 samples	 characterizing	 the	 two	
coordinated	systems.	These	graphs	show	a	global	narrowing	of	exponent’s	samples,	as	
the	 considered	 range	 of	 intervals	 increases.	 However,	 the	 decrease	 of	 correlation,	
especially	in	the	third	experiment,	clearly	arises	from	a	weakening	of	the	relationships	
between	exponents.		
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Figure	 4:	 Scatter	 plots	 of	 the	 samples	 of	 Hölder	 exponents	 α(2)	 characterizing	 the	
coupled	series,	in	the	three	experiments,	for	the	four	ranges	of	intervals	considered	(64	
to	N/2,	32	to	N/2,	16	to	N/2,	and	8	to	N/2).	Upper	row	(a):	bimanual	coordination,	F1;	
Middle	row	(b):	 interpersonal	coordination,	strong	coupling;	Bottom	row	(c):	walking	
in	synchrony	with	a	fractal	metronome.		

Discussion	
The	 present	 results	 are	 based	 on	 the	 analysis	 of	 behavioral	 series	 of	 relatively	 short	
length.	 512	 data	 points	 could	 be	 considered	 insufficient	 for	 deriving	 reliable	 results,	
especially	with	multifractal	 analyses.	However,	 the	 application	 of	 time	 series	 analyses	
supposes	that	the	system	under	study	remains	in	stable	state	during	the	whole	window	
of	 observation,	 and	 in	 behavioral	 experiments	 the	 lengthening	 of	 the	 task	 could	 raise	
problems	 of	 fatigue	 or	 lack	 of	 concentration	 (Delignières	 et	 al.	 2005;	 Marmelat	 and	
Delignières	2011).	On	the	other	hand,	a	number	of	improvements	have	been	introduced	
in	 fractal	analyses,	which	could	allow	to	consider	with	a	certain	confidence	the	results	
obtained	from	relatively	short	series	(Delignières	et	al.	2006;	Almurad	and	Delignières	
2016).	 Such	 series	 lengths	 are	 generally	 considered	 as	 an	 acceptable	 compromise	
between	 the	 requirements	 of	 time	 series	 analyses	 and	 the	 limitations	 of	 hebavioral	
human	experiments	(Gilden	1997;	Chen	et	al.	1997;	Gilden	2001;	Chen	et	al.	2001).		
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We	are	aware	that	the	present	results	should	be	considered	with	caution,	and	have	to	be	
confirmed	by	further	analyses.	However,	the	differences	we	observed	between	the	three	
experiments	are	consistent	with	our	initial	hypotheses	and	seem	sufficiently	large	to	be	
regarded	with	some	confidence.			

Complexity	matching	vs	discrete	local	coupling	

The	main	result	of	this	paper	is	the	clear	distinction	between	the	two	first	experiments	
(bimanual	 coordination	 and	 interpersonal	 coordination)	 and	 the	 third	 one	 (walking	
with	a	fractal	metronome).	In	the	two	first	cases	the	correlation	function	revealed	a	clear	
statistical	 matching	 between	 multifractal	 spectra,	 whatever	 the	 range	 of	 intervals	
considered	 in	 the	 analysis.	 In	 contrast,	 in	 the	 third	 set	 of	 data	 the	 close	 statistical	
matching	appeared	only	when	the	range	was	restricted	to	the	 lengthiest	 intervals	(i.e.,	
from	64	to	256),	and	was	progressively	altered	when	wider	ranges	were	considered.		

