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Abstract

In this paper, we focus on the farmer’s risk income, by using commodity futures, when price 
and output processes are correlated random represented by jump-diffusion models. We eval-

uate the expected utility of the farmer’s wealth and we determine, at each instant of time, the 
optimal consumption rate and hedge position at given the time to harvest and state variables. 
We find a  c losed form optimal position of consumption and position rate in case of CARA 
utility investor. This result (see table 1.5) is a generalization of Ho (1984) result who consider 
the particular case where price and output are diffusion models.

Key words: Jump-diffusion process, futures, stochastic dynamic programming, Lévy measure, 
risk management

1. Introduction
Agricultural production is a risky business. Because agriculture is often carried out in the open
air and always involves the management of living plants, it is particularly exposed to risk.
Production risks are often the result of poor predictability in the medium or long term, weather
conditions, and uncertainty about crop performance due to the impact of pests, disease or many
other unpredictable factors. For several years, the countries of the world have intervened to
help farmers cope with the risks associated with the production or the variation of the prices
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on the markets of agricultural commodities. Some national or international developments have
led some governments to reorient their agricultural policies towards deregulation, and a more
market-oriented approach. Much of the protection of some farmers against the uncertain future
volatility of the markets has been removed. In addition, issues as risky as food security and
environmental impacts are receiving increasing attention. Thus, future risk analysis and risk
management in agriculture can be expected to receive increased attention (see Stulz (1984)-
Stulz (1996) and some references therein).

In addition, prices of agricultural inputs and outputs are often overlooked when a farmer
has to decide how much input to use, or how much produce to produce, so that income risk
due to market volatility or production is diminished. In addition to the price risk, it takes into
account the exchange rate risk in the context of the import of inputs or the export of agricultural
production. Note that, governments can be another source of institutional risk (political risk,
sovereign risk, etc.) for farmers. Changes in the rules that affect agricultural production would
have, as a corollary, implications for profitability. For example, changes in the income tax
provisions or the availability of various incentive payments. Horticultural producers may be
severely affected by new restrictions on the use of pesticides, just as owners of intensive live
animal farms may be affected by the introduction of restrictions on the use of drugs for the
prevention and control of pesticides. the treatment of diseases. One can also cite the contractual
risks, that is to say the risks inherent in the relations between the trading partners. For example,
the unexpected breakdown of agreements among participants in supply chains is a significant
source of risk in modern agribusiness.

Many people or organizations who need to concern themselves with risk in agriculture in-
clude: farmers, farm advisers, commercial firms selling to or buying from farmers, agricultural
research workers, and policy makers and planners. Policymakers and planners of public or
private agricultural policies also need to consider risks and farmers’ responses to risks. Thus,
models that include risk could provide better predictions of farmer behavior than those that do
not. It should be noted that agricultural policy development and planning are themselves risky
activities. It is also necessary for farmers to plan the risks they face. The well-being of the
farmer, as well as the survival of the farm business, may depend on how agricultural risks are
managed. Occurrence of extreme risks could jeopardize the survival of an agricultural activ-
ity. The ambition of many farmers to return the farm to a flourishing condition in the coming
years may be frustrated if risk management is neglected. Farmers must also recognize that risk
and risk aversion influence their production decisions or more generally management. Mention
should also be made of the risks associated with innovation. Farmers must not neglect the risks
inherent in moving from an existing production system to another system that is supposed to be
"superior". It should be mentioned that the adoption of untested "improved" technology may
involve a high degree of risk to the farmer, especially if the adoption of the technology requires
a substantial capital investment. This risk may be higher if the farmer has no direct experience
of the new method.
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Similarly, agricultural traders who buy from farmers may well consider the farmers’ willing-
ness to reduce market risks. Thus, some of them will be willing to accept a lower price for
their production, if the buyer is willing to offer a futures contract at a guaranteed price. The
buyer and the seller may benefit from such an arrangement. The purchase or sale of derivatives
may be useful in reducing price risk for both future and future products. The most important
examples are the futures market hedging of commodities or the purchase or sale of call or put
options (see Sakong et al. (1993)), depending on the farmer’s need for hedging (see Anderson
and Danthine (1980) and Anderson and Danthine (1983)). The hedging on the futures market
is quite similar to the forward contract sale but with a number of differences. One important
difference is that futures contracts are standardized and largely traded contracts, so that prices
are determined more competitively than for a specific contract between a single farmer and a
single trader. Thus, the farmer can get a better deal by hedging on the futures market than by
contract sales. In fact, the seller of a futures contract undertakes to deliver a quantity fixed in
the contract, of a defined category of the product traded at a given date. The buyer undertakes
to receive the delivery of this quantity of product on this date at the price fixed in the contract.
In practice, the delivery of the goods often does not take place. For example, a farmer may
hedge to reduce future price risk by selling a futures contract for a product that is as close as
possible to the product the farmer expects to have. For more details concerning Futures Hedg-
ing under price or production risks see Moschini and Hennessy (2001), Harvey Lapan (1991),
Lapan and Moschini (1994) and Lioui and Poncet (1996) - Lioui and Poncet (2003). The cocoa
producer plans to sell the cocoa in September. In May the producer decides to hedge on the
futures market and so sells a futures contract for an amount of cocoa approximately equal to
total production. For convenience, assuming that the October futures price at that moment is
500 euros/ton. By selling such a contract the farmer is agreeing to supply the specified quantity
of cocoa of the specified quality in October at the contract price.