These	results	suggest	that	in	the	two	first	experiments	synchronization	was	governed	by	
a	global,	multiscale	coordination	between	the	two	interacting	systems,	and	in	the	third	
experiment	 synchronization	 was	 the	 result	 of	 local	 corrective	 processes.	 As	 in	 this	
experiment	participants	had	to	synchronize	with	a	series	of	discrete	stimuli,	one	could	
hypothesize	 that	 these	 correction	 processes	work	 on	 a	 discrete,	 step-to-step	 basis,	 as	
suggested	 by	 Marmelat	 and	 Delignières	 (2012).	 One	 could	 argue,	 however,	 that	 this	
hypothesis	should	be	considered	with	caution,	as	the	task	used	in	the	third	experiment	
strongly	differs	from	those	used	in	the	others,	and	especially	the	walking	task	involves	
very	large	masses	compared	to	the	other	tasks.	Note,	however,	that	Torre	et	al.	(2013)	
proposed	a	similar	hypothesis	in	an	experiment	where	participants	had	to	synchronize	
finger	taps	with	fluctuating	metronomes.		
It	could	be	interesting,	for	reinforcing	this	hypothesis,	to	check	whether	a	model	based	
on	such	discrete,	 local	correction	processes,	could	generate	series	yielding	comparable	
results.	We	then	 tried	 to	simulate	series	 that	could	result	 from	a	 local	coupling	with	a	
fractal	metronome.	 In	 this	modeling	 study	we	 considered	 that	 the	 organism	produces	
intrinsically	 long-range	 correlated	 series.	 Indeed,	 a	 number	 of	 previous	 studies	 have	
shown	 that	 organisms	produced	 long-range	 correlated	 series	 in	 self-paced	 conditions,	
and	 that,	 during	 synchronization	with	 a	 regular	metronome,	 this	 source	of	 long-range	
correlation	 was	 still	 at	 work	 and	 had	 to	 be	 considered	 for	 properly	 modeling	 the	
synchronisation	 process	 (Torre	 and	 Delignières	 2008b;	 Torre	 and	 Delignières	 2009;	
Delignières	 and	 Marmelat	 2014).	 We	 then	 proposed	 that	 the	 organism	 corrects	 the	
interval	 it	 intended	 to	 intrinsically	 produce	on	 the	basis	 of	 the	previous	 asynchronies	
(Delignières	and	Marmelat	2014).	We	worked	with	a	two-order	auto-regressive	model	:		

 x(i) = y(i)− a ASYN(i −1)[ ]− b ASYN(i − 2)[ ]+ cε(i) , (10) 

 ASYN(i) = ASYN(0)+ x(k)− z(k)
k=0

i

∑
k=0

i

∑   (11) 

where	x(i)	represents	the	series	of	periods	effectively	produced	by	the	organism,	y(i)	the	
series	 of	 virtual	 periods	 produced	 by	 the	 organism,	 and	 z(i)	 the	 fractal	 metronome.	
ASYN(i)	is	the	series	of	asynchronies	between	the	events	produced	by	the	organism	and	
the	 signals	 of	 the	metronome.	 y(i)	and	 z(i)	were	 both	modeled	 as	 fractional	 Gaussian	
noises	with	H	=	0.9	(mean	=	1000	and	SD	=	20).	Finally	ε(i)	is	a	white	noise	process	with	
zero	mean	and	unit	variance.		
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This	 model	 suggests	 that	 periods	 are	 corrected	 on	 the	 basis	 of	 the	 two	 previous	
asynchronies,	 a	hypothesis	 consistent	with	 the	 cross-correlation	 functions	obtained	 in	
this	experiment	(Delignières	and	Marmelat	2014).		

For	the	present	simulations	we	used	a=	0.2,	b	=	0.4,	c	=	12,	and	we	generated	12	series	of	
512	data	points.	We	present	in	Figure	5	(panel	a)	the	averaged	multifractal	spectra	for	
the	 ‘participant’	 (black	 circles)	 and	 the	 ‘metronome’	 (white	 circles).	 Note	 that	 these	
simulated	 results	 are	 characterized	 by	 a	 shift	 of	 the	 first	 spectrum,	 similar	 to	 that	
observed	 in	 experimental	 data	 (see	 Figure	 3).	 Panel	 b	 represents	 the	 correlation	
functions	r(q),	for	the	four	ranges	of	intervals	considered.	As	can	be	seen	we	obtained	a	
pattern	of	results	similar	to	that	obtained	with	experimental	results:	when	focusing	on	
long-term	 intervals	 the	 correlation	 function	 remained	 close	 to	 one,	 and	 progressively	
extinguished	as	more	and	more	shorter-term	intervals	were	taken	into	consideration.		
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Figure	 5:	 Simulation	 of	 the	 synchronization	 to	 a	 fractal	 signal	 by	 local	 corrections	 of	
asynchronies.	Panel	a:	Multifractal	 spectra	 for	 the	 ‘participant’	 (black	circles)	and	 the	
‘metronome’	 (white	 circle).	 Panel	 b:	 Correlation	 functions	 r(q),	 for	 the	 four	 ranges	of	
intervals	considered	(8	to	N/2,	16	to	N/2,	32	to	N/2,	and	64	to	N/2).		

Another	difference	between	our	 experiments	 lies	 in	 the	 coupling	between	 systems:	 in	
bimanual	 coordination	 and	 interpersonal	 synchronization	 the	 systems	 mutually	
interacted	 but	 synchronization	 with	 a	 fractal	 metronome	 is	 characterized	 by	 the	
presence	of	a	‘master’	(the	metronome)	and	a	‘slave’	(the	participant).	Interestingly,	our	
results	 revealed	 an	 asymmetry	 in	 the	 alteration	of	 correlations	when	 larger	 ranges	 of	
intervals	were	considered:	we	especially	observed	a	dramatic	decrease	of	correlations	
for	 negative	q-values,	 corresponding	 to	 low-variance	 epochs	 in	 the	 signals	 (Figure	 3).	
This	 result	 was	 particularly	 obvious	 in	 the	 third	 experiment,	 and	 suggests	 that	 high	
variance	 epochs	 in	 the	metronome	 signals	 allow	 a	 better	 synchronization,	 reinforcing	
the	hypothesis	of	a	discrete,	perceptual	basis	of	synchronization.		

These	results	question	a	number	of	 recent	experiments	dealing	with	 the	use	of	 fractal	
metronomes	with	the	perspective	of	rehabilitation	purposes	(Stephen	et	al.	2008;	Hove	
et	al.	2012;	Kaipust	et	al.	2013;	Torre	et	al.	2013;	Rhea	et	al.	2014;	Marmelat	et	al.	2014).	
In	 their	 seminal	 paper,	 Stephen	 et	 al.	 (2008)	 suggested	 that	 synchronization	 with	 a	
chaotic	 metronome	 was	 not	 based	 on	 local	 adjustments	 but	 rather	 on	 a	 global,	
multiscale	 coordination	 with	 the	 metronome.	 The	 present	 results	 cast	 doubt	 on	 this	
conclusion	 (see	 also	 Delignières	 &	 Marmelat,	 2014;	 Torre	 et	 al.,	 2013).	 Fractal	
metronomes	 have	 recently	 sparked	 a	 great	 interest,	 suggesting	 that	 they	 could	mimic	
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natural	 variability,	 and	 be	 used	 for	 conceiving	 artificial	 devices	 for	 training	 and	
rehabilitation,	 based	 on	 the	 complexity	matching	 effect.	Mimicking	 natural	 variability,	
especially	 with	 discrete	 signal	 series,	 seems	 not	 sufficient	 to	 generate	 the	 global	 and	
multiscale	coordination	hypothesized	in	complexity	matching.		