It is also important to take into account the risk aversion of the farmers (see Morgenstern and
Von Neumann (1953) and Lien and Hardaker (2001) for more details). The function of absolute
risk aversion to risk can be categorized according to its evolution in relation to the increase
in wealth, such as the increase in absolute risk aversion (IARA), the absolute risk aversion (
CARA) or decreasing absolute risk aversion (DARA). As a result, relative risk aversion can
be categorized as increasing, constant or decreasing with wealth (IRRA, CRRA and DRRA,
respectively). Constant risk aversion (CARA) means that preferences are unchanged if a con-
stant sum is added or subtracted from all payments. Constant relative risk aversion (CRRA)
means that preferences among at-risk perspectives are unchanged if all gains are multiplied by
a positive constant. A more general and flexible utility function that characterize risk aversion
is proposed in Aït-Sahalia et al. (2009). In this paper, we consider as in Ho (1984), that the
farmer has an aversion to the constant risk of CARA type.

Risk hedging can be thought of as the process of simultaneously selecting the futures posi-
tion and the underlying asset positions to build a portfolio of assets. The futures markets on
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commodities are these organized markets with a clearing which eliminates counterparty risk,
liquidity risk and allows hedge against adverse exchange rate movements. To do this the agent
must establish a strategy for risk management. What strategy should he choose ? Considering
the approach of Morgenstern and Von Neumann (1953) who demonstrated in that the maxi-
mization of expected utility is a criterion for rational decision. The optimum consumption and
portfolio rules in a continuous-time model has been introduced in Merton (1971). In the same
spirit, Ho (1984) maximizes the consumption and wealth utility function of a farmer in the con-
text of agricultural commodities . The latter paper use a model of consumption and investment
in continuous time to determine the optimal behavior to have in the markets by a US wheat
producer subject to the risks of prices and quantities through the monthly data for the period
1977 - 1980.

Anderson and Danthine (1983), Marcus and Modest (1984), Ho (1984) and Hey (1987) first
develop dynamic Hedging models which assumes that producers can revise their hedge position
during the growing season. Ho (1984) allowed for hedge positions to be continuously adjusted
over time. Karp (1988) extended the Anderson and Danthine’s models by adding stochastic pro-
duction. Karp (1987) has developed a continuous model similar to Ho (1984). Unfortunately,
paper Ho (1984) assumes that the evolution of commodity prices follows a Brownian-type con-
tinuous diffusion process. Indeed, the Brownian-type processes do not really take into account,
the occurrence of jumps or strong turbulence in the evolution of the price of convenience. It
should be noted that jumps diffusion process are among the stochastic processes, that are most
often used in financial econometrics, to model the dynamics of asset prices. Discontinuities
in these random processes are modeled with jumps. In addition, asset prices sometimes have
breaks in their evolution, especially during periods of turbulence, such as the occurrence of bub-
bles or financial crises. In our paper extends Ho’s model by assuming that the evolution of price
follows a stochastic process with Levy jump, and that the logarithmic variation of the quantity
produced by the farmer follows a normal distribution. Fore more details on jumps diffusion
processes (see for instance Aït-Sahalia et al. (2009), Cont and Tankov (2004), Hanson (2007)
and some references therein).

In this paper, we study a normative model of optimal hedging strategy of the farmer coupled
with its consumption behavior in a continuous time jumps-diffusion framework. Some papers
such as Rolfo (1980) has analyzed the farmer’s hedging strategies in a one-period context. How-
ever, as mentioned in Ho (1984), in a one-period model some rather restrictive conditions are
imposed on the individual’s behavior. The one-period model assumes that the farmer ignores all
past information. As a result, the farmer does not adjust over time its consumption and its hedg-
ing strategy against the risk of price and production through future contracts. These conditions
can be relaxed in a continuous-time jump-diffusion framework. In an intertemporal frame-
work, the farmer’s hedging problem may be based on the assumptions that follows. We assume
that the farm income (at harvest) depends on both the spot price and the output (in bushels),
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the farmer is subject to both price and output uncertainties during the production period. The
farmer can hedge in commodity futures market, but he cannot eliminate both the price and pro-
duction uncertainties by any hedging strategy. Other papers have also looked at intertemporal
setups. In a discrete-time framework, Neuberger (1999) examines hedging long-term commod-
ity supply commitment with multiple short term futures contracts. Duffie and Stanton (1992)
price continuously resettled contingent claims, which bear some similarities with continuous-
time instantaneous forward contracts, as the current market value of such claims is always zero.
Smith and Stulz (1985) classify rationales for hedging into two categories: costs and risk aver-
sion. They devote entire section IV in their paper to hedging motivated by risk aversion of
managers. Mathematically, manager maximizes an objective function (expected utility) which
is already concave. In that case individual preferences result directly in hedging behavior.

Our contribution is to revisit the work of Thomas Ho in the same context, taking into account
jumps in price trends. Under our new assumptions regarding the stochastic evolution of price
and quantity, added to that of Ho (1984), we obtain a coverage ratio (see the last line of Table
1.5), which is quite different from that found in Ho’s paper.

This article is divided into four sections. This article is divided into four sections. The
first section entitled "Modeling" study the optimal portfolio and determine the design pf its
optimal decisions, and the last section presents the final conclusion and remarks and possible
some possible orientations of Farm Risk management. The first section of the appendix entitled
"jump-diffusion process" introduces the preliminaries concepts of stochastic calculus for jump-
diffusion model, and the section of the appendix entitled "Stochastic Dynamic Programming"
provides tools for dynamic programming process jump-diffusion.