Complexity	matching	vs	continuous	local	coupling	

Our	 results,	 however,	 do	 not	 prove	 that	 the	 strong	 statistical	 matching	 observed	 in	
bimanual	coordination	and	interpersonal	coordination	is	due	to	complexity	matching,	as	
defined	in	the	introduction.	Recently,	Fine	et	al	(2015)	questioned	the	global	complexity	
matching	 hypothesis,	 and	 suggested	 that	 a	 local	 and	 continuous	 coupling	 between	
systems	could	underlain	the	statistical	matching	observed	in	such	situations.		
The	dynamical	systems	approach	to	coordination	promoted	a	phenomenological	model	
based	on	a	 continuous	 coupling	between	oscillators	 (Haken	et	 al.	 1985;	 Schöner	et	 al.	
1986).	 This	 so-called	 HKB	 model	 accounts	 for	 coordination	 by	 non-linear	 coupling	
between	two	hybrid	limit-cycle	oscillators,	based	on	the	two	oscillators’	state	variables	
(position	and	velocity):	
	

  !!x1 +δ !x1 + λ !x1
3 + γ x1

2 !x1 +ω
2x1 = ( !x1 − !x2 )[a + b(x1 − x2 )

2 ]   

  !!x2 +δ !x2 + λ !x2
3 + γ x2

2 !x2 +ω
2x2 = ( !x2 − !x1)[a + b(x2 − x1)

2 ]   (12) 

	
where	xi	is	 the	position	of	oscillator	 i,	 and	 the	dot	notation	represents	derivation	with	
respect	to	time.	The	left	side	of	the	equations	represents	the	limit	cycle	dynamics	of	each	
oscillator	determined	by	a	linear	stiffness	parameter	(ω)	and	damping	parameters	(δ,	λ,	
and	γ),	and	the	right	side	represents	the	coupling	function	determined	by	parameters	a	
and	b.	This	model	has	been	proven	to	adequately	account	for	most	empirical	features	in	
bimanual	coordination	tasks,	such	as	the	differential	stability	of	in-phase	and	anti-phase	
coordination	modes,	 and	 the	 transition	 from	anti-phase	 to	 in-phase	 coordination	with	
the	increase	of	oscillation	frequency	(Haken	et	al.	1985;	Schöner	et	al.	1986).		
One	can	indeed	suppose	that	this	kind	of	continuous	coupling	could	be	at	the	origin	of	
the	strong	statistical	matching	observed	in	coordination	experiments	(Fine	et	al.	2015),	
but	 the	 multifractal	 signature	 proposed	 in	 this	 paper	 could	 be	 unable	 to	 distinguish	
between	 genuine	 complexity	 matching	 and	 such	 local	 and	 continuous	 coupling.	 A	
solution	for	disentangling	these	two	hypotheses	is	to	analyze	the	series	produced	by	this	
model,	and	to	compare	them	to	those	empirically	observed.		

However,	 in	order	to	account	for	empirical	features,	the	original	HKB	model	should	be	
slightly	modified.	Especially,	it	has	been	proven	that	in	bimanual	coordination,	the	series	
of	 periods	 produced	 by	 each	 effector	 and	 the	 series	 of	 relative	 phase	 contained	 long-
range	 correlations,	 a	 property	 that	 the	 original	 HKB	 model	 was	 unable	 to	 generate	
(Torre	 and	Delignières	 2008a).	 The	 authors	 proposed	 to	 account	 for	 this	 behavior	 by	
replacing	the	fixed	linear	stiffness	parameter	ω	in	equations	(12)	by	a	two	independent	
discrete	 series	 ω1,i	 and	 ω2,i,	 exhibiting	 long-range	 correlation	 properties,	 and	
representing	the	inner	frequencies	of	oscillators	1	and	2,	respectively,	at	cycle	i.		