2. Modeling

2.1. Assumptions
A-1 • The farmer’s optimal behavior is determined in a continuous-time, finite horizon

framework. The harvest time T is assumed to be known.

• At the beginning of the period (the planting season), the farmer makes his production
decision on the quantity of crops, Q bushels, to be produced. At the end of the period
(the harvest time), he sells all the crops at the prevailing spot price P (per bushel),
and hence, his farm income is given by PQ.

A-2 • During the production period (time between the planting and harvest seasons) the
farm income is subject to two sources of uncertainty:

1. the price at which the crop will be sold (Price risk), P

2. the quantity of the crop which will be sold (output risk)Q.
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• At each time t, the farmer forms expectations of the spot price Pt and output Qt at
harvest, and then at the next instant, with more information, the farmer revises the
expectations:

• Pt and Qt are Itô-Lévy processes.

dQt = σQQtdZt (1)

dPt

Pt−
= σPdωt +(eJ−1)dNt−λE(eJ−1)dt (2)

dZtdωt = ρdt (3)

σQ and σP are the constant instantaneous standard deviation of the anticipated out-
put and anticipated spot price, respectively, ρ is the instantaneous correlation coef-
ficient, dZt and dωt are standardized Wiener processes and dNt is a Poisson process
with arbitrary distributed jump amplitude J. The symbol E in front of (eJ − 1)
stands for the expectation under physical measure and the constant variable λ is the
jump intensity of the Poisson process.The two stochastic processes Nt , ωt and J are
mutually independent. For more details see Zhang et al. (2012) et Ho (1984).

A-3 There are frictions in the real sector.

i) During the production period, the farmer cannot affect the output level by commit-
ting further investment ( buy more acreage) or disinvestment (land abandonment or
selling off portions of the business).

ii) Significant agency costs prohibit the farmer from shifting the uncertainty of farm
income to the market through issuance of shares.

A-4 • The futures market is assumed to be perfect:

* Participants can trade costlessly and continuously

* The futures contracts are perfectly divisible.

* The contracts have the settlement date at the time of harvest.

* mark-to-market settlements occur continuously through time, so that the net
value of the contract always remains zero.

• Each contract calls for a delivery of one bushel.Those holding long positions
promise to take delivery of the underlying crop and make payment at the futures
price of the contract; those holding short positions promise to make delivery of the
underlying com- modity and receive payment at maturity at the futures price of the
contract.
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• Let Ft denote the equilibrium settlement price on the contract at time t. Ft is stochas-
tic, and it is characterized by Ft = Pt for more details see Mahul and Vermersch
(2000). Thus dFt = dPt .

A-5 The farmer has a cash account:Wt Wt that may be positive (negative) on which a constant
rate of interest r is received (paid).Any net cash flow resulting from either position in
futures contracts or from consumption is deposited or withdrawn from this cash account.
Therefore, the borrowing rate equals the lending rate.

A-6 During the period, at each instant t, the farmer has to determine optimal consumption
rate
c∗t : optimal consumption rate and
x∗t the futures position : such that the expected additive utility of consumption is
maximized

maxc,x E[
∫ T

0 U(c, t)dt +B(YT ,T )] with YT = PT QT +WT

where ∀t ≥ 0 Yt the total wealth at time t, PtQt is the crop at time t, Wt : the cash
account value at time t, B(.,T ) is the terminal utility of wealth and is assumed to be a
concave function and U(c, t) an instantaneous utility function for consumption such that

:

∂U
∂c > 0
∂ 2U
∂c2 < 0.

2.2. Objective function and the Optimal Decisions
• Let xt denote the number of contracts held by the farmer at time t in a short position

• Let dFt : variation due to an increase in the settlement price of the futures

• xtdFt : denote the amount, in cash, to pay at the clearing corporation by the farmer.

• the change in the farmers cash account is the sum of three cash flows:

– The interest earned from the cash account: rWtdt

– The consumption : −ctdt

– the mark-to-market settlement of his futures position

• This is summarized by the following budget constraint equation

dWt = (rWt− ct)dt− xtdFt (4)
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• To derive optimal decisions, x∗t and c∗t , we utilize the Bellman stochastic dynamic
programming technique.
The objective function

JT (W,F,Q, t) = max
ct ,xt ,t<T

Et [
∫ T

t
U(c,s)ds+B(YT ,T )] (5)

where Et is an expectation operator, conditional on W (t) = W,F(t) = F,Q(t) = Q and
cs > 0.

• Substituting the minimization operator by maximization one into (75) JT is the solution
of Hamilton-Jacobi-Bellmann equation

JT
t +max

c,x
[H (y, t)] = 0 (6)

this can also be written as follows

max
c,x

[dJT +U(c, t)dt] = 0 (7)

satisfying the boundary condition

JT (W,F,Q,T ) = B(FT QT +WT ,T ). (8)

• The boundary condition impose that the optimized derived utility equal to, (at time T),
the terminal utility of wealth, since the consumption equal to zero when the wealth equal
to zero to. This is the initial value to our dynamic programming. Thus, this problem is a
time backwardation problem. See Beckmann and Czudaj (2013) for further details

3. Solution

3.1. Evaluation of dynamics dWt , dYt and dJT

Let us evaluate dWt .

since

dFt = dPt

Ft = Pt ,
then

dFt

Ft−
= σFdωt +(eJ−1)dNt−λE(eJ−1)dt (9)

dQt = σQQtdZt (10)

dZdω = ρdt (11)
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Substituting dFt into (4), we obtain

dWt = (rWt− ct)dt− xtdFt (12)