  !!x1 +δ !x1 + λ !x1
3 + γ x1

2 !x1 +ω1,i
2x1 + Qε1,t = ( !x1 − !x2 )[a + b(x1 − x2 )

2 ]   

  !!x2 +δ !x2 + λ !x2
3 + γ x2

2 !x2 +ω 2,i
2x2 + Qε2,t = ( !x2 − !x1)[a + b(x2 − x1)

2 ]   (13) 
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Note	 that	 they	 also	 introduced	 white	 noise	 terms	 of	 strength	 Q	 in	 the	 limit	 cycle	
equations,	as	suggested	by	Schöner	et	al.	(1986).	Torre	and	Delignières	(2008a)	showed	
that	 a	 relevant	 set	 of	 parameters	 allowed	 to	 simulate	 a	 stable	 in-phase	 coordination	
between	 the	 two	 oscillators,	 despite	 the	 intrinsic	 long-range	 correlated	 fluctuations	
injected	 in	 each	 oscillator.	 Their	 results	 replicated	most	 empirical	 results,	 in	 terms	 of	
mean	 and	 standard	 deviation	 of	 relative	 phase,	 and	 also	 concerning	 the	 presence	 of	
long-range	correlations	in	the	series	of	relative	phase.		

We	used	this	model	for	generating	pairs	of	series	of	coordinated	periods.	We	attempted	
to	 generate	 series	 reproducing	 the	 main	 features	 of	 the	 inter-personal	 coordination	
experiment,	in	the	strong	coupling	condition.	We	used	the	same	set	of	parameters	than	
Torre	and	Delignières	(2008a):	δ	=	0.5,	λ	=	0.02,	γ	=	1.0,	Q	=	0.4.	We	used	the	“hopping	
model”	 (Delignières	et	al.	2008;	Torre	and	Delignières	2008a)	 for	simulating	 the	 long-
range	correlated	series	ω1,i	and	ω2,i	around	a	mean	value	of	4π.	For	stabilizing	in-phase	
coordination	between	the	two	systems,	the	coupling	parameters	were	set	to	a	=	12	and	
b	=	6.	These	values	were	much	stronger	than	those	commonly	reported	in	the	literature	
(Fink	 et	 al.	 2000;	 Assisi	 et	 al.	 2005;	 Leise	 and	 Cohen	 2007),	 but	 were	 necessary	 for	
obtaining	a	stable	coordination	(Delignières	et	al.	2008;	Torre	and	Delignières	2008a).	
We	simulated	12	sets	of	series	of	512	data	points.	
Simulated	series	broadly	reproduced	experimental	results,	with	a	mean	relative	phase	of	
0.74°	 (+/-	 6.93).	 The	 mean	 period	 of	 oscillations	 was	 1001.14	 ms	 (+/-	 50.07).	 The	
standard	deviation	of	asynchronies	was	19.34	ms	(+/-	3.38).	We	present	in	Figure	6	(a	
and	b)	the	result	of	the	multifractal	analysis	of	these	coordinated	series.	As	can	be	seen,	
the	 correlation	 function	 r(q)	 exhibited	 very	 high	 values,	 even	 when	 considering	 the	
widest	 range	 of	 intervals.	 This	 result	 appears	 similar	 to	 that	 obtained	 with	 the	
experimental	 series	 (Figure	2),	 suggesting	 that	 this	 kind	of	 local,	 continuous	 coupling,	
could	indeed	underlay	the	observed	statistical	matching	between	series.		
However,	 a	 closer	 look	 to	 the	 coupled	 period	 series	 casts	 some	 doubts	 about	 this	
conclusion.	We	present	in	Figure	6	two	examples	subsets	of	coupled	series	(50	points),	
the	first	graph	(c)	corresponding	to	representative	experimental	series,	and	the	second	
(d)	to	simulated	series.	These	graphs	suggest	that	while	providing	comparable	statistical	
results,	 interpersonal	coordination	and	the	coupled	oscillator	model	works	differently.	
The	 simulated	 series	 present	 very	 close	 dynamics,	 resulting	 from	 the	 continuous	
coupling	of	positions	and	velocities	in	the	model.	In	contrast,	experimental	series	appear	
more	 independent,	 at	 least	 on	 this	 local	 scale.	 In	 order	 to	 quantify	 these	 local	
dependences,	 we	 computed	 the	 average	 local	 cross-correlation	 coefficient,	 using	 a	
sliding	 window	 of	 15	 points	 (Marmelat	 and	 Delignieres	 2012).	 The	 average	 cross-
correlation	coefficient	was	0.87	for	simulated	series,	but	close	to	zero	for	experimental	
series.		