= (rWt− ct)dt− xtFt−σFdωt + xtFt−[λE(eJ−1)dt− (eJ−1)dNt ] (13)

Thus

dWt = [rWt− ct + xtλFt−E(eJ−1)]dt− xtFt−σFdωt− xtFt−(e
J−1)dNt (14)

Let us evaluate a dynamic dYt of the wealth farmer Yt .
Since

Yt = PtQt +Wt = FtQt +Wt , (15)

then

dYt = dFtQt +dWt (16)

Applying (57) to dFtQt , such that (16) takes the form

dYt = FtdQt +QtdFt +d[Ft ,Qt ]+dWt (17)

Applying (62) to d[Ft ,Qt ], such that (17) takes the form

dYt = FtdQt +QtdFt +d < Ft ,Qt >
c +∆Fs∆Qs +dWt (18)

Since d < Ft ,Qt >
c= ρσFσQFt−Qtdt and ∆Qs = 0, then (17) takes the form:

dYt = [(rWt− ct)−λ (Qt− xt)E(eJ−1)Ft−+ρσFσQFt−Qt ]dt

+σF(Qt− xt)Ft−dωt +σQFt−QtdZt

+(Qt− xt)Ft−(eJ−1)dNt (19)

Let (ω1,ω2) be two independent standard Wiener Processes satisfying : ωt = ω1
t and Zt =

ρω1
t +
√

1−ρ2ω2
t . Thus (19) takes the form:

dYt = [(rWt− ct)−λ (Qt− xt)E(eJ−1)Ft +(ρσFσQFtQt)]︸ ︷︷ ︸
α1

dt

+[(Qt− xt)FtσF +ρσQFtQt ]︸ ︷︷ ︸
α2

dω
1
t +σQFtQt

√
1−ρ2︸ ︷︷ ︸

α3

dω
2
t

+(Qt− xt)Ft(eJ−1)dNt (20)

Let us evaluate dJT .
Applying (71) to JT (Yt , t) = maxct ,xt Et [

∫ T
t U(c,s)ds+B(YT ,T )], we obtain:

dJT = JT
t dt + JT

Y α1dt +
1
2

JT
Y 2(α

2
2 dt +α

2
3 dt)

+λdt
∫
[JT (Yt +(Qt− xt)Ft(eJ−1)z, t)− JT (Yt , t)]ν(dz) (21)
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as Et(dω i
t ) = 0 for i = 1;2.

End this paragraph by the dynamic programming equation.
Substituting (21) into maxc,x[dJT +U(c, t)dt] = 0, we obtain this following result:

max
ct ,xt

(
JT

t + JT
Y [(rWt− ct)−λ (Qt− xt)E(eJ−1)Ft +(ρσFσQFtQt)]

+
1
2

JT
Y 2

t
F2

t [(Qt− xt)
2
σ

2
F +2ρ(Qt− xt)σFσQQt +σ

2
QQ2

t ]

+λ

∫
[JT (Yt +(Qt− xt)Ft(eJ−1)z, t)− JT (Yt , t)]ν(dz)+U(ct)

)
= 0. (22)

As equation (22) exist, the optimal decisions (c∗,x∗) satisfy the first order conditions.

3.2. Evaluation of c∗t and x∗t
Let us evaluate c∗t .
The first order condition is obtained by deriving the terms into maximization operator with
respect to c. We obtain:

− JT
Y +Uc(c, t) = 0 (23)

thus, t The optimal consumption rate is determined such that the marginal utility of consumption
equates the marginal derived utility in wealth.
we obtain:

Uc(c∗, t) = JT
Y (Y, t) (24)

. This result was obtained by Ho (1984) in case of no jump into dynamic processes.
Hence c∗ is determined independently of the hedging decisions:

c∗ = [
∂U
∂c

]−1[
∂JT (Y, t)

∂Y
]. (25)

Let us evaluate x∗t .

Let us write the second condition of first order and derive the optimal position x∗t .
To do this, we utilize an utility functions defined by: U(c, t) = e−β tV (c) and G(Y, t) = e−β tL(Y )

where V is the utility function of consumption, L is the utility function of wealth. The choice
of U and G (as product of two functions with separable variables) is motivated by the fact that
the consumption and wealth processes are Markov processes.
More, we suppose that these two utility functions are exponential utility function type: V (c) =

−1
q exp(−qc) and L(y) =−K

q exp(−rqy) where q > 0 and K a positive constant.
Let us evaluate c∗t in this case.
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since ∂L(y)
∂y = rK exp(−rqy) =−rqL(y) and ∂ 2L(y)

∂y2 = r2q2L(y), thus (25) takes the form:

c∗ = rY − 1
q

log(rK). (26)

Substituting these two functions into (22), we obtain:

0 = max
ct ,xt

(
V (ct)−βL(Yt)− rqL(Yt)[(rWt− ct)+ρσFσQFtQt−λ (Qt− xt)E(eJ−1)Ft ]

+
1
2

r2q2L(Yt)[(Qt− xt)
2
σ

2
FF2

t +2ρ(Qt− xt)σFσQF2
t Qt +σ

2
QF2

t Q2
t ]

+λ

∫
[e−rq[(Qt−xt)Ft(eJ−1)z]L(Yt)−L(Yt)]ν(dz)

)
. (27)

We divide this term by rqL(Yt). since qL(Yt) < 0, thus the max is replaced by the min (27)
takes the form:

0 = min
ct ,xt

(
V (ct)

rqL(Yt)
− β

rq
− [(rWt− ct)+ρσFσQFtQt−λ (Qt− xt)E(eJ−1)Ft ]

+
1
2

rq[(Qt− xt)
2
σ

2
FF2

t +2ρ(Qt− xt)σFσQF2
t Qt +σ

2
QF2

t Q2
t ]

+
λ

rq

∫
[e−rq[(Qt−xt)Ft(eJ−1)z]−1]ν(dz)

)
. (28)

Let us evaluate K :
We deduce its value by replacing (ct ,xt) by (c∗t ,x

∗
t ) into (28). So we obtain:

K =
1
r

exp
(

1− β

r
−q[(rWt− rqY )+ρσFσQFtQt−λ (Qt− xt)E(eJ−1)Ft ]

+
1
2

rq2[(Qt− xt)
2
σ

2
FF2

t +2ρ(Qt− xt)σFσQF2
t Qt +σ

2
QF2

t Q2
t ]

+
λ

r

∫
[e−rq[(Qt−xt)Ft(eJ−1)z]−1]ν(dz)

)
. (29)

To evaluate x∗t , we distinguish two case: λ = 0 and λ 6= 0.

First case: λ = 0, i.e, the dynamic of price is pure diffusive process .
The condition of first order, i.e, the derivative of second term of equation (28) with respect to
x is zero, applying it to (28) we obtain:

rq[(Q− x)σ2
FF2 +ρσQσFF2Q] = 0 (30)

ainsi

x∗t,P = (1+ρ
σQ

σF
)Q. (31)

Remark: 3.1. The optimal hedge ratio
x∗t,P
Q = (1+ρ

σQ
σF

) depend to the correlation ρ between
the two uncertainties, the price P and the quantity Q. If the correlation is negative, the
farmer’revenue is less uncertain, thus the farmer would not hedge his entire position in futures
market.
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Second case: λ 6= 0.
Like Aït-Sahalia et al. (2009), we choose a Levy measure to obtain a closed form.
Consider the Levy measure defined by: ν(dz) = βe−ηz1I{z≥0}dz where β and η are strictly
positive constant. This measure satisfies

∫
IR min(1, |z|)ν(dz)< ∞

The calculation of integral term into (28) gives:

λ

rq

∫
[e−rq(Qt−xt)Ft(eJ−1)z−1]ν(dz) =

λ

rq

∫ +∞

0
[e−rq(Qt−xt)Ft(eJ−1)z−1]ce−ηzdz (32)

=
λβ

rq

∫ +∞

0
[e−[rq(Qt−xt)Ft(eJ−1)+η ]z− e−ηz]dz (33)

=
λβ

rq

[ 1
rq(Qt− xt)Ft(eJ−1)+η

− 1
η

]
. (34)

The second condition of first order applying to (28) give us:

−λE(eJ−1)Ft− rq(Qt− xt)σ
2
FF2

t − rqρσFσQF2
t Qt

+λβ

[ Ft(eJ−1)
(rq(Qt− xt)Ft(eJ−1)+η)2

]
= 0. (35)

(35) it is an implicit form of cubic equation in (Qt− xt) contains xt . Otherwise xt is solution of
(35).
Setting S = (Qt − xt), (35) takes the form aS3 +bS2 + cS+d = 0 and setting X = S+ b/a

3 , the
equation takes the form X3 + pX + q = 0. The discriminant is ∆ = p3

27 +
q2

4 . We solve in case
where ∆ < 0 (this implies that p < 0). The equation has three real solutions. Since we minimize
in the objective function , we consider the smallest solution defined by:

(Qt− x∗t ) =−
b/a

3
+

√
−4p

3
cos(

1
3

arccos(−q

√
−27
4p3 −

2π

3
)) (36)

By replacing p and q by its values we obtain:

x∗t = (1+
1
3

ρ
σQ

σF
)Q+

2η

3rqF
+

λE(eJ−1)
rqσ2

FF
(eJ−1)

+

(
+

4
9

ρ2σ2
QQ2

σ2
F

+
8
3
(2

3
(eJ−1)−1

)ηλE(eJ−1)
r2q2σ2

FF2 −
8ηρσQQ
3rqσFF

+
(16

3
− 4
(eJ−1)

) η2

3r2q2F2 +
16ρσQQη

9σFrqF

+
8λρσQQE(eJ−1)

9rqσ3
FF

(eJ−1)+
4λ 2E2(eJ−1)

9r2q2σ4
FF2 (eJ−1)3

) 1
2

cos
(

1
3

arccos
((
− 2

27
ρ

3 σ3
FQ3

σ3
F
− 16η3

27r3q3F3

− 2λ 3E3(eJ−1)
27r3q3σ3

FF3
(eJ−1)3− λE(eJ−1)

r3q3(eJ−1)σ2
FF3 +

λc
r2qσ2

FF3 −
η2ρσQQ

r2q2σ2
FF2(eJ−1)