One	could	argue,	however,	that	although	the	stiffness	series	ω1,i	and	ω2,i	included	in	the	
model	are	independent,	they	still	have	the	same	average	values,	and	that	more	realistic	
results	 could	 be	 obtained	 by	 introducing	 an	 asymmetry,	 i.e.	 a	 difference	 between	 the	
natural	 frequencies	 of	 the	 two	 systems.	 In	 order	 to	 check	 this	 point,	 we	 performed	
additional	simulations	 introducing	a	10%	detuning	between	the	 two	oscillators	 (mean	
ω1,i	=	4π,	and	mean	ω2,i	=	4.4π).	All	others	parameters	were	unchanged.	This	new	set	of	
simulations	 gave	 essentially	 similar	 results,	 suggesting	 that	 the	 symmetry	 of	 the	 first	
model	 cannot	per	 se	 explain	 the	 strong	 local	 convergence	 of	 the	 simulated	 series.	We	
present	 in	 Figure	 6	 (panel	 e)	 an	 example	 subset	 of	 series	 simulated	 with	 these	 new	
settings.		
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Figure	6:	Panel	a:	Average	multifractal	spectra	for	the	two	simulated	oscillators.	Panel	
b:	Correlation	functions	r(q),	for	the	four	ranges	of	intervals	considered	(8	to	N/2,	16	to	
N/2,	 32	 to	 N/2,	 and	 64	 to	 N/2).	 Panel	 c:	 Representative	 subsets	 of	 coupled	
experimental	series	(50	points).	Panel	d:	Representative	subsets	of	coupled	simulated	
series	(symmetric	model).	Panel	d:	Representative	subsets	of	coupled	simulated	series,	
with	a	10%	detuning.		

These	results	suggest	 that	a	 local	continuous	coupling,	as	proposed	 in	 the	HKB	model,	
can	 indeed	 mimic	 the	 statistical	 matching	 supposed	 to	 emerge	 from	 complexity	
matching.	 However,	 this	 kind	 of	 coupling	 generates	 a	 very	 close	 correspondence	
between	 the	 trajectories	 of	 oscillators,	 which	 seems	 unrealistic	 in	 view	 of	 the	
experimental	observations.		
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Conclusion		

Complexity	matching	 is	 a	 very	 innovative	 hypothesis,	which	 has	 recently	motivated	 a	
number	 of	 theoretical	 and	 experimental	 contributions.	 In	 this	 paper	 we	 introduce	 a	
method,	based	on	multifractal	analysis,	 for	distinguishing	between	genuine	complexity	
matching	and	 local	discrete	coupling.	Our	results	show	that	some	situations	 that	were	
considered	 prototypic	 of	 complexity	matching,	where	 participants	 had	 to	 synchronize	
with	 a	 fractal	 metronome,	 seem	 controlled	 through	 local	 adjustments.	 In	 contrast,	
genuine	complexity	matching	seems	occurring	when	two	complex	systems	are	mutually	
coupled.		

Complexity	matching	and	local	discrete	coupling,	however,	are	not	necessarily	exclusive.	
One	could	conceive,	for	example,	that	in	some	tasks	synchronization	could	be	achieved	
through	 a	 mix	 of	 the	 two	 processes.	 Moreover,	 the	 respective	 contribution	 of	 each	
processes	 could	 differ	 among	 participants	 (see,	 for	 example,	 Delignieres	 and	 Torre	
2011).	 Further	 investigations,	 focusing	 on	 individual	 series	 and	 based	 on	 cross-
correlations	should	provide	some	insights	about	this	hypothesis.		
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