− 2λE(eJ−1)(eJ−1)
9rqσ2

FF

(ρ2σ2
QQ2

σ2
F

+
4η2

r2q2F2

)
−

2ρσQQ
9σF

(λ 2E2(eJ−1)(eJ−1)2

r2q2σ4
FF2 +

4η2

r2q2F2

)
− 4η

9rqF

(λ 2E2(eJ−1)(eJ−1)2

r2q2σ4
FF2 +

ρ2σ2
QQ2

σ2
F

)
− 2λ 2E2(eJ−1)(eJ−1)2

9r2q2σ4
FF2

(ρσQQ
σF

+
2η

rqF

)
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−
8ληE(eJ−1)(eJ−1)ρσQQ

r2q2σ3
FF2

+
4ηρσQQ
3rqσFF

+
4ηE(eJ−1)λ

3r2q2σ2
FF2 +

2η2

3r2q2(eJ−1)F2

)
× 3
√

3
2

(
+

1
3

ρ2σ2
QQ2

σ2
F

+2
(2

3
(eJ−1)−1

)ηλE(eJ−1)
r2q2σ2

FF2 −
2ηρσQQ
rqσFF

+
(4

3
− 1
(eJ−1)

) η2

r2q2F2 +
4ρσQQη

3σFrqF

+
2λρσQQE(eJ−1)

3rqσ3
FF

(eJ−1)+
λ 2E2(eJ−1)
3r2q2σ4

FF2 (eJ−1)3
)−3

2 − 2π

3

))
. (37)
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ρ

σ
Q

σ
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x∗ t
=
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+
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ρ

σ
Q

σ
F
)Q

+
2η 3r
qF

+

λ
E
(e

J −
1)

rq
σ

2 F
F
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J
−
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+

( +
4 9

ρ
2 σ

2 Q
Q

2

σ
2 F

+

8 3

( 2 3
(e

J
−

1)
−

1) ηλ
E
(e

J −
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r2
q2

σ
2 F
F

2
−

8η
ρ

σ
Q

Q
3r

qσ
F

F
+

( 16 3
−

4
(e

J −
1)

) η
2

3r
2 q

2 F
2

+
16

ρ
σ

Q
Q

η

9σ
F

rq
F

+

8λ
ρ

σ
Q

Q
E
(e

J −
1)

9r
qσ

3 F
F

(e
J
−

1)
+

4λ
2 E

2 (
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1)
9r

2 q
2 σ

4 F
F

2
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J
−
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3)1 2
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1 3
ar

cc
os
(−

q√ −2
7

4p
−
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4. Conclusion
This work proposes an investment-consumption model, in continuous-time, which determine
the optimal instantaneous consumption and optimal hedging position using futures by the
farmer in managing income risk (price risk and production uncertainty). In our model we
assume that the price process is a jump-diffusion process and it generalizes Ho (1984) who
assumed that this price process is a diffusion process. We justify that the optimal instantaneous
consumption is unchanged in both models. Assuming the farmer preferences for consumption
and wealth are represented by exponential utility functions, we determine a closed formula of
the optimal hedge ratio. Our principal result is the last line of the precede table 1.5 (see also
the remark 1.1)

An open question is the implementation of the theoretical results with real data from
Cameroonian cocoa market, to provide a hedging policy to stakeholder.

A. Jump-diffusion process

A.1. Counting measure of jumps
Definition A.1. Let be t ≥ 0, A ∈B(IRd \{0}) and the random quantity

N(t,A) = #{0≤ s≤ t;∆Xs ∈ A}= ∑
0≤s≤t

1IA(∆Xs). (38)

For all ω , the function of sets A 7→ N(t,A)(ω) is a counting measure on B(IRd \{0}). So

A 7→ E[N(t,A)] (39)

is a Borel measure on B(IRd \{0}). 0ne denote µ(.) = E[N(1, .)] is called intensity measure of

process X .

For all t ≥ 0 and A lower bounded , we define a compensated random jump measure Ñ by :

Ñ(t,A) = N(t,A)− tµ(A). (40)

Remark: A.1. N(t,A) is a shorthand measure notation for the measure set N([0, t]×A).

A.2. Space-time Poisson process
Also called general compound Poisson processes, marked Poisson point processes. The space-
time Poisson process is a generalization of Poisson process denoted by

N (dt,dq) = N (]t, t +dt], ]q,q+dq]) (41)

Poisson mark space Q : ∫
Q

N (dt,dq) = dN(t;Q) (42)
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et ∫ t

0

∫
Q

N (ds,dq) =
∫ t

0
dN(s,Q) = N(t;Q) (43)

.
Example: if Q = {1}, the number of jumps in ]t, t +dt] is deduced from:∫

Q
N (dt,dq) = N (dt,{1}) = N(dt) = dN(t;1) = dN(t) = dNt (44)

A.3. Jump-diffusion and conditional infinitesimal moments
The Poisson and Wiener processes provide stochastic differential equations (SDE) in continuous
time for simple jump-diffusion state process X(t),

dX(t) = f (X(t), t)dt +g(X(t), t)dω(t)+h(X(t), t)dN(t), (45)

Where X(0) = x0, with a set of continuous function { f ,g,h} taken as coefficients and eventu-
ally non linear.

N, a random Poisson measure with intensity dt
⊗

dµ on IR+× (IRd \{0}).
If h : IRd → IRn is a function Borel-measurable and if A ∈B(IRd \ {0}) satisfies µ(A) < +∞,
one defined, for all t ≥ 0 and ω ∈Ω, Poisson integral of h by∫

A
h(z)N(t,dz) = ∑

z∈A
h(z)N(t,{z}). (46)

Ito processes are jump-diffusion processes. Levy processes are essentially jump-diffusion pro-
cesses, but extended to processes with infinite rate of jump. Jump-diffusion processes with
constants coefficients are Levy processes.

Assuming Poisson and Wiener processes are independents. The conditional moments are
determined as follows:

E[dX(t)|X(t) = x] = ( f (x, t)+λ (t)h(x, t))dt, (47)

and

Var[dX(t)|X(t) = x] = (g2(x, t)+λ (t)h2(x, t))dt, (48)

The jump in state process is given by

[X ](T k)≡ X(T+
k )−X(T−k ) = h(X(T−k ),T−k ) (49)

where

[X ](t) = h(X(t), t)dN(t), (50)

The infinitesimal moment and jump properties are very useful for modeling approximations
of real applications, by providing a basis for estimating the coefficient functions f , g, and h, as
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well as some of the process parameters, at least in the first approximation, through comparison
to the empirical values of the basic probability corresponding of the stochastic integral equation.

A.4. Stochastic Jump-Diffusion Chain Rule
The state process is decomposed into continuous changes,

d(cont)X(t) = f (X(t), t)dt +g(X(t), t)dω(t) (51)

and discontinuous or jump changes,

d(saut)X(t) = [X ](t) = h(X(t), t)dN(t) (52)

such that

dX(t) = d(cont)X(t)+d(saut)X(t). (53)

Thus, the change of a composite function of the state process X(t), dF(X(t), t), can be decom-
posed into the sum of continuous and discontinuous changes.
The function F(x, t) is assumed to be at least twice continuously differentiable in x and once in
t. This leads to

d(cont)F(X(t), t)' Ft(X(t), t)dt +Fx(X(t), t)d(cont)X(t)+
1
2

Fxx(X(t), t)(d(cont)X(t))2, (54)

For continuous composite and to

d(saut)F(X(t), t) = (F(X(t)+h(X(t), t), t)−F(X(t), t))dN(t) (55)

for jump composite.
Combining the continuous and discontinues changes, we derive:

dF(X(t), t) =F(X(t)+dX(t), t +dt)−F(X(t), t)

=Ft(X(t), t)dt +Fx(X(t), t).( f (X(t), t)dt +g(X(t), t)dω(t))

+
1
2

Fxx(X(t), t).g2(X(t), t)dt

+(F(X(t)+h(X(t), t), t)−F(X(t), t))dN(t).

(56)

A.5. Quadratic covariation
Proposition A.1. If X, Y are Levy processes, then

XtYt = X0Y0 +
∫ t

0
Xs−dYs +

∫ t

0
Ys−dXs +[X ,Y ]s (57)

where [X ,Y ] is the quadratic covariation.

If N is a random Poisson measure on [0,T ]× IR and (ωt)t∈[0,T ], a Wiener process, both are
independent. If

X i
t = X i

0 +
∫ t

0
φ

i
sdωs +

∫ t

0

∫
IRd

ψ
i(s,y)N(ds,dy) i = 1,2 (58)
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then the quadratic covariation [X1,X2] is equal to

[X1,X2]t =
∫ t

0
φ

1
s φ

2
s ds+

∫ t

0

∫
IRd

ψ
1(s,y)ψ2(s,y)N(ds,dy). (59)

or

[X1,X2]t =
∫ t

0
φ

1
s φ

2
s ds+ ∑

0≤s≤t
∆X1

s ∆X2
s . (60)

Under differential form :

d[X1,X2]t = φ
1
t φ

2
t dt +

∫
IRd

ψ
1(t,y)ψ2(t,y)N(dt,dy). (61)

or

d[X1,X2]t = φ
1
t φ

2
t dt +∆X1

t ∆X2
t . (62)

B. Stochastic Dynamic Programming
In this section the essential is provided by Hanson (2007)

B.1. Model and principle of optimality
The general jump-diffusion SDE (45) is reformulated with an additional process, the control
process U(t) on U , thus the dynamic’state is defined by :

dX(t) = f (X(t),U(t), t)dt +g(X(t),U(t), t)dω(t)

+
∫

Q
h(X(t),U(t), t,q)N (dt,dq;X(t),U(t), t)

(63)

where ω(t) is a wiener process or diffusion process, N(t;Q,X(t),U(t), t) is a Poisson process
or jump process with jump amplitude mark random variable Q, and N (dt,dq;X(t),U(t), t) is
the Poisson random measure.

The objective function has a control formulation which is the combination of a final cost at
time t f and cumulative instantaneous costs, given the initial data (t,x(t)). That is

V [X ,U, t f ](x, t) =
∫ t f

t
C(X(s),U(s),s)ds+S(X(t f ), t f ). (64)

It is a functional of the processes X(t) and U(t), where C(x,u, t) is the scalar instantaneous
or running cost function on the time horizon ]t, t f ] given the state at t and S(x, t) is the final
cost function; both are assumed continuous. This is the Bolza form of the objective.

Let us end this section with the Principle of optimality
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The expected cost for (64) is:

E(ω,N)]t,t f ]

[∫ t f

t
C(X(s),U(s),s)ds+S(X(t f ), t f )

]
(65)

Hence, the optimal expected cost for (64) is :

min
u

E(ω,N)]t,t f ]

[∫ t f

t
C(X(s),U(s),s)ds+S(X(t f ), t f )

]
(66)

the optimal expected cost (66) can be decomposed as follows:

Proposition B.1. Under the hypothesis of decomposition rule and properties of jump-difffusion

processes,

v∗(x, t) = min
U ]t,t+δ t]

[
E(ω,N)]t,t+δ t]

[∫ t+δ t

t
C(X(s),U(s),s)ds

+ v∗(X(t +δ t), t +δ t)
∣∣∣X(t) = x,U(t) = u

]] (67)

Thus, we have formally derived the fundamental recursive formula of stochastic dynamic

programming :
Proof:

v∗(x, t) = min
U ]t,t+δ t]

[
E(ω,N)]t,t+δ t]

[∫ t+δ t

t
C(X(s),U(s),s)ds

+ min
U ]t+δ t,t f ]

[
E(ω,N)]t+δ t,t f ]

[∫ t f

t+δ t
C(X(s),U(s),s)ds

+S(X(t f ), t f )|X(t +δ t),U(t +δ t)
]]∣∣∣X(t) = x,U(t) = u

]]
= min

U ]t,t+δ t]

[
E(ω,N)]t,t+δ t]

[∫ t+δ t

t
C(X(s),U(s),s)ds

+ v∗(X(t +δ t), t +δ t)
∣∣∣X(t) = x,U(t) = u

]]
.

(68)

2

B.2. Hamilton-Jacobi-Bellman Equation (HJBE) for Stochastic Dynamic

Programming
Using the Principle of Optimality (67) and by taking the limit of small δ t, replacing δ t by
dt, we can systematically derive the partial differential equation of stochastic dynamic pro-
gramming, also called the stochastic Hamilton-Jacobi-Bellman (HJB) equation, for the general,
multi-dimensional Markov dynamics case. From the increment form of the state differential

dX(t) = X(t +dt)−X(t), (69)

we consider the expansion of the state argument

X(t +dt) = X(t)+dX(t) (70)
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about X(t) for small dX(t) and about the explicit time argument t + dt about t in the limit
of small time increments dt, using an extension of Taylor approximations extended to include
discontinuous (i.e, Poisson)

v∗(x, t) =dt min
u

[
E(dω,dN)(t)

[
C(x,u, t)dt + v∗(x, t)+ v∗t (x, t)dt

+∂xv∗(x, t).
(

f (x,u, t)dt +g(x,u, t)dω(t)
)

+
1
2

∂xxv∗(x, t).dω(t)g(x,u, t)
(
g(x,u, t)dω(t)

)
∫

Q

(
v∗(x+ ĥ(x,u, t,q), t)− v∗(x, t)N (dt,dq, ;x,u, t)

)]]
(71)

Recall that dN(t;x,u, t) =
∫

Q N (dt,dq;x,u, t) where the first t argument of dN is the time
implicit to the Poisson process, while the second t argument is an explicit time corresponding
to the implicit state and control parametric dependence and ĥ(x,u, t,q) is jump amplitude with
a corresponding multiplicative factoring of the Poisson random measure.
The next step is to take a conditional expectation over the isolated differential Wiener and
Poisson processes by considering these expectations:

E[dω(t)] = 0
E[dω(t)dω(t)] = dt

E[N (dt,dq;x,u, t)] = λ (t;x,u, t)dtΦQ(dq;x,u, t) = λ (t;x,u, t)ΦQ(q;x,u, t)dqdt.

(72)

With (72), (71) is transformed as follows

v∗(x, t) =v∗(x, t)+ v∗t (x, t)dt +min
u

[
C(x,u, t)dt

+∂xv∗(x, t).
(

f (x,u, t)dt +g(x,u, t)Edω [dω(t)]
)

+
1
2

∂xxv∗(x, t).g(x,u, t)g(x,u, t)Edω [dω(t)dω(t)]∫
Q

(
v∗(x+ ĥ(x,u, t,q), t)− v∗(x, t)EN [N (dt,dq, ;x,u, t)]

)]]
=v∗(x, t)+ v∗t (x, t)dt +min

u

[
C(x,u, t)dt +∂xv∗(x, t)( f (x,u, t)dt +0)

+
1
2

∂xxv∗(x, t).g(x,u, t)g(x,u, t)dt

+λ

∫
Q

(
v∗(x+ ĥ(x,u, t,q), t)− v∗(x, t)

)
.ΦQ(dq;x,u, t)dt

]

(73)

We note that the v∗(x, t) value on both sides of the equation cancel and then the remaining
common multiplicative factors of dt also cancel.
The Hamiltonian (technically, a pseudo-Hamiltonian) functional is given by:

H (x,u, t)≡C(x,u, t)+∂xv∗(x, t). f (x,u, t)

+
1
2

g2(x,u, t)∂xxv∗(x, t)

+λ (t;x,u, t)
∫

Q

[
v∗
(
x+ ĥ(x,u, t,q), t

)
− v∗(x, t)

]
.φQ(q;x,u, t)dq,

(74)
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Also, with sufficiently small dt, U ]t, t + dt] has been replaced by the conditioned control
vector u at t.

Theorem B.1. Hamilton-Jacobi-Bellman Equation (HJBE) for Stochastic Dynamic Pro-
gramming (SDP) If v∗(x, t) is twice differentiable in x and once differentiable in t, while the

operator decomposition rules are valid, then

0 = v∗t (x, t)+min
u
[H (x,u, t)] = v∗t (x, t)+H ∗(x, t) (75)

The optimal control, if it exists, is given by

u∗ = u∗(x, t) = argminu[H (x,u, t)] (76)

subject to any control constraints.

(75) is not an ordinary PDE.

The equation (75) is the Hamilton-Jacobi-Bellman equation, is also called simply the Bellman
equation, or the stochastic dynamic programming equation or the PDE of stochastic dynamic
programming, or in particular, the PIDE of stochastic dynamic programming where PIDE de-
notes a partial integral differential equation.
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